1
|
Freed C, Craige B, Donahue J, Cridland C, Williams SP, Pereira C, Kim J, Blice H, Owen J, Gillaspy G. Using native and synthetic genes to disrupt inositol pyrophosphates and phosphate accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae582. [PMID: 39474910 DOI: 10.1093/plphys/kiae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop. DDP1 expression in Arabidopsis decreased inositol pyrophosphates, activated phosphate starvation response marker genes, and increased phosphate accumulation. These changes corresponded with alterations in plant growth and sensitivity to exogenously applied phosphate. Pennycress plants expressing DDP1 displayed increases in phosphate accumulation, suggesting that these plants could potentially serve to reclaim phosphate from phosphate-polluted soils. We also identified a native Arabidopsis gene, Nucleoside diphosphate-linked moiety X 13 (NUDIX13), which we show encodes an enzyme homologous to DDP1 with similar substrate specificity. Arabidopsis transgenics overexpressing NUDIX13 had lower inositol pyrophosphate levels and displayed phenotypes similar to DDP1-overexpressing transgenics, while nudix13-1 mutants had increased levels of inositol pyrophosphates. Taken together, our data demonstrate that DDP1 and NUDIX13 can be used in strategies to regulate plant inositol pyrophosphates and could serve as potential targets for engineering plants to reclaim phosphate from polluted environments.
Collapse
Affiliation(s)
- Catherine Freed
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Janet Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caitlin Cridland
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chris Pereira
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jiwoo Kim
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Hannah Blice
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - James Owen
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - Glenda Gillaspy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Xiao J, Zhou Y, Xie Y, Li T, Su X, He J, Jiang Y, Zhu H, Qu H. ATP homeostasis and signaling in plants. PLANT COMMUNICATIONS 2024; 5:100834. [PMID: 38327057 PMCID: PMC11009363 DOI: 10.1016/j.xplc.2024.100834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
ATP is the primary form of energy for plants, and a shortage of cellular ATP is generally acknowledged to pose a threat to plant growth and development, stress resistance, and crop quality. The overall metabolic processes that contribute to the ATP pool, from production, dissipation, and transport to elimination, have been studied extensively. Considerable evidence has revealed that in addition to its role in energy supply, ATP also acts as a regulatory signaling molecule to activate global metabolic responses. Identification of the eATP receptor DORN1 contributed to a better understanding of how plants cope with disruption of ATP homeostasis and of the key points at which ATP signaling pathways intersect in cells or whole organisms. The functions of SnRK1α, the master regulator of the energy management network, in restoring the equilibrium of the ATP pool have been demonstrated, and the vast and complex metabolic network mediated by SnRK1α to adapt to fluctuating environments has been characterized. This paper reviews recent advances in understanding the regulatory control of the cellular ATP pool and discusses possible interactions among key regulators of ATP-pool homeostasis and crosstalk between iATP/eATP signaling pathways. Perception of ATP deficit and modulation of cellular ATP homeostasis mediated by SnRK1α in plants are discussed at the physiological and molecular levels. Finally, we suggest future research directions for modulation of plant cellular ATP homeostasis.
