1
|
Li J, Ju Y, Zou Q, Ni F. lncRNA localization and feature interpretability analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102425. [PMID: 39926317 PMCID: PMC11803160 DOI: 10.1016/j.omtn.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 02/11/2025]
Abstract
Subcellular localization is crucial for understanding the functions and regulatory mechanisms of biomolecules. Long non-coding RNAs (lncRNAs) have diverse roles in cellular processes, and their localization within specific subcellular compartments provides insights into their biological functions and implications in health and disease. The nucleolus and nucleoplasm are key hubs for RNA metabolism and cellular regulation. We developed a model, LncDNN, for identifying the localization of lncRNAs in the nucleolus and nucleoplasm. LncDNN uses three different encoding schemes and employs Shapley Additive Explanations for feature analysis and selection. The results show that LncDNN is more accurate than other models. Additionally, an interpretable analysis of the features influencing the model was conducted. LncDNN is applicable for identifying the localization of lncRNA in the nucleolus and nucleoplasm, aiding in the understanding and in-depth study of related biological processes and functions.
Collapse
Affiliation(s)
- Jing Li
- Department of Microbiology, University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, Zhejiang, China
| | - Fengming Ni
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Cheng S, Qiu Z, Zhang Z, Li Y, Zhu Y, Zhou Y, Yang Y, Zhang Y, Yang D, Zhang Y, Liu H, Dai Z, Sun SL, Liu S. USP39 phase separates into the nucleolus and drives lung adenocarcinoma progression by promoting GLI1 expression. Cell Commun Signal 2025; 23:56. [PMID: 39885503 PMCID: PMC11783868 DOI: 10.1186/s12964-025-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers. However, the nucleolar phase separation of DUBs and association with lung cancer development have remained incompletely investigated till now. METHODS GFP-USP39 fusion proteins were analyzed for LLPS properties using immunofluorescence, fluorescence recovery after photobleaching (FRAP) and in vitro LLPS assays. Intrinsically-disordered regions of USP39 were analyzed by PhaSepDB database. Transcriptomic profiling, Western blot, RT-PCR and luciferase reporter assays were conducted to identify targets regulated by USP39. The effects of USP39 depletion on tumor progression were tested using doxycycline-inducible USP39 knockdown and rescue lung adenocarcinoma cells both in vitro and in vivo by performing MTT, colony formation, EdU staining, transwell and tumor xenograft model experiments. RESULTS USP39 phase separates into nucleoli depending upon its N-terminal disordered region with amino acid residues 1-103. Lung cancer cell growth and migration were dramatically inhibited by USP39 knockdown, which was rescued by exogenous USP39 complementation. Moreover, knockdown of USP39 reduced oncogenic transcription effector GLI1 levels. Finally, USP39 downregulation restricted the formation of lung cancer xenografts in nude mice. CONCLUSIONS USP39 undergoes LLPS in the nucleolus and promotes tumor progression by regulating GLI1 expression. Downregulation of USP39 effectively suppressed lung cancer growth, and therefore targeting USP39 provides novel therapeutic strategy to treat lung cancer.
Collapse
Affiliation(s)
- Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyuan Qiu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ziyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxuan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yaowen Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhaoxia Dai
- The Second Department of Thoracic Medical Oncology, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital, Cancer Hospital of China Medical University, Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
3
|
Wang X, Chai Y, Quan Y, Wang J, Song J, Zhou W, Xu X, Xu H, Wang B, Cao X. NPM1 inhibits tumoral antigen presentation to promote immune evasion and tumor progression. J Hematol Oncol 2024; 17:97. [PMID: 39402629 PMCID: PMC11479574 DOI: 10.1186/s13045-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Tumor cells develop multiple mechanisms to facilitate their immune evasion. Identifying tumor-intrinsic factors that support immune evasion may provide new strategies for cancer immunotherapy. We aimed to explore the function and the mechanism of the tumor-intrinsic factor NPM1, a multifunctional nucleolar phosphoprotein, in cancer immune evasion and progression. METHODS The roles of NPM1 in tumor progression and tumor microenvironment (TME) reprogramming were examined by subcutaneous inoculation of Npm1-deficient tumor cells into syngeneic mice, and then explored by CyTOF, flow cytometry, immunohistochemistry staining, and RNA-seq. The in-vitro T-cell killing of OVA-presenting tumor cells by OT-1 transgenic T cells was observed. The interaction of NPM1 and IRF1 was verified by Co-IP. The regulation of NPM1 in IRF1 DNA binding to Nlrc5, Ciita promoter was determined by dual-luciferase reporter assay and ChIP-qPCR. RESULTS High levels of NPM1 expression predict low survival rates in various human tumors. Loss of NPM1 inhibited tumor progression and enhanced the survival of tumor-bearing mice. Npm1-deficient tumors showed increased CD8+ T cell infiltration and activation alongside the reduced presence of immunosuppressive cells. Npm1 deficiency increased MHC-I and MHC-II molecules and specific T-cell killing. Mechanistically, NPM1 associates with the transcription factor IRF1 and then sequesters IRF1 from binding to the Nlrc5 and Ciita promoters to suppress IRF1-mediated expression of MHC-I and MHC-II molecules in tumor cells. CONCLUSIONS Tumor-intrinsic NPM1 promotes tumor immune evasion via suppressing IRF1-mediated antigen presentation to impair tumor immunogenicity and reprogram the immunosuppressive TME. Our study identifies NPM1 as a potential target for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaming Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaying Song
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wenkai Zhou
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqing Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Henan Xu
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bingjing Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Tagnères S, Santo PE, Radermecker J, Rinaldi D, Froment C, Provost Q, Bongers M, Capeille S, Watkins N, Marcoux J, Gleizes PE, Marcel V, Plisson-Chastang C, Lebaron S. SURF2 is a MDM2 antagonist in triggering the nucleolar stress response. Nat Commun 2024; 15:8404. [PMID: 39333141 PMCID: PMC11436901 DOI: 10.1038/s41467-024-52659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cancer cells rely on high ribosome production to sustain their proliferation rate. Many chemotherapies impede ribosome production which is perceived by cells as "nucleolar stress" (NS), triggering p53-dependent and independent pathways leading to cell cycle arrest and/or apoptosis. The 5S ribonucleoprotein (RNP) particle, a sub-ribosomal particle, is instrumental to NS response. Upon ribosome assembly defects, the 5S RNP accumulates as free form. This free form is able to sequester and inhibit MDM2, thus promoting p53 stabilization. To investigate how cancer cells can resist to NS, here we purify free 5S RNP and uncover an interaction partner, SURF2. Functional characterization of SURF2 shows that its depletion increases cellular sensitivity to NS, while its overexpression promotes their resistance to it. Consistently, SURF2 is overexpressed in many cancers and its expression level is an independent marker of prognosis for adrenocortical cancer. Our data demonstrate that SURF2 buffers free 5S RNP particles, and can modulate their activity, paving the way for the research of new molecules that can finely tune the response to nucleolar stress in the framework of cancer therapies.
