1
|
Bellini G, Rettura F, Palermo G, Ippolito C, Segnani C, Pierucci C, Fontanelli L, Frosini D, Nardini V, Lambiase C, Bernardini N, Pellegrini C, Ceravolo R. Prokineticin-2 Is Highly Expressed in Colonic Mucosa of Early Parkinson's Disease Patients. Mov Disord 2024; 39:2091-2097. [PMID: 39051733 DOI: 10.1002/mds.29937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elevated levels of prokineticin-2 (PK2), regarded as a protein involved in modulating immune/inflammatory responses, have been detected in the substantia nigra, serum, and olfactory neurons of Parkinson's disease (PD) patients. Of note, emerging evidence suggests that gut alterations, including dysbiosis and enteric inflammation, play a role in PD via the gut-brain axis. OBJECTIVES Our goal was to investigate the expression of PK2 in colonic biopsies of PD patients. METHODS Mucosal biopsies from the descending colon were obtained in 11 PD patients and five asymptomatic subjects. Biopsy samples were processed for PK2 immunofluorescence and western blot. RESULTS We revealed an increased PK2 expression in colonic mucosa from PD patients in the early stages compared to controls. In addition, we found that PK2 was expressed by activated enteric glial cells and macrophages. CONCLUSIONS PK2 is highly expressed within neurogenic/inflammatory cells of colonic mucosa from early PD patients, suggesting a potential role of PK2 in gut inflammation, especially in the early stages of PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, the Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, New York, USA
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clarissa Pierucci
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
| | - Vincenzo Nardini
- Anatomia Patologica 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Christian Lambiase
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Neurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
- Anatomia Patologica 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Yao CY, Chung CH, Chien WC, Li ST, Lee ST, Huang CC, Yang CC, Tzeng NS. Ectopic pregnancy, its potential links to dementia risk and interactions with depression: insights from a nationwide cohort study. Front Psychiatry 2024; 15:1410685. [PMID: 39279812 PMCID: PMC11392761 DOI: 10.3389/fpsyt.2024.1410685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Background Dementia poses a growing global mental health impact, with variations in prevalence by gender, possibly influenced by reproductive factors. Ectopic pregnancy (EP), known for its association with cardiovascular diseases and depression, which are also predictors of dementia, prompted an exploration of their interplay. Methods Using Taiwan's National Health Insurance Research Database, this nationwide cohort study examined 53,096 individuals to investigate the link between EP and dementia. Covariates included age, insured premiums, comorbidity by Charlson Comorbidity Index revised by excluding dementia, level of care, and residence. Surgical approaches, number of EP episodes, and dementia subtypes were considered in outcomes analysis using Cox regression. Results Among 13,274 women diagnosed with EP, 791 developed dementia over a 15-year follow-up, particularly vascular dementia. Adjusting for the covariates, the adjusted sub-distribution Hazard Ratio (asHR) with competing risks was 1.644 (95% CI, 1.394-2.053; p < 0.001). For patients with more than one episode, it was even higher (asHR=1.670 [95% CI, 1.419-2.092; p < 0.001]). Post-ectopic depression, prevalent in 62.2% within four weeks, was associated with a greater dementia risk compared to those without (asHR=1.702 [95% CI, 1.444-2.125; p<0.001] vs. asHR=1.551 [95%CI, 1.310-1.937; p<0.001]). Antidepressant treatments showed a partial protective effect, reducing the increased risk by 14.7%. Conclusion An EP history is linked to an earlier onset and a higher risk of overall dementia, VaD in particular, in a dose dependent manner, regardless of surgical intervention and stroke. Post-ectopic depression exacerbates dementia risk, while antidepressants offer partial protection. These findings underscore the potential benefit of screening and treating depression in women following EPs.