Collapse
Affiliation(s)
- Jiaqi Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yunyun Xie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Dobrogojski J, Nguyen VH, Kowalska J, Borek S, Pietrowska-Borek M. The Plasma Membrane Purinoreceptor P2K1/DORN1 Is Essential in Stomatal Closure Evoked by Extracellular Diadenosine Tetraphosphate (Ap 4A) in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16688. [PMID: 38069010 PMCID: PMC10706190 DOI: 10.3390/ijms242316688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dinucleoside polyphosphates (NpnNs) are considered novel signalling molecules involved in the induction of plant defence mechanisms. However, NpnN signal recognition and transduction are still enigmatic. Therefore, the aim of our research was the identification of the NpnN receptor and signal transduction pathways evoked by these nucleotides. Earlier, we proved that purine and pyrimidine NpnNs differentially affect the phenylpropanoid pathway in Vitis vinifera suspension-cultured cells. Here, we report, for the first time, that both diadenosine tetraphosphate (Ap4A) and dicytidine tetraphosphate (Cp4C)-induced stomatal closure in Arabidopsis thaliana. Moreover, we showed that plasma membrane purinoreceptor P2K1/DORN1 (does not respond to nucleotide 1) is essential for Ap4A-induced stomata movements but not for Cp4C. Wild-type Col-0 and the dorn1-3 A. thaliana knockout mutant were used. Examination of the leaf epidermis dorn1-3 mutant provided evidence that P2K1/DORN1 is a part of the signal transduction pathway in stomatal closure evoked by extracellular Ap4A but not by Cp4C. Reactive oxygen species (ROS) are involved in signal transduction caused by Ap4A and Cp4C, leading to stomatal closure. Ap4A induced and Cp4C suppressed the transcriptional response in wild-type plants. Moreover, in dorn1-3 leaves, the effect of Ap4A on gene expression was impaired. The interaction between P2K1/DORN1 and Ap4A leads to changes in the transcription of signalling hubs in signal transduction pathways.
Collapse
Affiliation(s)
- Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Van Hai Nguyen
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
4
|
Slocum RD, Mejia Peña C, Liu Z. Transcriptional reprogramming of nucleotide metabolism in response to altered pyrimidine availability in Arabidopsis seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1273235. [PMID: 38023851 PMCID: PMC10652772 DOI: 10.3389/fpls.2023.1273235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In Arabidopsis seedlings, inhibition of aspartate transcarbamoylase (ATC) and de novo pyrimidine synthesis resulted in pyrimidine starvation and developmental arrest a few days after germination. Synthesis of pyrimidine nucleotides by salvaging of exogenous uridine (Urd) restored normal seedling growth and development. We used this experimental system and transcriptional profiling to investigate genome-wide responses to changes in pyrimidine availability. Gene expression changes at different times after Urd supplementation of pyrimidine-starved seedlings were mapped to major pathways of nucleotide metabolism, in order to better understand potential coordination of pathway activities, at the level of transcription. Repression of de novo synthesis genes and induction of intracellular and extracellular salvaging genes were early and sustained responses to pyrimidine limitation. Since de novo synthesis is energetically more costly than salvaging, this may reflect a reduced energy status of the seedlings, as has been shown in recent studies for seedlings growing under pyrimidine limitation. The unexpected induction of pyrimidine catabolism genes under pyrimidine starvation may result from induction of nucleoside hydrolase NSH1 and repression of genes in the plastid salvaging pathway, diverting uracil (Ura) to catabolism. Identification of pyrimidine-responsive transcription factors with enriched binding sites in highly coexpressed genes of nucleotide metabolism and modeling of potential transcription regulatory networks provided new insights into possible transcriptional control of key enzymes and transporters that regulate nucleotide homeostasis in plants.
Collapse
Affiliation(s)
- Robert D. Slocum
- Department of Biological Sciences, Goucher College, Towson, MD, United States
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
5
|
Cannon AE, Vanegas DC, Sabharwal T, Salmi ML, Wang J, Clark G, McLamore ES, Roux SJ. Polarized distribution of extracellular nucleotides promotes gravity-directed polarization of development in spores of Ceratopteris richardii. FRONTIERS IN PLANT SCIENCE 2023; 14:1265458. [PMID: 37854113 PMCID: PMC10579945 DOI: 10.3389/fpls.2023.1265458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Gravity directs the polarization of Ceratopteris fern spores. This process begins with the uptake of calcium through channels at the bottom of the spore, a step necessary for the gravity response. Data showing that extracellular ATP (eATP) regulates calcium channels led to the hypothesis that extracellular nucleotides could play a role in the gravity-directed polarization of Ceratopteris spores. In animal and plant cells ATP can be released from mechanosensitive channels. This report tests the hypothesis that the polarized release of ATP from spores could be activated by gravity, preferentially along the bottom of the spore, leading to an asymmetrical accumulation of eATP. In order to carry out this test, an ATP biosensor was used to measure the [eATP] at the bottom and top of germinating spores during gravity-directed polarization. The [eATP] along the bottom of the spore averaged 7-fold higher than the concentration at the top. All treatments that disrupted eATP signaling resulted in a statistically significant decrease in the gravity response. In order to investigate the source of ATP release, spores were treated with Brefeldin A (BFA) and gadolinium trichloride (GdCl3). These treatments resulted in a significant decrease in gravity-directed polarization. An ATP biosensor was also used to measure ATP release after treatment with both BFA and GdCl3. Both of these treatments caused a significant decrease in [ATP] measured around spores. These results support the hypothesis that ATP could be released from mechanosensitive channels and secretory vesicles during the gravity-directed polarization of Ceratopteris spores.