Collapse
Affiliation(s)
- Sophie Tagnères
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Paulo Espirito Santo
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Julie Radermecker
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Dana Rinaldi
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Quentin Provost
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Manon Bongers
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Solemne Capeille
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Nick Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France.
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France.
| |
Collapse
|
5
|
Ulloa-Aguilar JM, Herrera Moro Huitron L, Benítez-Zeferino RY, Cerna-Cortes JF, García-Cordero J, León-Reyes G, Guzman-Bautista ER, Farfan-Morales CN, Reyes-Ruiz JM, Miranda-Labra RU, De Jesús-González LA, León-Juárez M. The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection. Cells 2024; 13:1591. [PMID: 39329772 PMCID: PMC11430610 DOI: 10.3390/cells13181591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs.
Collapse
Affiliation(s)
- José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico
| | - Luis Herrera Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rocío Yazmin Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Edgar Rodrigo Guzman-Bautista
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - José Manuel Reyes-Ruiz
- Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | | | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| |
Collapse
|
6
|
Engbrecht M, Grundei D, Dilger A, Wiedemann H, Aust AK, Baumgärtner S, Helfrich S, Kergl-Räpple F, Bürkle A, Mangerich A. Monitoring nucleolar-nucleoplasmic protein shuttling in living cells by high-content microscopy and automated image analysis. Nucleic Acids Res 2024; 52:e72. [PMID: 39036969 PMCID: PMC11347172 DOI: 10.1093/nar/gkae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleolus has core functions in ribosome biosynthesis, but also acts as a regulatory hub in a plethora of non-canonical processes, including cellular stress. Upon DNA damage, several DNA repair factors shuttle between the nucleolus and the nucleoplasm. Yet, the molecular mechanisms underlying such spatio-temporal protein dynamics remain to be deciphered. Here, we present a novel imaging platform to investigate nucleolar-nucleoplasmic protein shuttling in living cells. For image acquisition, we used a commercially available automated fluorescence microscope and for image analysis, we developed a KNIME workflow with implementation of machine learning-based tools. We validated the method with different nucleolar proteins, i.e., PARP1, TARG1 and APE1, by monitoring their shuttling dynamics upon oxidative stress. As a paradigm, we analyzed PARP1 shuttling upon H2O2 treatment in combination with a range of pharmacological inhibitors in a novel reporter cell line. These experiments revealed that inhibition of SIRT7 results in a loss of nucleolar PARP1 localization. Finally, we unraveled specific differences in PARP1 shuttling dynamics after co-treatment with H2O2 and different clinical PARP inhibitors. Collectively, this work delineates a highly sensitive and versatile bioimaging platform to investigate swift nucleolar-nucleoplasmic protein shuttling in living cells, which can be employed for pharmacological screening and in-depth mechanistic analyses.
Collapse
Affiliation(s)
- Marina Engbrecht
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - David Grundei
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Asisa M Dilger
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Hannah Wiedemann
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kristin Aust
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sarah Baumgärtner
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
7
|
Krześniak M, Łasut-Szyszka B, Będzińska A, Gdowicz-Kłosok A, Rusin M. The Strong Activation of p53 Tumor Suppressor Drives the Synthesis of the Enigmatic Isoform of DUSP13 Protein. Biomedicines 2024; 12:1449. [PMID: 39062022 PMCID: PMC11274236 DOI: 10.3390/biomedicines12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The p53 tumor suppressor protein activates various sets of genes depending on its covalent modifications, which are controlled by the nature and intensity of cellular stress. We observed that actinomycin D and nutlin-3a (A + N) collaborate in inducing activating phosphorylation of p53. Our recent transcriptomic data demonstrated that these substances strongly synergize in the upregulation of DUSP13, a gene with an unusual pattern of expression, coding for obscure phosphatase having two isoforms, one expressed in the testes and the other in skeletal muscles. In cancer cells exposed to A + N, DUSP13 is expressed from an alternative promoter in the intron, resulting in the expression of an isoform named TMDP-L1. Luciferase reporter tests demonstrated that this promoter is activated by both endogenous and ectopically expressed p53. We demonstrated for the first time that mRNA expressed from this promoter actually produces the protein, which can be detected with Western blotting, in all examined cancer cell lines with wild-type p53 exposed to A + N. In some cell lines, it is also induced by clinically relevant camptothecin, by nutlin-3a acting alone, or by a combination of actinomycin D and other antagonists of p53-MDM2 interaction-idasanutlin or RG7112. This isoform, fused with green fluorescent protein, localizes in the perinuclear region of cells.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.K.); (B.Ł.-S.); (A.B.); (A.G.-K.)
