1
|
Zhong G, Shen Q, Zheng X, Yu K, Lu H, Wei B, Cui H, Dai Z, Lou W. CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer. J Transl Med 2024; 22:1149. [PMID: 39731153 DOI: 10.1186/s12967-024-06004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation. In this study, our objective is to investigate the prognostic value of CPSF4 and pinpoint pivotal AS events governed by CPSF4 specifically in TNBC. METHODS We examined the expression levels and prognostic implications of CPSF4 in patients diagnosed with TNBC through public databases. CPSF4-interacting transcripts, global transcriptome, and alternative splicing were captured through RNA immunoprecipitation sequencing (RIP-seq) and RNA sequencing (RNA-seq). The top 10 CPSF4-regulated alternative splicing events (ASEs) were validated using qRT-PCR. TNBC cells transfected with high mobility group 20B (HMG20B) siRNA were subjected to CCK-8 and transwell assays. RESULTS In TNBC, CPSF4 exhibited heightened expression levels and was correlated with unfavorable prognosis. Overexpression of CPSF4 significantly promoted colony formation and migration, whereas knockdown of CPSF4 had the opposite effect. Inhibition of CPSF4 altered the transcriptome profile of MDA-MB-231 cells. CPSF4-regulated numerous genes showed enrichment in cancer-related functional pathways, including mRNA processing, cell cycle, RNA transport, mRNA surveillance pathway, and apoptosis. CPSF4-regulated ASEs were highly validated by qRT-PCR. CPSF4 modulated selective splicing events by inhibiting alternative 3' splice site events of HMG20B and promoted cell proliferation, migration, and invasion. CONCLUSION CPSF4 promotes TNBC progression by regulating AS of HMG20B. These findings contribute to the development of more useful prognostic, diagnostic and potentially therapeutic biomarkers for TNBC.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qinyan Shen
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China
| | - Xinli Zheng
- Department of Eye, Ear, Nose and Throat, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Kun Yu
- Department of Head, Neck & Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Hongjiang Lu
- Department of Radiology, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Bajin Wei
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Haidong Cui
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Weiyang Lou
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
2
|
Mastronikolis NS, Kyrodimos E, Piperigkou Z, Spyropoulou D, Delides A, Giotakis E, Alexopoulou M, Bakalis NA, Karamanos NK. Matrix-based molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma. IUBMB Life 2024; 76:368-382. [PMID: 38168122 DOI: 10.1002/iub.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.
Collapse
Affiliation(s)
- Nicholas S Mastronikolis
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, Greece
| | - Efthymios Kyrodimos
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Alexander Delides
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Miranda Alexopoulou
- Department of Maxillofacial Surgery, University Hospital of Patras, Patras, Greece
| | - Nick A Bakalis
- Department of Nursing, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
3
|
Lee EJ, Noh SJ, Choi H, Kim MW, Kim SJ, Seo YA, Jeong JE, Shin I, Kim JS, Choi JK, Cho DY, Chang S. Comparative RNA-Seq Analysis Revealed Tissue-Specific Splicing Variations during the Generation of the PDX Model. Int J Mol Sci 2023; 24:17001. [PMID: 38069324 PMCID: PMC10707456 DOI: 10.3390/ijms242317001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary-PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary-PDX integrity.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Seung-Jae Noh
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Huiseon Choi
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Min Woo Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Su Jin Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Yeon Ah Seo
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Ji Eun Jeong
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Inkyung Shin
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Jong-Kwon Choi
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Dae-Yeon Cho
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| |
Collapse
|
4
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Mehta Z, Touma M. Post-Transcriptional Modification by Alternative Splicing and Pathogenic Splicing Variants in Cardiovascular Development and Congenital Heart Defects. Int J Mol Sci 2023; 24:ijms24021555. [PMID: 36675070 PMCID: PMC9862068 DOI: 10.3390/ijms24021555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Advancements in genomics, bioinformatics, and genome editing have uncovered new dimensions in gene regulation. Post-transcriptional modifications by the alternative splicing of mRNA transcripts are critical regulatory mechanisms of mammalian gene expression. In the heart, there is an expanding interest in elucidating the role of alternative splicing in transcriptome regulation. Substantial efforts were directed toward investigating this process in heart development and failure. However, few studies shed light on alternative splicing products and their dysregulation in congenital heart defects (CHDs). While elegant reports showed the crucial roles of RNA binding proteins (RBPs) in orchestrating splicing transitions during heart development and failure, the impact of RBPs dysregulation or genetic variation on CHDs has not been fully addressed. Herein, we review the current understanding of alternative splicing and RBPs' roles in heart development and CHDs. Wediscuss the impact of perinatal splicing transition and its dysregulation in CHDs. We further summarize the discoveries made of causal splicing variants in key transcription factors that are implicated in CHDs. An improved understanding of the roles of alternative splicing in heart development and CHDs may potentially inform novel preventive and therapeutic advancements for newborn infants with CHDs.