Collapse
Affiliation(s)
- Ashley E. Cannon
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Diana C. Vanegas
- Agricultural and Biological Engineering Department, The University of Florida, Gainesville, FL, United States
| | - Tanya Sabharwal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Mari L. Salmi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Jeffrey Wang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Greg Clark
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Eric S. McLamore
- Agricultural and Biological Engineering Department, The University of Florida, Gainesville, FL, United States
| | - Stanley J. Roux
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
7
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
8
|
Tungsirisurp S, O'Reilly R, Napier R. Nucleic acid aptamers as aptasensors for plant biology. TRENDS IN PLANT SCIENCE 2023; 28:359-371. [PMID: 36357246 DOI: 10.1016/j.tplants.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Our knowledge of cell- and tissue-specific quantification of phytohormones is heavily reliant on laborious mass spectrometry techniques. Genetically encoded biosensors have allowed spatial and some temporal quantification of phytohormones intracellularly, but there is still limited information on their intercellular distributions. Here, we review nucleic acid aptamers as an emerging biosensing platform for the detection and quantification of analytes with high affinity and specificity. Options for DNA aptamer technology are explained through selection, sequencing analysis and techniques for evaluating affinity and specificity, and we focus on previously developed DNA aptamers against various plant analytes. We suggest how these tools might be applied in planta for quantification of molecules of interest both intracellularly and intercellularly.
Collapse
Affiliation(s)
| | - Rachel O'Reilly
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
9
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
10
|
Chowdhury AT, Hasan MN, Bhuiyan FH, Islam MQ, Nayon MRW, Rahaman MM, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH. Identification, characterization of Apyrase (APY) gene family in rice (Oryza sativa) and analysis of the expression pattern under various stress conditions. PLoS One 2023; 18:e0273592. [PMID: 37163561 PMCID: PMC10171694 DOI: 10.1371/journal.pone.0273592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/27/2023] [Indexed: 05/12/2023] Open
Abstract
Apyrase (APY) is a nucleoside triphosphate (NTP) diphosphohydrolase (NTPDase) which is a member of the superfamily of guanosine diphosphatase 1 (GDA1)-cluster of differentiation 39 (CD39) nucleoside phosphatase. Under various circumstances like stress, cell growth, the extracellular adenosine triphosphate (eATP) level increases, causing a detrimental influence on cells such as cell growth retardation, ROS production, NO burst, and apoptosis. Apyrase hydrolyses eATP accumulated in the extracellular membrane during stress, wounds, into adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and regulates the stress-responsive pathway in plants. This study was designed for the identification, characterization, and for analysis of APY gene expression in Oryza sativa. This investigation discovered nine APYs in rice, including both endo- and ecto-apyrase. According to duplication event analysis, in the evolution of OsAPYs, a significant role is performed by segmental duplication. Their role in stress control, hormonal responsiveness, and the development of cells is supported by the corresponding cis-elements present in their promoter regions. According to expression profiling by RNA-seq data, the genes were expressed in various tissues. Upon exposure to a variety of biotic as well as abiotic stimuli, including anoxia, drought, submergence, alkali, heat, dehydration, salt, and cold, they showed a differential expression pattern. The expression analysis from the RT-qPCR data also showed expression under various abiotic stress conditions, comprising cold, salinity, cadmium, drought, submergence, and especially heat stress. This finding will pave the way for future in-vivo analysis, unveil the molecular mechanisms of APY genes in stress response, and contribute to the development of stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Aniqua Tasnim Chowdhury