| |
Collapse
|
8
|
Yang L, Zhang Z, Jiang P, Kong D, Yu Z, Shi D, Han Y, Chen E, Zheng W, Sun J, Zhao Y, Luo Y, Shi J, Yao H, Huang H, Qian P. Phase separation-competent FBL promotes early pre-rRNA processing and translation in acute myeloid leukaemia. Nat Cell Biol 2024; 26:946-961. [PMID: 38745030 DOI: 10.1038/s41556-024-01420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- RNA Processing, Post-Transcriptional
- Animals
- Cell Line, Tumor
- Protein Biosynthesis
- Cell Nucleolus/metabolism
- Cell Nucleolus/genetics
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Phase Separation
Collapse
Affiliation(s)
- Lin Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ertuo Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyan Zheng
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Sun
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
9
|
Sirozh O, Saez-Mas A, Jung B, Sanchez-Burgos L, Zarzuela E, Rodrigo-Perez S, Ventoso I, Lafarga V, Fernandez-Capetillo O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol Cell 2024; 84:1527-1540.e7. [PMID: 38521064 DOI: 10.1016/j.molcel.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
Collapse
Affiliation(s)
- Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Anabel Saez-Mas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ivan Ventoso
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Departamento de Biologia Molecular, Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| |
Collapse
|
10
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
11
|
Merlino F, Pecoraro A, Longobardi G, Donati G, Di Leva FS, Brignola C, Piccarducci R, Daniele S, Martini C, Marinelli L, Russo G, Quaglia F, Conte C, Russo A, La Pietra V. Development and Nanoparticle-Mediated Delivery of Novel MDM2/MDM4 Heterodimer Peptide Inhibitors to Enhance 5-Fluorouracil Nucleolar Stress in Colorectal Cancer Cells. J Med Chem 2024; 67:1812-1824. [PMID: 38285632 DOI: 10.1021/acs.jmedchem.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | | | - Chiara Brignola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| |
Collapse
|
12
|
Ali Barakat LA, El-Deen IM, El-Zend MA, El-Behery M. In vitro cytotoxic investigation of some synthesized 1,6-disubstituted-1-azacoumarin derivatives as anticancer agents. Future Med Chem 2023; 15:2289-2307. [PMID: 38047384 DOI: 10.4155/fmc-2023-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Aims: In this study, novel synthesized 1,6-disubstituted-1-azacoumarin-3-carboxylic acid derivatives were designed, synthesized and evaluated as potential anticancer agents. Materials & methods: The cytotoxicity of novel 1-azacoumarin-3-carboxylic acid derivatives was tested using an MTT assay. High potency was shown by DNA flow cytometry on MCF-7 cells for compound 3b. In addition, topoisomerase IIβ, caspase 3/7, Bax and Bcl-2 enzymes were used to study apoptotic activity. In the same studies, molecular docking analysis assessed activity. Results & conclusion: Cytotoxicity screening identified multiple bioactive compounds, especially compound 3b. Analysis of DNA flow cytometry revealed that compound 3b exhibited cell cycle arrest. Compound 3b had an increase in the expression of Bax/Bcl-2 ratio and caspase 3/7, and a decrease in topoisomerase IIβ enzyme inhibition.
Collapse
Affiliation(s)
| | - Ibrahim Mohy El-Deen
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42511, Egypt
| | - Manar Abdo El-Zend
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42511, Egypt
| | - Mohammed El-Behery
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42511, Egypt
| |
Collapse
|
13
|
Han D, Guan L, Zhang Y, Yang H, Si L, Jia T, Wu Y, Lv K, Song T, Yang G. FGF13A interacts with NPM1 and UBF and inhibits the invasion of bladder cancer cells. Biochem Biophys Res Commun 2023; 678:1-10. [PMID: 37603967 DOI: 10.1016/j.bbrc.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Bladder cancer (BC) invasion is a critical factor that impacts the prognosis and quality of life of patients. However, the underlying mechanisms of BC invasion is far from clear. Fibroblast growth factor 13 (FGF13), a non-secretory FGF, has been found to be ectopically expressed in various tumors and implicated in tumor development, but its potential association to BC has not been investigated. Here, we reported that the expression of FGF13A, one nucleolar isoform of FGF13, was downregulated in BC patients and negatively associated with tumor invasion. Additionally, we demonstrated that overexpression of FGF13A could inhibit the migration and invasion of BC 5637 and T24 cells. We also confirmed the localization of FGF13A in the nucleolus and its interaction with nucleoproteins NPM1 and UBP. Subsequently, we identified that the N-terminal region of FGF13A was essential for its nucleolus location and interaction with NPM1. Furthermore, we found that FGF13A inhibited the generation of nascent ribosomal RNA and suppressed the migration and invasion of BC cells through its N-terminal region. Our research establishes, for the first time, a correlation between the expression of FGF13A and the onset and progression of BC. This provides novel insights into the role of FGF13A in the development of BC.
Collapse
Affiliation(s)
- Dong Han
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China; Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Lei Guan
- Department of Cardiovascular Medicine, Central Theater General Hospital of PLA, Wuhan, Hubei Providence, China
| | - Yingying Zhang
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Libu Si
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Tongyu Jia
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yangyang Wu
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Kaikai Lv
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tao Song
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China.
| | - Guang Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Guerrero AS, O'Dowd PD, Pigg HC, Alley KR, Griffith DM, DeRose VJ. Comparison of click-capable oxaliplatin and cisplatin derivatives to better understand Pt(ii)-induced nucleolar stress. RSC Chem Biol 2023; 4:785-793. [PMID: 37799581 PMCID: PMC10549245 DOI: 10.1039/d3cb00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
Pt(ii) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(ii) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(ii)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(ii) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a click-capable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and γH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide-alkyne cycloaddition and may help to better understand Pt(ii)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(ii) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress.