Collapse
Affiliation(s)
- Zubin Mehta
- Neonatal/Congenital Heart Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
7
|
Tripathi G, Tripathi A, Johnson J, Kashyap MK. Role of RNA Splicing in Regulation of Cancer Stem Cell. Curr Stem Cell Res Ther 2023; 18:3-6. [PMID: 34875992 DOI: 10.2174/1574888x16666211207103628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Joel Johnson
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
8
|
Yang W, Liu H, Zhang R, Freedman JA, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeboeller H, Rosenberger A, Houlston RS, Caporaso NE, Landi MT, Brueske I, Risch A, Christiani DC, Amos CI, Chen X, Patierno SR, Wei Q. Deciphering associations between three RNA splicing-related genetic variants and lung cancer risk. NPJ Precis Oncol 2022; 6:48. [PMID: 35773316 PMCID: PMC9247007 DOI: 10.1038/s41698-022-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/20/2022] [Indexed: 01/12/2023] Open
Abstract
Limited efforts have been made in assessing the effect of genome-wide profiling of RNA splicing-related variation on lung cancer risk. In the present study, we first identified RNA splicing-related genetic variants linked to lung cancer in a genome-wide profiling analysis and then conducted a two-stage (discovery and replication) association study in populations of European ancestry. Discovery and validation were conducted sequentially with a total of 29,266 cases and 56,450 controls from both the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium as well as the OncoArray database. For those variants identified as significant in the two datasets, we further performed stratified analyses by smoking status and histological type and investigated their effects on gene expression and potential regulatory mechanisms. We identified three genetic variants significantly associated with lung cancer risk: rs329118 in JADE2 (P = 8.80E-09), rs2285521 in GGA2 (P = 4.43E-08), and rs198459 in MYRF (P = 1.60E-06). The combined effects of all three SNPs were more evident in lung squamous cell carcinomas (P = 1.81E-08, P = 6.21E-08, and P = 7.93E-04, respectively) than in lung adenocarcinomas and in ever smokers (P = 9.80E-05, P = 2.70E-04, and P = 2.90E-05, respectively) than in never smokers. Gene expression quantitative trait analysis suggested a role for the SNPs in regulating transcriptional expression of the corresponding target genes. In conclusion, we report that three RNA splicing-related genetic variants contribute to lung cancer susceptibility in European populations. However, additional validation is needed, and specific splicing mechanisms of the target genes underlying the observed associations also warrants further exploration.
