1
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
2
|
Zhao Y, Wu X, Yang Y, Zhang L, Cai X, Chen S, Vera A, Ji J, Boström KI, Yao Y. Inhibition of endothelial histone deacetylase 2 shifts endothelial-mesenchymal transitions in cerebral arteriovenous malformation models. J Clin Invest 2024; 134:e176758. [PMID: 38781032 PMCID: PMC11290970 DOI: 10.1172/jci176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are the most common vascular malformations worldwide and the leading cause of hemorrhagic strokes that may result in crippling neurological deficits. Here, using recently generated mouse models, we uncovered that cerebral endothelial cells (ECs) acquired mesenchymal markers and caused vascular malformations. Interestingly, we found that limiting endothelial histone deacetylase 2 (HDAC2) prevented cerebral ECs from undergoing mesenchymal differentiation and reduced cerebral AVMs. We found that endothelial expression of HDAC2 and enhancer of zeste homolog 1 (EZH1) was altered in cerebral AVMs. These alterations changed the abundance of H4K8ac and H3K27me in the genes regulating endothelial and mesenchymal differentiation, which caused the ECs to acquire mesenchymal characteristics and form AVMs. This investigation demonstrated that the induction of HDAC2 altered specific histone modifications, which resulted in mesenchymal characteristics in the ECs and cerebral AVMs. The results provide insight into the epigenetic impact on AVMs.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Parekh S, Ochotny R, Lazow SP, Ben-Ishay O, Aribindi V, Pluchinotta FR, Tworetzky W, Buchmiller TL, Peyvandi S, Moon-Grady AJ. High prevalence of left superior vena cava and congenital heart disease in patients with pre- and postnatally diagnosed esophageal atresia/tracheoesophageal fistula. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:439-440. [PMID: 36929674 DOI: 10.1002/uog.26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Affiliation(s)
- S Parekh
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - R Ochotny
- Department of Palliative Care, Akron Children's Hospital, Akron, OH, USA
| | - S P Lazow
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - O Ben-Ishay
- Department of General Surgery, Ramban Healthcare Campus, Haifa, Israel
| | - V Aribindi
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - W Tworetzky
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - T L Buchmiller
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - S Peyvandi
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - A J Moon-Grady
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Fukusumi T, Guo TW, Ren S, Haft S, Liu C, Sakai A, Ando M, Saito Y, Sadat S, Califano JA. Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. Int J Oncol 2020; 58:226-237. [PMID: 33491747 PMCID: PMC7864008 DOI: 10.3892/ijo.2020.5156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Several comprehensive studies have demonstrated that the NOTCH pathway is altered in a bimodal manner in head and neck squamous cell carcinoma (HNSCC). In a previous study, it was found that the NOTCH4/HEY1 pathway was specifically upregulated in HNSCC and promoted epithelial-mesenchymal transition (EMT), and that HEY1 activation supported SOX2 expression. However, the interactions in this pathway have not yet been fully elucidated. The present study investigated the NOTCH4/HEY1/SOX2 axis in HNSCC using in vitro models and the Cancer Genome Atlas (TCGA) database. To explore the association, reporter and ChIP RT-qPCR assays using SOX2-overexpressing (SOX2-OE) cells were performed. The association between NOTCH4 and HEY1 was examined in the same manner using HEY1-overexpressing (HEY1-OE) cells. The results of the in vitro experiments indicated that HEY1 promoted EMT in the HNSCC cells. Furthermore, the overexpression of HEY1 also promoted sphere formation and increased murine xenograft tumorigenicity. Reporter assays and ChIP RT-qPCR experiments indicated that SOX2 regulated HEY1 expression via direct binding of the HEY1 promoter. HEY1 expression significantly correlated with SOX2 expression in primary lung SCC and other SCCs using the TCGA database. HEY1 also regulated NOTCH4 expression to create a positive reciprocal feedback loop. On the whole, the present study demonstrates that HEY1 expression in HNSCC is regulated via the promotion of SOX2 and promotes EMT. The NOTCH4/HEY1 pathway is specifically upregulated via a positive reciprocal feedback loop mediated by the HEY1-medaited regulation of NOTCH4 transcription, and SOX2 correlates with HEY1 expression in SCC from other primary sites.