Collapse
Affiliation(s)
- Andres S Guerrero
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Paul D O'Dowd
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Darren M Griffith
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
15
|
Lagunas-Rangel FA. The nucleolus of Giardia and its ribosomal biogenesis. Parasitol Res 2023; 122:1961-1971. [PMID: 37400534 DOI: 10.1007/s00436-023-07915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Giardia duodenalis is a protozoan intestinal parasite that causes a significant number of infections worldwide each year, particularly in low-income and developing countries. Despite the availability of treatments for this parasitic infection, treatment failures are alarmingly common. As a result, new therapeutic strategies are urgently needed to effectively combat this disease. On the other hand, within the eukaryotic nucleus, the nucleolus stands out as the most prominent structure. It plays a crucial role in coordinating ribosome biogenesis and is involved in vital processes such as maintaining genome stability, regulating cell cycle progression, controlling cell senescence, and responding to stress. Given its significance, the nucleolus presents itself as a valuable target for selectively inducing cell death in undesirable cells, making it a potential avenue for anti-Giardia treatments. Despite its potential importance, the Giardia nucleolus remains poorly studied and often overlooked. In light of this, the objective of this study is to provide a detailed molecular description of the structure and function of the Giardia nucleolus, with a primary focus on its involvement in ribosomal biogenesis. Likewise, it discusses the targeting of the Giardia nucleolus as a therapeutic strategy, its feasibility, and the challenges involved.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
16
|
Gaona-López C, Martínez-Vázquez AV, Villalobos-Rocha JC, Juárez-Rendón KJ, Rivera G. Analysis of Giardia lamblia Nucleolus as Drug Target: A Review. Pharmaceuticals (Basel) 2023; 16:1168. [PMID: 37631082 PMCID: PMC10457859 DOI: 10.3390/ph16081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Giardia lamblia (G. lamblia) is the main causative agent of diarrhea worldwide, affecting children and adults alike; in the former, it can be lethal, and in the latter a strong cause of morbidity. Despite being considered a predominant disease in low-income and developing countries, current migratory flows have caused an increase in giardiasis cases in high-income countries. Currently, there is a wide variety of chemotherapeutic treatments to combat this parasitosis, most of which have potentially serious side effects, such as genotoxic, carcinogenic, and teratogenic. The necessity to create novel treatments and discover new therapeutic targets to fight against this illness is evident. The current review centers around the controversial nucleolus of G. lamblia, providing a historical perspective that traces its apparent absence to the present evidence supporting its existence as a subnuclear compartment in this organism. Additionally, possible examples of ncRNAs and proteins ubiquitous to the nucleolus that can be used as targets of different therapeutic strategies are discussed. Finally, some examples of drugs under research that could be effective against G. lamblia are described.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Juan Carlos Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.V.M.-V.); (K.J.J.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
17
|
Chen HF, Gao DD, Jiang XQ, Sheng H, Wu Q, Zheng Q, Zhai QC, Yuan L, Liu M, Xu LF, Qian MX, Xu H, Fang J, Zhang F. TAF1B depletion leads to apoptotic cell death by inducing nucleolar stress and activating p53-miR-101 circuit in hepatocellular carcinoma. Front Oncol 2023; 13:1203775. [PMID: 37645431 PMCID: PMC10461479 DOI: 10.3389/fonc.2023.1203775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Background TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown. Objective In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC. Methods We analyzed the differential expression and prognostic value of TAF1B in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA) database, tumor and paraneoplastic tissue samples from clinical hepatocellular carcinoma patients, and typical hepatocellular carcinoma. We detected cell proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western blotting (WB) detection of apoptosis marker proteins. Simultaneously, we investigated the influence of TAF1B knockdown on the function of the pre-initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays verified the interaction between the complexes and the effect on rDNA activity. Immunofluorescence assays measured the expression of marker proteins of nucleolus stress, fluorescence in situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated the role of p53 and miR-101 in modulating nucleolar stress and apoptosis. Finally, the impact of TAF1B knockdown on tumor growth, apoptosis, and p53 expression was observed in xenograft tumors. Result We identified that TAF1B was highly expressed in hepatocellular carcinoma and associated with poor prognosis in HCC patients. TAF1B depletion modulated nucleolar stress and apoptosis in hepatocellular carcinoma cells through positive and negative feedback from p53-miR-101. RNA polymerase I transcription repression triggered post-transcriptional activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively feeds back through direct inhibition of the p53-mediated PARP pathway. Conclusion These findings broaden our comprehension of the function of TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer new biomarkers for exploring prospective therapeutic targets in HCC.
Collapse
Affiliation(s)
- Hang-fei Chen
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Dan-dan Gao
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xin-qing Jiang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Sheng
- Department of Anus & Intestine Surgery, The First People’s Hospital of Jiande, Hangzhou, Zhejiang, China
| | - Qi Wu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Quan Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Qiao-cheng Zhai
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Ming Liu
- The Joint Innovation Center for Engineering in Medicine, Quzhou People’s Hospital, Quzhou, China
| | - Li-feng Xu
- The Joint Innovation Center for Engineering in Medicine, Quzhou People’s Hospital, Quzhou, China
| | - Mao-xiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Heng Xu
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Fang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Feng Zhang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
18
|
Gan Y, Deng J, Hao Q, Huang Y, Han T, Xu JG, Zhao M, Yao L, Xu Y, Xiong J, Lu H, Wang C, Chen J, Zhou X. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biol 2023; 62:102705. [PMID: 37087976 PMCID: PMC10149416 DOI: 10.1016/j.redox.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Guo Xu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
20
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
21
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
22
|
Wooten M, Takushi B, Ahmad K, Henikoff S. Aclarubicin stimulates RNA polymerase II elongation at closely spaced divergent promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523323. [PMID: 36712130 PMCID: PMC9882078 DOI: 10.1101/2023.01.09.523323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anthracyclines are a class of widely prescribed anti-cancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we utilized CUT&Tag to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of elongating RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation impacts chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally-oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of non-canonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the anti-cancer activity of aclarubicin is driven by the effects of nucleosome disruption on RNA polymerase II, chromatin accessibility and DNA structures.
Collapse
Affiliation(s)
- Matthew Wooten
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
| | | | - Kami Ahmad
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute
| |
Collapse
|
23
|
Antitumor Effect of Cycloastragenol in Colon Cancer Cells via p53 Activation. Int J Mol Sci 2022; 23:ijms232315213. [PMID: 36499536 PMCID: PMC9737126 DOI: 10.3390/ijms232315213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer cell (CRC) is the fourth most common cancer in the world. There are several chemotherapy drugs available for its treatment, though they have side effects. Cycloastragenol (CY) is a compound from Astragalus membranaceus (Fisch.) Bge known to be effective in aging, anti-inflammatory, anticancer, and anti-heart failure treatments. Although many studies have demonstrated the functions of CY in cancer cells, no studies have shown the effects of p53 in colon cancer cells. In this study, we found that CY reduces the viability of colon cancer cells in p53 wild-type cells compared to p53 null cells and HT29. Furthermore, CY induces apoptosis by p53 activation in a dose- and time-dependent manner. And it was confirmed that it affects the L5 gene related to p53. Additionally, CY enhanced p53 expression compared to when either doxorubicin or 5-FU was used alone. Altogether, our findings suggest that CY induces apoptosis via p53 activation and inhibits the proliferation of colon cancer cells. In addition, apoptosis occurs in colon cancer cells due to other factors. Moreover, CY is expected to have a combined effect when used together with existing treatments for colon cancer in the future.