Collapse
Affiliation(s)
- Wenjun Yang
- International Center for Aging and Cancer, Pathology Department of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Ningxia Human Stem Cell Research Institute, the General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ruoxin Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
- School of Public Health, Fudan University; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Heike Bickeboeller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, SW7 3RP, UK
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irene Brueske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology, Neuherberg, 85764, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, 5020, Austria
| | - David C Christiani
- Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
10
|
Schmidtlein PM, Volz C, Hackel A, Thürling I, Castven D, Braun R, Wellner UF, Konukiewitz B, Riemekasten G, Lehnert H, Marquardt JU, Ungefroren H. Activation of a Ductal-to-Endocrine Transdifferentiation Transcriptional Program in the Pancreatic Cancer Cell Line PANC-1 Is Controlled by RAC1 and RAC1b through Antagonistic Regulation of Stemness Factors. Cancers (Basel) 2021; 13:cancers13215541. [PMID: 34771704 PMCID: PMC8583136 DOI: 10.3390/cancers13215541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary For patients with metastatic pancreatic ductal adenocarcinoma (PDAC) there is currently no cure; hence, novel effective therapies are desperately needed. Among PDAC patients, the tumor cell phenotypes are heterogeneous as a result of epithelial–mesenchymal transition, a process that endows them with the ability to metastasize, resist therapy, and generate cancer stem cells. The heightened plasticity of quasimesenchymal and potentially metastatic tumor cells may, however, also be exploited for their transdifferentiation into benign, highly differentiated or post-mitotic cells. Since PDAC patients often have a need for replacement of insulin-producing cells, conversion of tumor cells with a ductal/exocrine origin to endocrine β cell-like cells is an attractive therapeutic option. Successful transdifferentiation into insulin-producing cells has been reported for the quasimesenchymal cell line PANC-1; however, the mechanistic basis of this transformation process is unknown. Here, we show that the small GTPases, RAC1 and RAC1b control this process by antagonistic regulation of stemness genes. Abstract Epithelial–mesenchymal transition (EMT) is a driving force for tumor growth, metastatic spread, therapy resistance, and the generation of cancer stem cells (CSCs). However, the regained stem cell character may also be exploited for therapeutic conversion of aggressive tumor cells to benign, highly differentiated cells. The PDAC-derived quasimesenchymal-type cell lines PANC-1 and MIA PaCa-2 have been successfully transdifferentiated to endocrine precursors or insulin-producing cells; however, the underlying mechanism of this increased plasticity remains elusive. Given its crucial role in normal pancreatic endocrine development and tumor progression, both of which involve EMT, we analyzed here the role of the small GTPase RAC1. Ectopic expression in PANC-1 cells of dominant negative or constitutively active mutants of RAC1 activation blocked or enhanced, respectively, the cytokine-induced activation of a ductal-to-endocrine transdifferentiation transcriptional program (deTDtP) as revealed by induction of the NEUROG3, INS, SLC2A2, and MAFA genes. Conversely, ectopic expression of RAC1b, a RAC1 splice isoform and functional antagonist of RAC1-driven EMT, decreased the deTDtP, while genetic knockout of RAC1b dramatically increased it. We further show that inhibition of RAC1 activation attenuated pluripotency marker expression and self-renewal ability, while depletion of RAC1b dramatically enhanced stemness features and clonogenic potential. Finally, rescue experiments involving pharmacological or RNA interference-mediated inhibition of RAC1 or RAC1b, respectively, confirmed that both RAC1 isoforms control the deTDtP in an opposite manner. We conclude that RAC1 and RAC1b antagonistically control growth factor-induced activation of an endocrine transcriptional program and the generation of CSCs in quasimesenchymal PDAC cells. Our results have clinical implications for PDAC patients, who in addition to eradication of tumor cells have a need for replacement of insulin-producing cells.
Collapse
Affiliation(s)
- Paula Marie Schmidtlein
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Clara Volz
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Alexander Hackel
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (A.H.); (G.R.)
