1
|
Liu Y, Hong J, Wang G, Mei Z. An emerging role of SNAREs in ischemic stroke: From pre-to post-diseases. Biochem Pharmacol 2025; 236:116907. [PMID: 40158821 DOI: 10.1016/j.bcp.2025.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke is a debilitating condition characterized by high morbidity, disability, recurrence, and mortality rates on a global scale, posing a significant threat to public health and economic stability. Extensive research has thoroughly explored the molecular mechanisms underlying ischemic stroke, elucidating a strong association between soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor proteins (SNAREs) and the pathogenesis of this condition. SNAREs, a class of highly conserved proteins involved in membrane fusion, play a crucial role in modulating neuronal information transmission and promoting myelin formation in the central nervous system (CNS). Preventing the SNARE complex formation, malfunctions in SNARE-dependent exocytosis, and altered regulation of SNARE-mediated vesicle fusion are linked to excitotoxicity, endoplasmic reticulum (ER) stress, and programmed cell death (PCD) in ischemic stroke. However, its underlying mechanisms remain unclear. This study conducts a comprehensive review of the existing literature on SNARE proteins, encompassing the structure, classification, and expression of the SNARE protein family, as well as the assembly - disassembly cycle of SNARE complexes and their physiological roles in the CNS. We thoroughly examine the mechanisms by which SNAREs contribute to the pathological progression and associated risk factors of ischemic stroke (hypertension, hyperglycemia, dyslipidemia, and atherosclerosis). Furthermore, our findings highlight the promise of SNAREs as a viable target for pharmacological interventions in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaxin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyan Hong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
3
|
Rus AA, Militaru IV, Popa I, Munteanu CVA, Sima LE, Platt N, Platt FM, Petrescu ȘM. NPC1 plays a role in the trafficking of specific cargo to melanosomes. J Biol Chem 2023; 299:105024. [PMID: 37423302 PMCID: PMC10407747 DOI: 10.1016/j.jbc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.
Collapse
Affiliation(s)
- Alina Adriana Rus
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana V Militaru
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana Popa
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.
| |
Collapse
|
4
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
5
|
Mishima S, Sakamoto M, Kioka H, Nagata Y, Suzuki R. Multifunctional regulation of VAMP3 in exocytic and endocytic pathways of RBL-2H3 cells. Front Immunol 2022; 13:885868. [PMID: 35990647 PMCID: PMC9388853 DOI: 10.3389/fimmu.2022.885868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are inflammatory cells involved in allergic reactions. Crosslinking of the high-affinity receptor for IgE (FcϵRI) with multivalent antigens (Ags) induces secretory responses to release various inflammatory mediators. These responses are largely mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-associated membrane protein 3 (VAMP3) is a vesicular-SNARE that interacts with targeted SNARE counterparts, driving the fusion of MC secretory granules with the membrane and affecting subsequent assembly of the plasma membrane. However, the role of VAMP3 in FcϵRI-mediated MC function remains unclear. In this study, we comprehensively examined the role of VAMP3 and the molecular mechanisms underlying VAMP3-mediated MC function upon FcϵRI activation. VAMP3 shRNA transduction considerably decreased VAMP3 expression compared with non-target shRNA-transduced (NT) cells. VAMP3 knockdown (KD) cells were sensitized with an anti-DNP IgE antibody and subsequently stimulated with Ag. The VAMP3 KD cells showed decreased degranulation response upon Ag stimulation. Next, we observed intracellular granule formation using CD63-GFP fluorescence. The VAMP3 KD cells were considerably impaired in their capacity to increase the size of granules when compared to NT cells, suggesting that VAMP3 mediates granule fusion and therefore promotes granule exocytosis in MCs. Analysis of FcϵRI-mediated activation of signaling events (FcϵRI, Lyn, Syk, and intracellular Ca2+ response) revealed that signaling molecule activation was enhanced in VAMP3 KD cells. We also found that FcϵRI expression on the cell surface decreased considerably in VAMP3 KD cells, although the amount of total protein did not vary. VAMP3 KD cells also showed dysregulation of plasma membrane homeostasis, such as endocytosis and lipid raft formation. The difference in the plasma membrane environment in VAMP3 KD cells might affect FcϵRI membrane dynamics and the subsequent signalosome formation. Furthermore, IgE/Ag-mediated secretion of TNF-α and IL-6 is oppositely regulated in the absence of VAMP3, which appears to be attributed to both the activation of FcϵRI and defects in VAMP3-mediated membrane fusion. Taken together, these results suggest that enhanced FcϵRI-mediated signal transduction in VAMP3 KD cells occurs due to the disruption of plasma membrane homeostasis. Hence, a multifunctional regulation of VAMP3 is involved in complex secretory responses in MCs.