Collapse
Affiliation(s)
- Chia-Yi Yao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Tao Li
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Siou-Ting Lee
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chih-Chung Huang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chi Yang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu, Taiwan
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Counseling Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Massa F, Vigo T, Bellucci M, Giunti D, Emanuela MM, Visigalli D, Capodivento G, Cerne D, Assini A, Boni S, Rizzi D, Narciso E, Grisanti GS, Coco E, Uccelli A, Schenone A, Franciotta D, Benedetti L. COVID-19-associated serum and cerebrospinal fluid cytokines in post- versus para-infectious SARS-CoV-2-related Guillain-Barré syndrome. Neurol Sci 2024; 45:849-859. [PMID: 38169013 DOI: 10.1007/s10072-023-07279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Guillain-Barré syndrome associated with Coronavirus-2-related severe acute respiratory syndrome (COV-GBS) occurs as para- or post-infectious forms, depending on the timing of disease onset. In these two forms, we aimed to compare the cerebrospinal fluid (CSF) and serum proinflammatory cytokine profiles to evaluate differences that could possibly have co-pathogenic relevance. MATERIALS AND METHODS We studied a retrospective cohort of 26 patients with either post-COV-GBS (n = 15), with disease onset occurring > 7 days after SARS-CoV-2 infection, or para-COV-GBS (n = 11), with disease onset 7 days or less. TNF-α, IL-6, and IL-8 were measured in the serum with SimplePlex™ Ella™ immunoassay. In addition to the para-/post-COV-GBS patients, serum levels of these cytokines were determined in those with non-COVID-associated-GBS (NC-GBS; n = 43), paucisymptomatic SARS-CoV-2 infection without GBS (COVID, n = 20), and in healthy volunteers (HV; n = 12). CSF cytokine levels were measured in patients with para-/post-COV-GBS, in those with NC-GBS (n = 29), or with Alzheimer's disease (AD; n = 24). RESULTS Serum/CSF cytokine levels did not differ in para- vs post-COV-GBS. We found that SARS-CoV-2 infection raises the serum levels of TNF-α, IL-6, and IL-8, as well as an increase of IL-6 (in serum and CSF) and IL-8 (in CSF) in either NC-GBS or COV-GBS than controls. CSF and serum cytokine levels resulted independent one with another. CONCLUSIONS The change of cytokines linked to SARS-CoV-2 in COV-GBS appears to be driven by viral infection, although it has unique characteristics in GBS as such and does not account for cases with para- or post-infectious onset.
Collapse
Affiliation(s)
- Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Margherita Bellucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
| | - Debora Giunti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | | | - Davide Visigalli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Giovanna Capodivento
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Denise Cerne
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
| | - Andrea Assini
- Neurology Unit, Galliera Hospital, Via Mura Delle Cappuccine 14, 1628, Genova, Italy
| | - Silvia Boni
- Department of Infectious Diseases, Galliera Hospital, Via Mura Delle Cappuccine 14, 1628, Genoa, Italy
| | - Domenica Rizzi
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Eleonora Narciso
- Department of Neurology, ASL3 Genovese, Corso Onofrio Scassi 1, 16149, Genova, Italy
| | - Giuseppe Stefano Grisanti
- Department of Neurology, Santa Corona Hospital, Viale XXV Aprile 38, 17027, Pietra Ligure, Savona, Italy
| | - Elena Coco
- Department of Neurology, Santa Corona Hospital, Viale XXV Aprile 38, 17027, Pietra Ligure, Savona, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | | | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| |
Collapse
|
5
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
6
|
Schirinzi T, Lattanzi R, Maftei D, Grillo P, Zenuni H, Boffa L, Albanese M, Simonetta C, Bovenzi R, Maurizi R, Loccisano L, Vincenzi M, Greco A, Di Girolamo S, Mercuri NB, Passali FM, Severini C. Substance P and Prokineticin-2 are overexpressed in olfactory neurons and play differential roles in persons with persistent post-COVID-19 olfactory dysfunction. Brain Behav Immun 2023; 108:302-308. [PMID: 36549578 PMCID: PMC9760596 DOI: 10.1016/j.bbi.2022.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Persistent olfactory dysfunction (OD) is one of the most complaining and worrying complications of long COVID-19 because of the potential long-term neurological consequences. While causes of OD in the acute phases of the SARS-CoV-2 infection have been figured out, reasons for persistent OD are still unclear. Here we investigated the activity of two inflammatory pathways tightly linked with olfaction pathophysiology, namely Substance P (SP) and Prokineticin-2 (PK2), directly within the olfactory neurons (ONs) of patients to understand mechanisms of persistent post-COVID-19 OD. ONs were collected by non-invasive brushing from ten patients with persistent post-COVID-19 OD and ten healthy controls. Gene expression levels of SP, Neurokinin receptor 1, Interleukin-1β (IL-1β), PK2, PK2 receptors type 1 and 2, and Prokineticin-2-long peptide were measured in ONs by Real Time-PCR in both the groups, and correlated with residual olfaction. Immunofluorescence staining was also performed to quantify SP and PK2 proteins. OD patients, compared to controls, exhibited increased levels of both SP and PK2 in ONs, the latter proportional to residual olfaction. This work provided unprecedented, preliminary evidence that both SP and PK2 pathways may have a role in persistent post-COVID-19 OD. Namely, if the sustained activation of SP, lasting months after infection's resolution, might foster chronic inflammation and contribute to hyposmia, the PK2 expression could instead support the smell recovery.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy.