| | - Isabel Thürling
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Darko Castven
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (A.H.); (G.R.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany
- Correspondence:
| |
Collapse
|
11
|
Comprehensive Combined Proteomics and Genomics Analysis Identifies Prognostic Related Transcription Factors in Breast Cancer and Explores the Role of DMAP1 in Breast Cancer. J Pers Med 2021; 11:jpm11111068. [PMID: 34834420 PMCID: PMC8625386 DOI: 10.3390/jpm11111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription factors (TFs) are important for regulating gene transcription and are the hallmark of many cancers. The identification of breast cancer TFs will help in developing new diagnostic and individualized cancer treatment tools. In this study, we used quantitative proteomic analyses of nuclear proteins and massive transcriptome data to identify enriched potential TFs and explore the possible role of the transcription factor DMAP1 in breast cancer. We identified 13 prognostic-related TFs and constructed their regulated genes, alternative splicing (AS) events, and splicing factor (SF) regulation networks. DMAP1 was reported less in breast cancer. The expression of DMAP1 decreased in breast cancer tumors compared with normal tissues. The poor prognosis of patients with low DMAP1 expression may relate to the activated PI3K/Akt signaling pathway, as well as other cancer-relevant pathways. This may be due to the low methylation and high expression of these pathway genes and the fact that such patients show more sensitivity to some PI3K/Akt signaling pathway inhibitors. The high expression of DMAP1 was correlated with low immune cell infiltration, and the response to immune checkpoint inhibitor treatment in patients with high DMAP1 expression was low. Our study identifies some transcription factors that are significant for breast cancer progression, which can be used as potential personalized prognostic markers in the future.
Collapse
|
12
|
Xiao L, Zou G, Cheng R, Wang P, Ma K, Cao H, Zhou W, Jin X, Xu Z, Huang Y, Lin X, Nie H, Jiang Q. Alternative splicing associated with cancer stemness in kidney renal clear cell carcinoma. BMC Cancer 2021; 21:703. [PMID: 34130646 PMCID: PMC8204412 DOI: 10.1186/s12885-021-08470-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Backgroud Cancer stemness is associated with metastases in kidney renal clear cell carcinoma (KIRC) and negatively correlates with immune infiltrates. Recent stemness evaluation methods based on the absolute expression have been proposed to reveal the relationship between stemness and cancer. However, we found that existing methods do not perform well in assessing the stemness of KIRC patients, and they overlooked the impact of alternative splicing. Alternative splicing not only progresses during the differentiation of stem cells, but also changes during the acquisition of the stemness features of cancer stem cells. There is an urgent need for a new method to predict KIRC-specific stemness more accurately, so as to provide help in selecting treatment options. Methods The corresponding RNA-Seq data were obtained from the The Cancer Genome Atlas (TCGA) data portal. We also downloaded stem cell RNA sequence data from the Progenitor Cell Biology Consortium (PCBC) Synapse Portal. Independent validation sets with large sample size and common clinic pathological characteristics were obtained from the Gene Expression Omnibus (GEO) database. we constructed a KIRC-specific stemness prediction model using an algorithm called one-class logistic regression based on the expression and alternative splicing data to predict stemness indices of KIRC patients, and the model was externally validated. We identify stemness-associated alternative splicing events (SASEs) by analyzing different alternative splicing event between high- and low- stemness groups. Univariate Cox and multivariable logistic regression analysisw as carried out to detect the prognosis-related SASEs respectively. The area under curve (AUC) of receiver operating characteristic (ROC) was performed to evaluate the predictive values of our model. Results Here, we constructed a KIRC-specific stemness prediction model with an AUC of 0.968,and to provide a user-friendly interface of our model for KIRC stemness analysis, we have developed KIRC Stemness Calculator and Visualization (KSCV), hosted on the Shiny server, can most easily be accessed via web browser and the url https://jiang-lab.shinyapps.io/kscv/. When applied to 605 KIRC patients, our stemness indices had a higher correlation with the gender, smoking history and metastasis of the patients than the previous stemness indices, and revealed intratumor heterogeneity at the stemness level. We identified 77 novel SASEs by dividing patients into high- and low- stemness groups with significantly different outcome and they had significant correlations with expression of 17 experimentally validated splicing factors. Both univariate and multivariate survival analysis demonstrated that SASEs closely correlated with the overall survival of patients. Conclusions Basing on the stemness indices, we found that not only immune infiltration but also alternative splicing events showed significant different at the stemness level. More importantly, we highlight the critical role of these differential alternative splicing events in poor prognosis, and we believe in the potential for their further translation into targets for immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08470-8.
