1
|
Ren Y, Bao X, Feng M, Xing B, Lian W, Yao Y, Wang R. CD87-targeted BiTE and CAR-T cells potently inhibit invasive nonfunctional pituitary adenomas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2169-2185. [PMID: 38987430 DOI: 10.1007/s11427-024-2591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024]
Abstract
Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Graney PL, Li V, Lamberti MJ, Liberman M, Kim Y, Tavakol DN, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1123-1139. [PMID: 39195859 PMCID: PMC11399098 DOI: 10.1038/s44161-024-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms of myocardial injury in SLE remain poorly understood. In this study, we engineered human cardiac tissues and cultured them with IgG from patients with SLE, with and without myocardial involvement. IgG from patients with elevated myocardial inflammation exhibited increased binding to apoptotic cells within cardiac tissues subjected to stress, whereas IgG from patients with systolic dysfunction exhibited enhanced binding to the surface of live cardiomyocytes. Functional assays and RNA sequencing revealed that, in the absence of immune cells, IgG from patients with systolic dysfunction altered cellular composition, respiration and calcium handling. Phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. Coupling IgG profiling with cell surfaceome analysis identified four potential pathogenic autoantibodies that may directly affect the myocardium. Overall, these insights may improve patient risk stratification and inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Daniel N Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- College of Dental Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Li V, Lamberti MJ, Graney PL, Liberman M, Kim Y, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583787. [PMID: 38559188 PMCID: PMC10979865 DOI: 10.1101/2024.03.07.583787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Biagioni A, Mohammadinejad R. Editorial: CRISPR advancement in cancer research and future perspectives. Front Oncol 2023; 13:1173527. [PMID: 36969044 PMCID: PMC10034366 DOI: 10.3389/fonc.2023.1173527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze, Italy
- *Correspondence: Alessio Biagioni, ; Reza Mohammadinejad,
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Alessio Biagioni, ; Reza Mohammadinejad,
| |
Collapse
|
6
|
Shmakova AA, Popov VS, Romanov IP, Khabibullin NR, Sabitova NR, Karpukhina AA, Kozhevnikova YA, Kurilina EV, Tsokolaeva ZI, Klimovich PS, Rubina KA, Vassetzky YS, Semina EV. Urokinase System in Pathogenesis of Pulmonary Fibrosis: A Hidden Threat of COVID-19. Int J Mol Sci 2023; 24:ijms24021382. [PMID: 36674896 PMCID: PMC9867169 DOI: 10.3390/ijms24021382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.
Collapse
Affiliation(s)
- Anna A. Shmakova
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Iliya P. Romanov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | - Nailya R. Sabitova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | | | - Ella V. Kurilina
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Zoya I. Tsokolaeva
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Polina S. Klimovich
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | - Ekaterina V. Semina
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
- Correspondence:
| |
Collapse
|
7
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
8
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
9
|
Shmakova AA, Klimovich PS, Rysenkova KD, Popov VS, Gorbunova AS, Karpukhina AA, Karagyaur MN, Rubina KA, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Downregulation in Neuroblastoma Leads to Dormancy, Chemoresistance and Metastasis. Cancers (Basel) 2022; 14:cancers14040994. [PMID: 35205745 PMCID: PMC8870350 DOI: 10.3390/cancers14040994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary uPAR is a membrane receptor that contributes to extracellular matrix remodeling and controls cellular adhesion, proliferation, survival, and migration. We demonstrate that the initially high uPAR expression predicts poor survival in neuroblastoma. However, relapsed neuroblastomas have a significantly decreased uPAR expression. uPAR downregulation in neuroblastoma cells leads to dormancy and resistance to chemotherapeutic drugs. In mice, low uPAR-expressing neuroblastoma cells formed smaller primary tumors but more frequent metastasis. Abstract uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.