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Piergiorgio Grillo
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Laura Boffa
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Maria Albanese
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Riccardo Maurizi
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Laura Loccisano
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Stefano Di Girolamo
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Nicola B. Mercuri
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Francesco M. Passali
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
7
|
Liu T, Feng J, Sun Z, He M, Sun L, Dong S, Guo Z, Zhang G. Inhibition of miR-141-3p attenuates apoptosis of neural stem cells via targeting PBX1 to regulate PROK2 transcription in MCAO mice. Cell Cycle 2023; 22:403-418. [PMID: 36548024 PMCID: PMC9879164 DOI: 10.1080/15384101.2022.2121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-141-3p (miR-141-3p) has been found to be altered in the brain following a stroke. Herein, we investigate the impact of miR-141-3p on the apoptosis of neural stem cells (NSCs) in mice with middle cerebral artery occlusion (MCAO) and the potential mechanisms involved. Eight-week-old mice were injected intracerebroventricularly with miR-141-3p, antagomir-141-3p, or agomir negative control 2 h before MCAO, and animal behavior tests and infraction volume measurements were performed 24 h later. MCAO-mediated brain injury and NSCs apoptosis were observed by H&E, TTC, and TUNEL staining. The expression of cleaved caspase-3 and Ki67 was detected by western blotting. The luciferase reporter assay proved that miR-141-3p in combination with its target gene PBX homeobox 1 (PBX1). Exogenous miR-141-3p (agomir-141-3p) treatment increased infraction volume and brain edema and damaged neurological functions compared to control mice. Agomir-141-3p increased miR-141-3p expression in brain tissue of mice with MCAO and suppressed PBX1 expression. The effects of the agomir-141-3p-induced apoptosis in NSCs treated with oxygen-glucose deprivation (OGD)/reoxygenation (R) were abolished by PBX1 overexpression. The results from UCSC and JASPAR database showed that prokineticin 2 (PROK2) was a transcription factor of PBX1. The expression of PROK2 was transcriptionally regulated by PBX1 using RT-PCR and western blot assays. The effects of the apoptosis-promoting caused by PBX1 inhibition in NSCs treated with OGD/R were reversed by PROK2 inhibition. In conclusion, the miR-141-3p/PBX1/PROK2 axis might be a novel therapeutic target for the apoptosis of NSCs in MCAO.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenjie Sun
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Mingli He
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Linlin Sun
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Shuangshuang Dong
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Zhenwei Guo
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Guanghui Zhang
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| |
Collapse
|
8
|
Schirinzi T, Maftei D, Passali FM, Grillo P, Zenuni H, Mascioli D, Maurizi R, Loccisano L, Vincenzi M, Rinaldi AM, Ralli M, Di Girolamo S, Stefani A, Lattanzi R, Severini C, Mercuri NB. Olfactory Neuron Prokineticin-2 as a Potential Target in Parkinson's Disease. Ann Neurol 2023; 93:196-204. [PMID: 36218142 DOI: 10.1002/ana.26526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objective of this study was to outline the dynamics of prokineticin-2 pathway in relation to clinical-pathological features of Parkinson's disease by examining olfactory neurons of patients. METHODS Thirty-eight patients (26 de novo, newly diagnosed) and 31 sex/age-matched healthy controls underwent noninvasive mucosa brushing for olfactory neurons collection, and standard clinical assessment. Gene expression levels of prokineticin-2, prokineticin-2 receptors type 1 and 2, and prokineticin-2-long peptide were measured in olfactory neurons by real-time polymerase chain reaction (PCR); moreover, the prokineticin-2 protein and α-synuclein species (total and oligomeric) were quantified by immunofluorescence staining. RESULTS Prokineticin-2 expression was significantly increased in Parkinson's disease. De novo patients had higher prokineticin-2 levels, directly correlated with Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) part III motor score. In addition, oligomeric α-synuclein was higher in Parkinson's disease and directly correlated with prokineticin-2 protein levels. Total α-synuclein did not differ between patients and controls. INTERPRETATION Prokineticin-2 is a chemokine showing neuroprotective effects in experimental models of Parkinson's disease, but translational proof of its role in patients is still lacking. Here, we used olfactory neurons as the ideal tissue to analyze molecular stages of neurodegeneration in vivo, providing unprecedented evidence that the prokineticin-2 pathway is activated in patients with Parkinson's disease. Specifically, prokineticin-2 expression in olfactory neurons was higher at early disease stages, proportional to motor severity, and associated with oligomeric α-synuclein accumulation. These data, consistently with preclinical findings, support prokineticin-2 as a candidate target in Parkinson's disease, and validate reliability of olfactory neurons to reflect pathological changes of the disease. ANN NEUROL 2023;93:196-204.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