Collapse
Affiliation(s)
- Takahito Fukusumi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Theresa W Guo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuling Ren
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sunny Haft
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chao Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akihiro Sakai
- Department of Otolaryngology‑Head and Neck Surgery, Tokai University, School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Mizuo Ando
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Yuki Saito
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Sayed Sadat
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Qiao X, Zhang D, Zhang L, Yao J, Wu X, Cai X, Boström KI, Yao Y. Pronethalol decreases RBPJκ to reduce Sox2 in cerebral arteriovenous malformation. Vasc Med 2020; 25:569-571. [PMID: 32833597 DOI: 10.1177/1358863x20942833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
8
|
Wang L, Yao J, Yu T, Zhang D, Qiao X, Yao Z, Wu X, Zhang L, Boström KI, Yao Y. Homeobox D3, A Novel Link Between Bone Morphogenetic Protein 9 and Transforming Growth Factor Beta 1 Signaling. J Mol Biol 2020; 432:2030-2041. [PMID: 32061928 DOI: 10.1016/j.jmb.2020.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
AIMS Several signaling pathways contribute to endothelial-mesenchymal transitions and vascular calcification, including bone morphogenetic protein (BMP) and transforming growth factor (TGF) β signaling. The transcription factor homeobox D3 (Hoxd3) is known to regulate an invasive endothelial phenotype, and the aim of the study is to determine if HOXD3 modulates BMP and TGFβ signaling in the endothelium. METHODS AND RESEARCH We report that the endothelium with high BMP activity due to the loss of BMP inhibitor matrix Gla protein (MGP) shows induction of Hoxd3. HOXD3 is part of a BMP-triggered cascade. When activated by BMP9, activin receptor-like kinase (ALK) 1 induces HOXD3 expression. Hoxd3 promoter is a direct target of phosphorylated (p) SMAD1, a mediator of BMP signaling. High BMP activity further results in enhanced TGFβ signaling due to induction of TGFβ1 and its receptor, ALK5. This is mediated by HOXD3, which directly targets the Tgfb1 promoter. Finally, TGFβ1 and BMP9 stimulate the expression of MGP, which limits the enhanced ALK1 induction by counteracting BMP4. The cascade of BMP9-HOXD3-TGFβ also affects Notch signaling and angiogenesis through induction of Notch ligand Jagged 2 and suppression of Notch ligand delta-like 4 (Dll4). CONCLUSION The results suggest that HOXD3 is a novel link between BMP9/ALK1 and TGFβ1/ALK5 signaling. TRANSLATIONAL PERSPECTIVE BMP and TGFβ signaling are instrumental in vascular disease such as vascular calcification and atherosclerosis. This study demonstrated a novel type of cross talk between endothelial BMP and TGFβ signaling as mediated by HOXD3. The results provide a possible therapeutic approach to control dysfunctional BMP and TGFβ signaling by regulating HOXD3.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Tongtong Yu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Zehao Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; College of Life Science, Nankai University, Tianjin, China
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA.
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
9
|
Skip is essential for Notch signaling to induce Sox2 in cerebral arteriovenous malformations. Cell Signal 2020; 68:109537. [PMID: 31927035 DOI: 10.1016/j.cellsig.2020.109537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
Abstract
Notch signaling and Sry-box (Sox) family transcriptional factors both play critical roles in endothelial cell (EC) differentiation in vascularization. Recent studies have shown that excessive Notch signaling induces Sox2 to cause cerebral arteriovenous malformations (AVMs). Here, we examine human pulmonary AVMs and find no induction of Sox2. Results of epigenetic studies also show less alteration of Sox2-DNA binding in pulmonary AVMs than in cerebral AVMs. We identify high expression of ski-interacting protein (Skip) in brain ECs, a Notch-associated chromatin-modifying protein that is lacking in lung ECs. Knockdown of Skip abolished Notch-induction of Sox2 in brain ECs, while restoration of Skip in lung ECs enabled Notch-mediated Sox2 induction. The results suggest that Skip is a key factor for induction of Sox2 in cerebral AVMs.
Collapse
|