Collapse
Affiliation(s)
- Lixing Xiao
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guoying Zou
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Rui Cheng
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Pingping Wang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Kexin Ma
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huimin Cao
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Wenyang Zhou
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Zhaochun Xu
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yan Huang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiaoyu Lin
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huan Nie
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China. .,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China.
| |
Collapse
|
13
|
Melendez-Zajgla J, Maldonado V. The Role of lncRNAs in the Stem Phenotype of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6374. [PMID: 34203589 PMCID: PMC8232220 DOI: 10.3390/ijms22126374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).
Collapse
Affiliation(s)
- Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico;
| | - Vilma Maldonado
- Epigenomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico
| |
Collapse
|
14
|
Shi JY, Bi YY, Yu BF, Wang QF, Teng D, Wu DN. Alternative Splicing Events in Tumor Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:583547. [PMID: 33996533 PMCID: PMC8117221 DOI: 10.3389/fonc.2021.583547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.
Collapse
Affiliation(s)
- Jian-Yu Shi
- Department of Proctology, Ping Yi People's Hospital, Linyi, China
| | - Yan-Yan Bi
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Bian-Fang Yu
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Qing-Feng Wang
- Department of Basic Pharmacology, College of Integration of Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Teng
- Artificial Intelligence and Big Data College, HE University, Shenyang, China
| | - Dong-Ning Wu
- Clinical Evaluation Center, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer. Genes (Basel) 2021; 12:genes12050615. [PMID: 33919200 PMCID: PMC8143155 DOI: 10.3390/genes12050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.
Collapse
|
16
|
Wu Z, Chen H, Liang Y, Luo W, Deng F, Zeng F. Alternative splicing implicated in immunity and prognosis of colon adenocarcinoma. Int Immunopharmacol 2020; 89:107075. [PMID: 33099068 DOI: 10.1016/j.intimp.2020.107075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Dysregulation of immune system is the hallmark of colon adenocarcinoma (COAD) patients. Aberrant alternative splicing (AS) is closely related to progression and immunotherapy of COAD. However, the intrinsic correlation of immune system with AS have not been elucidated. Here we identified 640 AS events related to immunescore by multi-omics data analysis. 7 key AS events were screened out and used to develop a riskscore model, the area under the ROC curve of riskscore model predicting 3-, 5-year survival probability was 0.750, 0.768. Also, the riskscore based on 7 key AS events is an independent prognostic factor. The AUC of the nomogram composed of riskscore and TMN grade reached to 0.872(3-year) and 0.841(5-year). Moreover, 11 AS events were identified to be associated with the infiltration of 8 types of immune cells. Interestingly, M1 macrophages and memory B cells had a higher infiltration in high-riskscore patients, and higher infiltration of M1 macrophages and memory B cells were significantly associated with worse prognosis. In conclusion, AS are closely related to immunescore, immunity stage and infiltrating immune cells. The riskscore is an effective diagnostic and prognostic indicator better than TMN grade, and AS events related to the immune system may be potential therapeutic targets for COAD.
Collapse
Affiliation(s)
- Zhicong Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hua Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanling Liang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenyang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fangyin Zeng
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Ghigna C, Paronetto MP. Alternative Splicing: Recent Insights into Mechanisms and Functional Roles. Cells 2020; 9:cells9102327. [PMID: 33092102 PMCID: PMC7589716 DOI: 10.3390/cells9102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare Luigi Luca Cavalli Sforza—Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
- Correspondence: (C.G.); (M.P.P.)
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Correspondence: (C.G.); (M.P.P.)
| |
Collapse
|
18
|
Tung KF, Pan CY, Chen CH, Lin WC. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci Rep 2020; 10:16245. [PMID: 33004865 PMCID: PMC7530651 DOI: 10.1038/s41598-020-73081-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms.
Collapse
Affiliation(s)
- Kuo-Feng Tung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Chao-Yu Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, ROC.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chao-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, ROC. .,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
19
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|