Collapse
|
24
|
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells. Angew Chem Int Ed Engl 2022; 61:e202210568. [PMID: 36102872 PMCID: PMC9869109 DOI: 10.1002/anie.202210568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Collapse
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
25
|
Design, Synthesis, and Investigation of Cytotoxic Activity of cis-Vinylamide-Linked Combretastatin Analogues as Potential Anticancer Agents. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The combretastatins (cis-stilbenoid molecules) have received significant interest because of their simple chemical structures, excellent antiproliferative activity, and novel anti-tubulin molecular mechanism of action. Significant efforts have been carried out aiming at stabilizing the active cis-isomers. A new series of cis-vinylamide derivatives containing trimethoxyphenyl moiety were synthesized and characterized. Their anticancer activities were evaluated in vitro against MCF-7 breast cancer cell line. Compounds 2f, 3, and 5 displayed potent cytotoxic activity against the breast cancer cell line compared with CA-4 as the reference compound. The microtubule polymerization assay and flow cytometry analysis confirmed that the cytotoxic activity of compound 3 was related to inhibitory activity against tubulin polymerization. Compound 3 showed pro-apoptotic activity by inducting a significant increase in the percentage of pre-G1 phase in DNA flow cytometry compared to untreated control. The pro-apoptotic activity of compound 3 was inferred by a significant increase in the percentage of fluorescent annexin V/PI positive apoptotic cells. It also increased the level of caspase 3 compared to the untreated control.
Collapse
|
26
|
Guan X, Wang B, Zhang Y, Qi G, Chen L, Jin Y. Monitoring Stress Response Difference in Nucleolus Morphology and ATP Content Changes during Hyperthermia Cell Apoptosis with Plasmonic Fluorescent Nanoprobes. Anal Chem 2022; 94:13842-13851. [PMID: 36174112 DOI: 10.1021/acs.analchem.2c02464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleolus, as a main "cellular stress receptor", is the hub of the stress response driving cancer development and has great research value in the field of organelle-targeting photothermal therapy. However, there are few studies focused on monitoring nucleolar stress response and revealing how the energy metabolism of cells regulates the nucleolar stress response during photothermal therapy. Herein, by designing a nucleolus-targeting and ATP- and photothermal-responsive plasmonic fluorescent nanoprobe (AuNRs-CDs) based on gold nanorods (AuNRs) and fluorescent carbon quantum dots (CDs), we achieved real-time fluorescence imaging of nucleus morphology while monitoring changes of ATP content at the subcellular level. We found that the green fluorescence diminished at 5 min of photothermal therapy, and the nucleolus morphology began to shrink and became smaller in cancerous HepG2 cells. In contrast, there is no significant change of green fluorescence in the nucleolar region of normal HL-7702 cells. ATP content monitoring also showed similar results. Apparently, in response to photothermal stimuli, cancerous cells produce more ATP (energy) along with obvious change in nucleolus morphology and state compared to normal cells under the hyperthermia-induced cell apoptosis. The developed AuNRs-CDs as a nucleolus imaging nanoprobe and effective photothermal agent present promising applications for nucleolar stress studies and targeted photothermal therapy.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
27
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
28
|
Trapotsi MA, Mouchet E, Williams G, Monteverde T, Juhani K, Turkki R, Miljković F, Martinsson A, Mervin L, Pryde KR, Müllers E, Barrett I, Engkvist O, Bender A, Moreau K. Cell Morphological Profiling Enables High-Throughput Screening for PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature. ACS Chem Biol 2022; 17:1733-1744. [PMID: 35793809 PMCID: PMC9295119 DOI: 10.1021/acschembio.2c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances made in targeted protein degradation technology have been remarkable, with several molecules having moved into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step toward delivering efficacious and safe compounds to patients. In this work, we used Cell Painting, an unbiased high-content imaging method, to identify phenotypic signatures of PROTACs. Chemical clustering and model prediction allowed the identification of a mitotoxicity signature that could not be expected by screening the individual PROTAC components. The data highlighted the benefit of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.
Collapse
Affiliation(s)
- Maria-Anna Trapotsi
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Elizabeth Mouchet
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Guy Williams
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Tiziana Monteverde
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Karolina Juhani
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Riku Turkki
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Filip Miljković
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Anton Martinsson
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Lewis Mervin
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kenneth R Pryde
- Oncology Safety, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Ian Barrett
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kevin Moreau
- Safety Innovation, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
29
|
Oxe KC, Larsen DH. Treacle is Upregulated in Cancer and Correlates With Poor Prognosis. Front Cell Dev Biol 2022; 10:918544. [PMID: 35794866 PMCID: PMC9251355 DOI: 10.3389/fcell.2022.918544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Treacle/TCOF1 is an adaptor protein specifically associated with nucleolar chromatin. In the nucleolus it stimulates ribosome biogenesis, thereby promoting growth and proliferation. A second role of Treacle has emerged as a coordinator of the nucleolar responses to DNA damage, where it facilitates nucleolar DNA repair and cellular survival after genotoxic insults. The involvement of Treacle in multiple fundamental processes such as growth, proliferation, and genome stability, which are tightly linked to cancer, raises the question of Treacle’s role in the development of this disease. On one hand, overexpression of Treacle could stimulate nucleolar transcription and ribosome biogenesis providing a growth advantage in cancer cells. On the other hand, the function of Treacle as a gatekeeper in response to nucleolar DNA damage could favor mutations that would impair its function. In this perspective, we analyze paired Treacle expression data from the Cancer Genome Atlas (TCGA) and correlate expression with patient survival in different cancer types. We also discuss other recently published observations of relevance to the role of Treacle in cancer. In light of these new observations, we propose possible roles of Treacle in carcinogenesis and discuss its potential as a therapeutic target.