Collapse
|
6
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
7
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
8
|
Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sci 2022; 12:247. [PMID: 35204010 PMCID: PMC8870708 DOI: 10.3390/brainsci12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
9
|
Bala S, Babuta M, Catalano D, Saiju A, Szabo G. Alcohol Promotes Exosome Biogenesis and Release via Modulating Rabs and miR-192 Expression in Human Hepatocytes. Front Cell Dev Biol 2022; 9:787356. [PMID: 35096820 PMCID: PMC8795686 DOI: 10.3389/fcell.2021.787356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane vesicles released by various cell types into the extracellular space under different conditions including alcohol exposure. Exosomes are involved in intercellular communication and as mediators of various diseases. Alcohol use causes oxidative stress that promotes exosome secretion. Here, we elucidated the effects of alcohol on exosome biogenesis and secretion using human hepatocytes. We found that alcohol treatment induces the expression of genes involved in various steps of exosome formation. Expression of Rab proteins such as Rab1a, Rab5c, Rab6, Rab10, Rab11, Rab27a and Rab35 were increased at the mRNA level in primary human hepatocytes after alcohol treatment. Rab5, Rab6 and Rab11 showed significant induction in the livers of patients with alcohol-associated liver disease. Further, alcohol treatment also led to the induction of syntenin, vesicle-associated membrane proteins (VAMPs), and syntaxin that all play various roles in exosome biogenesis and secretion. VAMP3, VAMP5, VAPb, and syntaxin16 mRNA transcripts were increased in alcohol treated cells and in the livers of alcohol-associated liver disease (ALD) patients. Induction in these genes was associated with increases in exosome secretion in alcohol treated hepatocytes. We found that hepatocyte enriched miR-192 and miR-122 levels were significantly decreased in alcohol treated hepatocytes whereas their levels were increased in the cell-free supernatant. The primary transcripts of miR-192 and miR-122 were reduced in alcohol treated hepatocytes, suggesting alcohol partially affects these miRNAs at the transcriptional level. We found that miR-192 has putative binding sites for genes involved in exosome secretion. Inhibition of miR-192 in human hepatoma cells caused a significant increase in Rab27a, Rab35, syntaxin7 and syntaxin16 and a concurrent increase in exosome secretion, suggesting miR-192 regulates exosomes release in hepatocytes. Collectively, our results reveal that alcohol modulates Rabs, VAMPs and syntaxins directly and partly via miR-192 to induce exosome machinery and release.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Aman Saiju
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Camargo MC, Song M, Ito H, Oze I, Koyanagi YN, Kasugai Y, Rabkin CS, Matsuo K. Associations of circulating mediators of inflammation, cell regulation and immune response with esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:2885-2892. [PMID: 34128078 DOI: 10.1007/s00432-021-03687-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most common histologic subtype of esophageal cancer globally. The development of squamous cell carcinoma has important inflammatory influences and effects. We, therefore, examined circulating levels of inflammation- and immune-related proteins for associations with ESCC. METHODS We used pre-treatment EDTA plasma from 80 ESCC patients (44% clinical stages I and II) and 80 cancer-free control individuals within the Hospital-based Epidemiologic Research Program at Aichi Cancer Center. Levels of 184 biomarkers were measured by high-throughput multiplexed proximity extension assays using Olink's Proseek Cell Regulation and Immuno-Oncology Panels. ESCC odds ratios (OR) per quantile (based on two to four categories) of each biomarker were calculated by unconditional logistic regression models, adjusted for age, sex, cigarette smoking and alcohol consumption. Correlations among continuous biomarker levels were assessed by Spearman's rank correlation. All statistical tests were two-sided with p values < 0.05 considered as significant. Given the exploratory nature of the study, we did not adjust for multiple comparisons. RESULTS Seven proteins were undetectable in nearly all samples. Of the remaining 177 evaluable biomarkers, levels of cluster of differentiation 40 (CD40, per quartile OR 1.64; p trend = 0.018), syntaxin 16 (STX16, per quartile OR 1.63; p trend = 0.008), heme oxygenase 1 (per quartile OR 1.59; p trend = 0.014), and γ-secretase activating protein (GSAP, per quartile OR 1.47; p trend = 0.036) were significantly associated with ESCC. Amongst these significant markers, levels of CD40, STX16, and GSPA were moderately correlated (Rho coefficients 0.46-0.55; p < 0.05). CONCLUSION Our case-control study expands the range of inflammation and immune molecules associated with ESCC. These novel findings warrant replication and functional characterization.
Collapse
Affiliation(s)
- M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr., BG 9609/6E338, Bethesda, MD, 20892, USA.
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr., BG 9609/6E338, Bethesda, MD, 20892, USA
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuriko N Koyanagi
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr., BG 9609/6E338, Bethesda, MD, 20892, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118926. [PMID: 33316295 DOI: 10.1016/j.bbamcr.2020.118926] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/07/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis and adaptation to various environmental conditions are importantly regulated by the sophisticated mechanism of autophagy and its crosstalk with Wnt signaling and other developmental pathways. Both autophagy and Wnt signaling are involved in embryogenesis and differentiation. Autophagy is responsible for degradation and recycling of cytosolic materials by directing them to lysosomes through the phagophore compartment. A dual feedback mechanism regulates the interface between autophagy and Wnt signaling pathways. During nutrient deprivation, β-catenin and Dishevelled (essential Wnt signaling proteins) are targeted for autophagic degradation by LC3. When Wnt signaling is activated, β-catenin acts as a corepressor of one of the autophagy proteins, p62. In contrast, another key Wnt signaling protein, GSK3β, negatively regulates the Wnt pathway and has been shown to induce autophagy by phosphorylation of the TSC complex. This article reviews the interplay between autophagy and Wnt signaling, describing how β-catenin functions as a key cellular integration point coordinating proliferation with autophagy, and it discusses the clinical importance of the crosstalk between these mechanisms.
Collapse
|
12
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|