| | - Francesco M Passali
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Piergiorgio Grillo
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Davide Mascioli
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Riccardo Maurizi
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Laura Loccisano
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Stefano Di Girolamo
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Nicola B Mercuri
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy.,European Centre for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Maftei D, Schirinzi T, Mercuri NB, Lattanzi R, Severini C. Potential Clinical Role of Prokineticin 2 (PK2) in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2019-2023. [PMID: 35410604 PMCID: PMC9886845 DOI: 10.2174/1570159x20666220411084612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
The role of the immune system in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) has become clear in recent decades, as evidenced by the presence of activated microglia and astrocytes and numerous soluble mediators in the brain and peripheral tissues of affected patients. Among inflammatory mediators, chemokines play a central role in neuroinflammation due to their dual function as chemoattractants for immune cells and molecular messengers in crosstalk among CNS-resident cells. The chemokine Bv8/Prokineticin 2 (PK2) has recently emerged as an important player in many age-related and chronic diseases that are either neurodegenerative or systemic. In this perspective paper, we briefly discuss the role that PK2 and its cognate receptors play in AD and PD animal models and in patients. Given the apparent changes in PK2 blood levels in both AD and PD patients, the potential clinical value of PK2 either as a disease biomarker or as a therapeutic target for these disorders is discussed.
Collapse
Affiliation(s)
- Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy; ,These authors contributed equally to the work.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; ,These authors contributed equally to the work.
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; ,IRCCS Fondazione Santa Lucia, Rome, Italy;
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy; ,These authors contributed equally to the work.
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology, National Research Council of Italy, Viale del Policlinico, 155, 00161 Rome, Italy; Tel: +39-6-49976742; E-mail:
| |
Collapse
|
10
|
Yu X, Chen J, Tang H, Tu Q, Li Y, Yuan X, Zhang X, Cao J, Molloy DP, Yin Y, Chen D, Song Z, Xu P. Identifying Prokineticin2 as a Novel Immunomodulatory Factor in Diagnosis and Treatment of Sepsis. Crit Care Med 2022; 50:674-684. [PMID: 34582411 PMCID: PMC8923365 DOI: 10.1097/ccm.0000000000005335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis remains a highly lethal disease, whereas the precise reasons for death remain poorly understood. Prokineticin2 is a secreted protein that regulates diverse biological processes. Whether prokineticin2 is beneficial or deleterious to sepsis and the underlying mechanisms remain unknown. DESIGN Prospective randomized animal investigation and in vitro studies. SETTING Research laboratory at a medical university hospital. SUBJECTS Prokineticin2 deficiency and wild-type C57BL/6 mice were used for in vivo studies; sepsis patients by Sepsis-3 definitions, patient controls, and healthy controls were used to obtain blood for in vitro studies. INTERVENTIONS Prokineticin2 concentrations were measured and analyzed in human septic patients, patient controls, and healthy individuals. The effects of prokineticin2 on sepsis-related survival, bacterial burden, organ injury, and inflammation were assessed in an animal model of cecal ligation and puncture-induced polymicrobial sepsis. In vitro cell models were also used to study the role of prokineticin2 on antibacterial response of macrophages. MEASUREMENTS AND MAIN RESULTS Prokineticin2 concentration is dramatically decreased in the patients with sepsis and septic shock compared with those of patient controls and healthy controls. Furthermore, the prokineticin2 concentration in these patients died of sepsis or septic shock is significantly lower than those survival patients with sepsis or septic shock, indicating the potential value of prokineticin2 in the diagnosis of sepsis and septic shock, as well as the potential value in predicting mortality in adult patients with sepsis and septic shock. In animal model, recombinant