Collapse
|
30
|
Jiang M, Fang X, Ma L, Liu M, Chen M, Liu J, Yang Y, Wang C. A nucleus-targeting peptide antagonist towards EZH2 displays therapeutic efficacy for lung cancer. Int J Pharm 2022; 622:121894. [DOI: 10.1016/j.ijpharm.2022.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
|
31
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
32
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Chen S, Li Y, Wu M, Xue L, Zhu J, Wu M, Zhang Q, He G, Li G, Fu S, Zheng C, Deng X. Nucleolar and Coiled-Body Phosphoprotein 1 Is Associated With Stemness and Represents a Potential Therapeutic Target in Triple-Negative Breast Cancer. Front Oncol 2022; 12:731528. [PMID: 35174077 PMCID: PMC8841672 DOI: 10.3389/fonc.2022.731528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks approved specific targeted therapies. One of the major reasons why TNBC is difficult to treat is the high proportion of cancer stem cells within the tumor tissue. Nucleolus is the location of ribosome biogenesis which is frequently overactivated in cancer cells and overactivation of ribosome biogenesis frequently drives the malignant transformation of cancer. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a nucleolar protein responsible for nucleolus organization and rRNA synthesis and plays an important role in ribosome biogenesis. However, the correlation of NOLC1 expression with patient prognosis and its value as a therapeutic target have not been evaluated in TNBC. In the current study, based on bioinformatics analysis of the online databases, we found that the expression of NOLC1 was higher in breast cancer tissues than normal tissues, and NOLC1 was expressed at a higher level in TNBC than other subtypes of breast cancer. GSEA analysis revealed that stemness-related pathways were significantly enriched in breast cancer with high NOLC1 gene expression. Further analyses using gene expression profiling interactive analysis 2 (GEPIA2), tumor immune estimation resource (TIMER) and search tool for retrieval of interacting genes/proteins (STRING) demonstrated that NOLC1 was significantly associated with stemness in both all breast cancer and basal-like breast cancer/TNBC patients at both gene and protein levels. Knockdown of NOLC1 by siRNA decreased the protein level of the key stemness regulators MYC and ALDH and inhibited the sphere-forming capacity in TNBC cell line MDA-MB-231. Univariate and multivariate Cox regression analyses demonstrated that NOLC1 was an independent risk factor for overall survival in breast cancer. PrognoScan and Kaplan-Meier plotter analyses revealed that high expression of NOLC1 was associated with poor prognosis in both all breast cancer and TNBC patients. Further immunohistochemical analysis of breast cancer patient samples revealed that TNBC cells had a lower level of NOLC1 in the nucleus compared with non-TNBC cells. These findings suggest that NOLC1 is closely associated with the stemness properties of TNBC and represents a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, China
| | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
- *Correspondence: Chanjuan Zheng, ; Xiyun Deng,
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- *Correspondence: Chanjuan Zheng, ; Xiyun Deng,
| |
Collapse
|
34
|
9-Aminoacridine Inhibits Ribosome Biogenesis by Targeting Both Transcription and Processing of Ribosomal RNA. Int J Mol Sci 2022; 23:ijms23031260. [PMID: 35163183 PMCID: PMC8836032 DOI: 10.3390/ijms23031260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacridines, used for decades as antiseptic and antiparasitic agents, are prospective candidates for therapeutic repurposing and new drug development. Although the mechanisms behind their biological effects are not fully elucidated, they are most often attributed to the acridines’ ability to intercalate into DNA. Here, we characterized the effects of 9-aminoacridine (9AA) on pre-rRNA metabolism in cultured mammalian cells. Our results demonstrate that 9AA inhibits both transcription of the ribosomal RNA precursors (pre-rRNA) and processing of the already synthesized pre-rRNAs, thereby rapidly abolishing ribosome biogenesis. Using a fluorescent intercalator displacement assay, we further show that 9AA can bind to RNA in vitro, which likely contributes to its ability to inhibit post-transcriptional steps in pre-rRNA maturation. These findings extend the arsenal of small-molecule compounds that can be used to block ribosome biogenesis in mammalian cells and have implications for the pharmacological development of new ribosome biogenesis inhibitors.
Collapse
|
35
|
Xue H, Lu J, Yan H, Huang J, Luo HB, Wong MS, Gao Y, Zhang X, Guo L. γ-Glutamyl transpeptidase-activated indole-quinolinium based cyanine as a fluorescence turn-on nucleolus-targeting probe for cancer cell detection and inhibition. Talanta 2022; 237:122898. [PMID: 34736714 DOI: 10.1016/j.talanta.2021.122898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
A nucleolus as a prominent sub-nuclear, membraneless organelle plays a crucial role in ribosome biogenesis, which is in the major metabolic demand in a proliferating cell, especially in aggressive malignancies. We develop a γ-glutamyltranspeptidase (GGT)-activatable indole-quinolinium (QI) based cyanine consisting of a novel tripeptide fragment (Pro-Gly-Glu), namely QI-PG-Glu as a turn-on red fluorescent probe for the rapid detection of GGT-overexpressed A549 cancer cells in vivo. QI-PG-Glu can be triggered by GGT to rapidly release an activated fluorophore, namely HQI, in two steps including the cleavage of the γ-glutamyl group recognized by GGT and the rapid self-driven cyclization of the Pro-Gly linker. HQI exhibits dramatically red fluorescence upon binding to rRNA for imaging of nucleolus in live A549 cells. HQI also intervenes in rRNA biogenesis by declining the RNA Polymerase I transcription, thus resulting in cell apoptosis via a p53 dependent signaling pathway. Our findings may provide an alternative avenue to develop multifunctional cancer cell-specific nucleolus-targeting fluorescent probes with potential anti-cancer effects.
Collapse
Affiliation(s)
- Huanxin Xue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiaye Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongwei Yan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ju Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Li X, Chen X, Gao J, Xian J, Li Z, Bi L, Yang M, Yang S, Jin H, Shan H. Loss-of-function Mutations K11E or E271K Lead to Novel Tumor Suppression, Implicate Nucleolar Helicase DDX24 Oncogenicity. Int J Med Sci 2022; 19:596-608. [PMID: 35370459 PMCID: PMC8964322 DOI: 10.7150/ijms.67840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Mutations (K11E or E271K) of DEAD-box RNA helicase 24 (DDX24) were related to multi-organ venous lymphatic malformation syndrome (MOVLD). However, the relationship between these mutations and DDX24-function still remains unknown. Understanding whether K11E and E271K cause "loss-of-function" or "gain-of-function" for DDX24 is significant for related diseases. DDX24 was reported to be related to tumors closely, thus this study aims to explore how K11E and E271K affect DDX24-function in tumor proliferation. Methods: Cell lines stably expressing wild-type DDX24, K11E-DDX24, E271K-DDX24, along with vector only based on Chinese hamster ovary cells (CHO) and Balb/c tumor-bearing mice models were constructed. Then immunofluorescence staining, proliferation assay and colony formation assay in vitro and 18F-FDG PET/CT-scan were performed. Finally, the tumor tissues were collected to perform transcriptome sequencing to predict the potential mechanism. Results: Contrasted with CHO-WT-DDX24, CHO-K11E-DDX24 or CHO-E271K-DDX24 showed a decreased number of nucleoli, a slower proliferation rate and a lower colony formation rate significantly. Moreover, mice, inoculated with CHO-K11E-DDX24 or CHO-E271K-DDX24 cells, showed lower tumor formation rate, slower tumor growth rate, better prognosis, reduced standard uptake value and Ki of glucose in subcutaneous tumors. Sequencing indicated CHO-K11E-DDX24 or CHO-E271K-DDX24 caused increasing expression of TNF or chemokines and alteration in immune-related signal pathways. Conclusion: K11E or E271K mutation could lead to "loss-of-function" of DDX24 in cell proliferation and tumor bearing mice, which may be acted by non-specific immune killing to inhibit tumor growth.