Collapse
Affiliation(s)
- Anna A. Shmakova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Polina S. Klimovich
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Karina D. Rysenkova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna S. Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna A. Karpukhina
- Koltzov Institute of Developmental Biology, Russian Academy of Science, 117334 Moscow, Russia;
| | - Maxim N. Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vsevolod A. Tkachuk
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Ekaterina V. Semina
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
- Correspondence:
| |
Collapse
|
10
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
11
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
12
|
Andreucci E, Laurenzana A, Peppicelli S, Biagioni A, Margheri F, Ruzzolini J, Bianchini F, Fibbi G, Del Rosso M, Nediani C, Serratì S, Fucci L, Guida M, Calorini L. uPAR controls vasculogenic mimicry ability expressed by drug-resistant melanoma cells. Oncol Res 2021; 28:873-884. [PMID: 34315564 PMCID: PMC8790129 DOI: 10.3727/096504021x16273798026651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Malignant melanoma is a highly aggressive skin cancer characterized by an elevated grade of tumor cell plasticity. Such plasticity allows melanoma cells adaptation to different hostile conditions and guarantees tumor survival and disease progression, including aggressive features such as drug resistance. Indeed, almost 50% of melanoma rapidly develop resistance to the BRAFV600E inhibitor vemurafenib, with fast tumor dissemination, a devastating consequence for patients' outcomes. Vasculogenic mimicry (VM), the ability of cancer cells to organize themselves in perfused vascular-like channels, might sustain tumor spread by providing vemurafenib-resistant cancer cells with supplementary ways to enter into circulation and disseminate. Thus, this research aims to determine if vemurafenib resistance goes with the acquisition of VM ability by aggressive melanoma cells, and identify a driving molecule for both vemurafenib resistance and VM. We used two independent experimental models of drug-resistant melanoma cells, the first one represented by a chronic adaptation of melanoma cells to extracellular acidosis, known to drive a particularly aggressive and vemurafenib-resistant phenotype, the second one generated with chronic vemurafenib exposure. By performing in vitro tube formation assay and evaluating the expression levels of the VM markers EphA2 and VE-cadherin by western blotting and flow cytometer analyses, we demonstrated that vemurafenib-resistant cells obtained by both models are characterized by an increased ability to perform VM. Moreover, by exploiting the CRISPR-Cas9 technique and using the urokinase plasminogen activator receptor (uPAR) inhibitor M25, we identified uPAR as a driver of VM expressed by vemurafenib-resistant melanoma cells. Thus, uPAR targeting may be successfully leveraged as a new complementary therapy to inhibit VM in drug-resistant melanoma patients, to counteract the rapid progression and dissemination of the disease.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, 50134, Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Simona Serratì
- Laboratory of Nanotecnology, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Livia Fucci
- Pathology Department, IRCCS IstitutoTumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Michele Guida
- Rare tumors and Melnaoma Unit, IRCCS IstitutoTumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, 50134, Florence, Italy
| |
Collapse
|
13
|
Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, Ragno P, Margheri F, Laurenzana A. CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Front Oncol 2021; 11:663225. [PMID: 34055629 PMCID: PMC8163229 DOI: 10.3389/fonc.2021.663225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR “rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|
14
|
The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22084111. [PMID: 33923400 PMCID: PMC8073738 DOI: 10.3390/ijms22084111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.
Collapse
|
15
|
uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cell Mol Life Sci 2020; 78:3057-3072. [PMID: 33237352 PMCID: PMC8004497 DOI: 10.1007/s00018-020-03707-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Exosomes (Exos) have been reported to promote pre-metastatic niche formation, proliferation, angiogenesis and metastasis. We have investigated the role of uPAR in melanoma cell lines-derived Exos and their pro-angiogenic effects on human microvascular endothelial cells (HMVECs) and endothelial colony-forming cells (ECFCs). Melanoma Exos were isolated from conditioned media of A375 and M6 cells by differential centrifugation and filtration. Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle tracking analysis were performed to analyze dimension and concentration of Exos. The CRISPR–Cas 9 technology was exploited to obtain a robust uPAR knockout. uPAR is expressed in melanoma Exos that are internalized by HMVECs and ECFCs, enhancing VE-Cadherin, EGFR and uPAR expression in endothelial cells that undergo a complete angiogenic program, including proliferation, migration and tube formation. uPAR loss reduced the pro-angiogenic effects of melanoma Exos in vitro and in vivo by inhibition of VE-Cadherin, EGFR and uPAR expression and of ERK1,2 signaling in endothelial cells. A similar effect was obtained with a peptide that inhibits uPAR–EGFR interaction and with the EGFR inhibitor Gefitinib, which also inhibited melanoma Exos-dependent EGFR phosphorylation. This study suggests that uPAR is required for the pro-angiogenic activity of melanoma Exos. We propose the identification of uPAR-expressing Exos as a potentially useful biomarker for assessing pro-angiogenic propensity and eventually monitoring the response to treatment in metastatic melanoma patients.
Collapse
|