prokineticin2 administration protected against sepsis-related deaths in both heterozygous prokineticin2 deficient mice and wild-type mice and alleviated sepsis-induced multiple organ damage. In in vitro cell models, prokineticin2 enhanced the phagocytic and bactericidal functions of macrophage through signal transducers and activators of transcription 3 pathway which could be abolished by signal transducers and activators of transcription 3 inhibitors S3I-201. Depletion of macrophages reversed prokineticin2-mediated protection against polymicrobial sepsis. CONCLUSIONS This study elucidated a previously unrecognized role of prokineticin2 in clinical diagnosis and treatment of sepsis. The proof-of-concept study determined a central role of prokineticin2 in alleviating sepsis-induced death by regulation of macrophage function, which presents a new strategy for sepsis immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jingyi Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Hong Tang
- Department of Critical Care Medicine, Department of Surgical Intensive Care Unit, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Tu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xi Yuan
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - David Paul Molloy
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhixin Song
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Pingyong Xu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Filadi R, Pizzo P. Key Signalling Molecules in Aging and Neurodegeneration. Cells 2022; 11:cells11050834. [PMID: 35269456 PMCID: PMC8909535 DOI: 10.3390/cells11050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
12
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
13
|
Fiore M, Tarani L, Radicioni A, Spaziani M, Ferraguti G, Putotto C, Gabanella F, Maftei D, Lattanzi R, Minni A, Greco A, Tarani F, Petrella C. Serum Prokineticin-2 in Prepubertal and Adult Klinefelter Individuals. Can J Physiol Pharmacol 2021; 100:151-157. [PMID: 34614364 DOI: 10.1139/cjpp-2021-0457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prokineticin-2 (PROK2) is a small peptide belonging to the prokineticin family. In humans and rodents this chemokine is primarily involved in the control of central and peripheral reproductive processes. Klinefelter's syndrome (KS) is the first cause of male genetic infertility, due to an extra X chromosome, which may occur with a classical karyotype (47, XXY) or mosaic forms (46, XY/47, XXY). In affected subjects, pubertal maturation usually begins at an adequate chronological age, but when development is almost complete, they display a primary gonadal failure, with early spermatogenesis damage, and later onset of testosterone insufficiency. Thus, the main aim of the present study was to investigate the serum levels of PROK2 in prepubertal and adult KS patients, comparing them with healthy subjects. We showed for the first time the presence of PROK2 in the children serum but with significant changes in KS individuals. Indeed, compared to healthy subjects characterized by PROK2 serum elevation during the growth, KS individuals showed constant serum levels during the sexual maturation phase (higher during the prepubertal phase but lower during the adult age). In conclusion, these data indicate that in KS individuals PROK2 may be considered a biomarker for investigating the SK infertility process.
Collapse
Affiliation(s)
- Marco Fiore
- IBCN-CNR, Institute of Cell Biology and Neurobiology, Roma, Italy;
| | - Luigi Tarani
- "Sapienza" University of Rome, Department of Pediatrics, Rome, Italy;
| | - Antonio Radicioni
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Matteo Spaziani
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Giampiero Ferraguti
- Sapienza University of Rome, Department of Cellular Biotechnologies and Hematology, Rome, Italy;
| | - Carolina Putotto
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | - Francesca Gabanella
- IBBC-CNR), Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM-CNR), Rome, Italy;
| | - Daniela Maftei
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Roberta Lattanzi
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Antonio Minni
- Sapienza University of Rome, Department of Sense Organs, Rome, Italy;
| | - Antonio Greco
- University of Rome La Sapienza, 9311, Rome, Lazio, Italy;
| | - Francesca Tarani
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | | |
Collapse
|
14
|