Collapse
Affiliation(s)
- Xinglin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province 518000, China
| | - Xiaoyun Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, Zhongshan Affiliated Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province 528400, China
| | - Jiebing Gao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shuai Yang
- Center of Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
37
|
Traditional therapies and their moderation. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Popławski P, Bogusławska J, Hanusek K, Piekiełko-Witkowska A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. Int J Mol Sci 2021; 22:ijms222313126. [PMID: 34884928 PMCID: PMC8658237 DOI: 10.3390/ijms222313126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Renal cell cancer is the most frequent kidney malignancy. Most RCC cases are classified as clear cell renal cell carcinoma (ccRCC), characterized by high aggressiveness and poor prognosis for patients. ccRCC aggressiveness is defined by classification systems based on changes in morphology of nucleoli, the membraneless substructures of nuclei. The latter act as the sites of ribosome biogenesis as well as the hubs that trap and immobilize proteins, preventing their action in other cellular compartments. Thereby, nucleoli control cellular functioning and homeostasis. Nucleoli are also the sites of activity of multiple noncoding RNAs, including snoRNAs, IGS RNA, and miRNAs. Recent years have brought several remarkable discoveries regarding the role of nucleolar non-coding RNAs, in particular snoRNAs, in ccRCC. The expression of snoRNAs is largely dysregulated in ccRCC tumors. snoRNAs, such as SNHG1, SNHG4 and SNHG12, act as miRNA sponges, leading to aberrant expression of oncogenes and tumor suppressors, and directly contributing to ccRCC development and progression. snoRNAs can also act without affecting miRNA functioning, by altering the expression of key oncogenic proteins such as HIF1A. snoRNAs are also potentially useful biomarkers of ccRCC progression. Here, we comprehensively discuss the role of nucleolar proteins and non-coding RNAs in ccRCC.
Collapse
|
39
|
Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 2021; 22:ijms222313095. [PMID: 34884901 PMCID: PMC8657925 DOI: 10.3390/ijms222313095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
The process of phase separation allows for the establishment and formation of subcompartmentalized structures, thus enabling cells to perform simultaneous processes with precise organization and low energy requirements. Chemical modifications of proteins, RNA, and lipids alter the molecular environment facilitating enzymatic reactions at higher concentrations in particular regions of the cell. In this review, we discuss the nucleolus as an example of the establishment, dynamics, and maintenance of a membraneless organelle with a high level of organization.
Collapse
|
40
|
Dai R, Wu M, Zhang Y, Zhu Z, Shi J. G protein nucleolar 3 promotes Non-Hodgkin lymphoma progression by activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 409:112911. [PMID: 34762898 DOI: 10.1016/j.yexcr.2021.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/18/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
G protein nucleolar 3 (GNL3), which acts as an oncoprotein in various carcinomas, is associated with tumor progression; however, little is known regarding GNL3 function in non-Hodgkin lymphoma (NHL). In this study, we first used in silico analysis to determine associations between GNL3 and diffuse large B-cell lymphoma (DLBCL). We then examined the effect of GNL3 on NHL progression, including cell proliferation, apoptosis, and cell cycle progression, and determined its underlying molecular mechanism using in vitro lymphoma cell lines and in vivo mouse xenograft models. We found that GNL3 mRNA levels were markedly higher in DLBCL tissues than in normal tissues, with these higher levels associated with poor prognosis. Additionally, GNL3 overexpression promoted NHL cell proliferation and cell cycle progression and reduced apoptosis in vitro, and enhanced tumorigenesis in an in vivo xenograft model. Moreover, we found that GNL3 upregulated the levels of Wnt/β-catenin signaling pathway-related factors and downstream target genes, whereas the opposite result was observed in GNL3-silenced cells. Furthermore, a rescue experiment using a Wnt/β-catenin inhibitor (XAV939) confirmed that GNL3 promotes NHL progression by activating the Wnt/β-catenin signaling pathway. These findings demonstrated that GNL3 functions as an oncogenic driver in NHL via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rongqin Dai
- Department of Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan province, PR China
| | - Meirong Wu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian province, PR China
| | - Yin Zhang
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan province, PR China
| | - Zunmin Zhu
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan province, PR China.
| | - Jie Shi
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan province, PR China.
| |
Collapse
|
41
|
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. J Transl Med 2021; 101:1439-1448. [PMID: 34267320 PMCID: PMC8510891 DOI: 10.1038/s41374-021-00642-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.
Collapse
Affiliation(s)
- Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr R Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
42
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
43
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO, Zhu H, Wang G, Wharram B, Lisok A, Brummet M, Saeki H, Huang T, Gabrielson K, Gabrielson E, Cope L, Kanaan YM, Afsari A, Naab T, Yfantis HG, Ambs S, Pomper MG, Sukumar S, Merino VF. CRYβB2 enhances tumorigenesis through upregulation of nucleolin in triple negative breast cancer. Oncogene 2021; 40:5752-5763. [PMID: 34341513 PMCID: PMC10064491 DOI: 10.1038/s41388-021-01975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Expression of β-crystallin B2 (CRYβB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYβB2-induced malignancy and the association of CRYβB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYβB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYβB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYβB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYβB2 and the nucleolar protein, nucleolin. CRYβB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYβB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYβB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYβB2 in primary TNBC correlates with decreased survival. In summary, CRYβB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYβB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.