Lycopene Attenuates Hypoxia-Induced Testicular Injury by Inhibiting PROK2 Expression and Activating PI3K/AKT/mTOR Pathway in a Varicocele Adult Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3471356. [PMID: 34055003 PMCID: PMC8149244 DOI: 10.1155/2021/3471356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/27/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Purpose The aim of this study was to evaluate the effect of lycopene on hypoxia-induced testicular injury in rat model and explore the underlying mechanism. Methods Six-week-old male Wistar rats (n = 36) were randomly divided into three groups (n = 12/group): a normal group (NG, sham control), a varicocele group (VG), and a varicocele treated by lycopene group (VLG). Bilateral renal veins constriction was performed on rats in VG and VLG. Simultaneously, rats in VLG were treated to lycopene by intragastric administration. Four weeks later, sperm was collected for sperm analysis. Testes and epididymides were harvested for morphological change analysis, histologic analysis, ELISA, qRT-PCR, and western blot. Results Our observations were that lycopene improved the hypoxia-induced testicular injury in vivo. Prokineticin 2(PROK2) and prokineticin receptor 2 (PROKR2) were overexpressed in VG (P < 0.01), and lycopene inhibited the PROK2 expression (P < 0.01). Proliferating cell nuclear antigen (PCNA) and sex hormones were increased by lycopene in VLG (P < 0.05). Lycopene restored the quality and activity of sperm by blocking PROK2 expression (P < 0.05). The expression of VEGF was increased, as HIF-1/NF-κB pathway was upregulated in VLG (P < 0.05). Meanwhile, expression of pAKT/AKT in VLG was higher than that in VG (P < 0.05). In addition, lycopene reduced levels of interleukin-1β (IL-1β) and interleukin-2 (IL-2) in VLG (P < 0.05), compared to NG. Conclusions Lycopene improved the hypoxia-induced testicular injury by inhibiting the expression of PROK2 and decreasing levels of IL-1β and IL-2, which might show us a novel and promising treatment for varicocele testicular injury.
Collapse
|
15
|
Lattanzi R, Severini C, Maftei D, Saso L, Badiani A. The Role of Prokineticin 2 in Oxidative Stress and in Neuropathological Processes. Front Pharmacol 2021; 12:640441. [PMID: 33732160 PMCID: PMC7956973 DOI: 10.3389/fphar.2021.640441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Aldo Badiani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Schirinzi T, Maftei D, Pieri M, Bernardini S, Mercuri NB, Lattanzi R, Severini C. Increase of Prokineticin-2 in Serum of Patients with Parkinson's Disease. Mov Disord 2021; 36:1031-1033. [PMID: 33404134 DOI: 10.1002/mds.28458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy.,Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy.,Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
17
|
Liu Q, Jiao Y, Yang W, Gao B, Hsu DK, Nolta J, Russell M, Lyeth B, Zanto TP, Zhao M. Intracranial alternating current stimulation facilitates neurogenesis in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2020; 12:89. [PMID: 32703308 PMCID: PMC7376967 DOI: 10.1186/s13195-020-00656-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neurogenesis is significantly impaired in the brains of both human patients and experimental animal models of Alzheimer's disease (AD). Although deep brain stimulation promotes neurogenesis, it is an invasive technique that may damage neural circuitry along the path of the electrode. To circumvent this problem, we assessed whether intracranial electrical stimulation to the brain affects neurogenesis in a mouse model of Alzheimer's disease (5xFAD). METHODS AND RESULTS We used Ki67, Nestin, and doublecortin (DCX) as markers and determined that neurogenesis in both the subventricular zone (SVZ) and hippocampus were significantly reduced in the brains of 4-month-old 5xFAD mice. Guided by a finite element method (FEM) computer simulation to approximately estimate current and electric field in the mouse brain, electrodes were positioned on the skull that were likely to deliver stimulation to the SVZ and hippocampus. After a 4-week program of 40-Hz intracranial alternating current stimulation (iACS), neurogenesis indicated by expression of Ki67, Nestin, and DCX in both the SVZ and hippocampus were significantly increased compared to 5xFAD mice who received sham stimulation. The magnitude of neurogenesis was close to the wild-type (WT) age-matched unmanipulated controls. CONCLUSION Our results suggest that iACS is a promising, less invasive technique capable of effectively stimulating the SVZ and hippocampus regions in the mouse brain. Importantly, iACS can significantly boost neurogenesis in the brain and offers a potential treatment for AD.
Collapse
Affiliation(s)
- Qian Liu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Yihang Jiao
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Beiyao Gao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Present location: Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200041, P. R. China
| | - Daniel K Hsu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, Institute for Regenerative Cures, Department of Internal Medicine, University of California at Davis, Sacramento, 95817, CA, USA
| | - Michael Russell
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco - Mission Bay, Sandler Neuroscience Center MC 0444, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA.
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA.
- Department of Ophthalmology and Vision Science, University of California at Davis, Sacramento, CA, 95616, USA.
| |
Collapse
|