Collapse
Affiliation(s)
- Yu Yan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan Wharram
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmine M Kanaan
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ali Afsari
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Tammey Naab
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vanessa F Merino
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Hou J, Yang Y, Zhang T, Zhu C, Lv K. The Effects of P53 in the Globular Heads of the C1q Receptor in Gastric Carcinoma Cell Apoptosis Are Exerted via a Mitochondrial-Dependent Pathway. DOKL BIOCHEM BIOPHYS 2021; 500:376-384. [PMID: 34697746 DOI: 10.1134/s1607672921050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023]
Abstract
The globular heads of the C1q receptor (gC1qR), located in the B cell cytoplasm, perform important roles in many cellular processes. A recent studies reported a major role of mitochondrial apoptosis in several cancers, but there has been no report on gastric carcinoma (GC). In this study, the mechanism by which cell apoptosis is induced by gC1qR in GC was explored. Western blot showed that gC1qR and P53 protein levels were lower in GC tissues than in normal tissues. Cytotoxicity was dynamically increased in gC1qR-overexpressing GC cells compared to the control. CCK8 assay indicated that overexpression of gC1qR induced GC cell apoptosis, increased reactive oxygen species (ROS) production, decreased the mitochondrial transmembrane potential and promoted mitochondrial apoptosis. Moreover, the P53 level increased in response to gC1qR. The viability, migration, and mitochondrial transmembrane potential of GC cells increased in association with decreased levels of ROS and mitochondrial apoptosis in the P53-silenced group. Collectively, our findings indicate that apoptosis of GC cells is enhanced when gC1qR overexpression is induced by P53-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Jinjun Hou
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China.
| | - Yang Yang
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Chenghai Zhu
- Department of Gastroenterology, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China
| | - Kangtai Lv
- Department of Ultrasonography, Qixia District Maternal and Child Health Care Hospital, 210028, Nanjing, China.
| |
Collapse
|
45
|
SIRT7 Acts as a Guardian of Cellular Integrity by Controlling Nucleolar and Extra-Nucleolar Functions. Genes (Basel) 2021; 12:genes12091361. [PMID: 34573343 PMCID: PMC8467518 DOI: 10.3390/genes12091361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
Sirtuins are key players for maintaining cellular homeostasis and are often deregulated in different human diseases. SIRT7 is the only member of mammalian sirtuins that principally resides in the nucleolus, a nuclear compartment involved in ribosomal biogenesis, senescence, and cellular stress responses. The ablation of SIRT7 induces global genomic instability, premature ageing, metabolic dysfunctions, and reduced stress tolerance, highlighting its critical role in counteracting ageing-associated processes. In this review, we describe the molecular mechanisms employed by SIRT7 to ensure cellular and organismal integrity with particular emphasis on SIRT7-dependent regulation of nucleolar functions.
Collapse
|
46
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
47
|
Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci 2021; 22:ijms22115496. [PMID: 34071057 PMCID: PMC8197113 DOI: 10.3390/ijms22115496] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Collapse
|
48
|
Xie Y, Luo X, He H, Pan T, He Y. Identification of an individualized RNA binding protein-based prognostic signature for diffuse large B-cell lymphoma. Cancer Med 2021; 10:2703-2713. [PMID: 33749163 PMCID: PMC8026940 DOI: 10.1002/cam4.3859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
RNA binding proteins (RBPs) are increasingly appreciated as being essential for normal hematopoiesis and have a critical role in the progression of hematological malignancies. However, their functional consequences and clinical significance in diffuse large B‐cell lymphoma (DLBCL) remain unknown. Here, we conducted a systematic analysis to identify RBP‐related genes affecting DLBCL prognosis based on the Gene Expression Omnibus database. By univariate and multivariate Cox proportional hazards regression (CPHR) methods, six RBPs‐related genes (CMSS1, MAEL, THOC5, PSIP1, SNIP1, and ZCCHC7) were identified closely related to the overall survival (OS) of DLBCL patients. The RBPs signature could efficiently distinguished low‐risk from high‐risk patients and could serve as an independent and reliable factor for predicting OS. Moreover, Gene Set Enrichment Analysis revealed 17 significantly enriched pathways between high‐ versus low‐risk group, including the regulation of autophagy, chronic myeloid leukemia, NOTCH signaling pathway, and B cell receptor signaling pathway. Then we developed an RBP‐based nomogram combining other clinical risk factors. The receiver operating characteristic curve analysis demonstrated high prognostic predictive efficiency of this model with the area under the curve values were 0.820 and 0.780, respectively, in the primary set and entire set. In summary, our RBP‐based model could be a novel prognostic predictor and had the potential for developing treatment targets for DLBCL.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Pan
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
49
|
Liu Z, Pang Y, Jia Y, Qin Q, Wang R, Li W, Jing J, Liu H, Liu S. SNORA23 inhibits HCC tumorigenesis by impairing the 2'-O-ribose methylation level of 28S rRNA. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0343. [PMID: 33710804 PMCID: PMC8763008 DOI: 10.20892/j.issn.2095-3941.2020.0343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The dysregulation of ribosome biogenesis is associated with the progression of numerous tumors, including hepatocellular carcinoma (HCC). Small nucleolar RNAs (snoRNAs) regulate ribosome biogenesis by guiding the modification of ribosomal RNAs (rRNAs). However, the underlying mechanism of this process in HCC remains elusive. METHODS RNA immunoprecipitation and sequencing were used to analyze RNAs targeted by ribosome proteins. The biological functions of SNORA23 were examined in HCC cells and a xenograft mouse model. To elucidate the underlying mechanisms, the 2'-O-ribose methylation level of rRNAs was evaluated by qPCR, and the key proteins in the PI3K/Akt/mTOR pathway were detected using Western blot. RESULTS Twelve snoRNAs were found to co-exist in 4 cancer cell lines using RPS6 pull-down assays. SNORA23 was downregulated in HCC and correlated with the poor prognoses of HCC patients. SNORA23 inhibited the proliferation, migration, and invasion of HCC cells both in vitro and in vivo. We also found that SNORA23 regulated ribosome biogenesis by impairing 2'-O-ribose methylation of cytidine4506 of 28S rRNA. Furthermore, SNORA23, which is regulated by the PI3K/Akt/mTOR signaling pathway, significantly inhibited the phosphorylation of 4E binding protein 1. SNORA23 and rapamycin blocked the PI3K/AKT/mTOR signaling pathway and impaired HCC growth in vivo. CONCLUSIONS SNORA23 exhibited antitumor effects in HCC and together with rapamycin, provided a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qin Qin
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 China
| | - Wei Li
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jie Jing
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Haidong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai 200081, China
| |
Collapse
|
50
|
S-Adenosyl-l-Methionine Overcomes uL3-Mediated Drug Resistance in p53 Deleted Colon Cancer Cells. Int J Mol Sci 2020; 22:ijms22010103. [PMID: 33374288 PMCID: PMC7795960 DOI: 10.3390/ijms22010103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. Results: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. Conclusions: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.
Collapse
|