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fahmid H Bhuiyan
- Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Rakib Wazed Nayon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Mashiur Rahaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Ashrafuzzaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
11
|
Tyutereva EV, Murtuzova AV, Voitsekhovskaja OV. Autophagy and the Energy Status of Plant Cells. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:19. [DOI: 10.1134/s1021443722020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2025]
Abstract
Abstract
In plant cells the homeostatic control of energy balance involves the production and recycling of adenylates with macroergic bonds, ATP and ADP. The maintenance of anabolic processes requires the relative saturation of the adenylate pool with high energy phosphoanhydride bonds. The bulk of ATP synthesis is carried out both in mitochondria and in chloroplasts while optimal ATP levels within other cell compartments are maintained by adenylate kinases (AK). AK activity was recently found in cytosol, mitochondria, plastids and the nucleus. ATP synthesis in energy-producing organelles, as well as redistribution of nutrients among cellular compartments, requires fine-tuned regulation of ion homeostasis. A special role in energy metabolism is played by autophagy, a process of active degradation of unwanted and/or damaged cell components and macromolecules within the central lytic vacuole. So-called constitutive autophagy controls the quality of cellular contents under favorable conditions, i.e., when the cellular energy status is high. Energy depletion can lead to the activation of the pro-survival process of autophagic removal and utilization of damaged structures; the breakdown products are then used for ATP regeneration and de novo synthesis of macromolecules. Mitophagy and chlorophagy maintain the populations of healthy and functional energy-producing “stations”, preventing accumulation of defective mitochondria and chloroplasts as potential sources of dangerous reactive oxygen species. However, the increase of autophagic flux above a threshold level can lead to the execution of the vacuolar type of programmed cell death (PCD). In this case autophagy also contributes to preservation of energy through support of the outflow of nutrients from dying cells to healthy neighboring tissues. In plants, two central protein kinases, SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin), are responsible for the regulation of the metabolic switch between anabolic and catabolic pathways. TOR promotes the energy-demanding metabolic reactions in response to nutrient availability and simultaneously suppresses catabolism including autophagy. SnRK1, the antagonist of TOR, senses a decline in cellular energy supply and reacts by inducing autophagy through several independent pathways. Here, we provide an overview of the recent knowledge about the interplay between SnRK1 and TOR, autophagy and PCD in course of the regulation of energy balance in plants.
Collapse
|
12
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
13
|
Nucleoside 5'-Phosphoramidates Control the Phenylpropanoid Pathway in Vitis vinifera Suspension-Cultured Cells. Int J Mol Sci 2021; 22:ijms222413567. [PMID: 34948365 PMCID: PMC8704414 DOI: 10.3390/ijms222413567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
It is known that cells contain various uncommon nucleotides such as dinucleoside polyphosphates (NpnN’s) and adenosine 5′-phosphoramidate (NH2-pA) belonging to nucleoside 5′-phosphoramidates (NH2-pNs). Their cellular levels are enzymatically controlled. Some of them are accumulated in cells under stress, and therefore, they could act as signal molecules. Our previous research carried out in Arabidopsis thaliana and grape (Vitis vinifera) showed that NpnN’s induced the expression of genes in the phenylpropanoid pathway and favored the accumulation of their products, which protect plants against stress. Moreover, we found that NH2-pA could play a signaling role in Arabidopsis seedlings. Data presented in this paper show that exogenously applied purine (NH2-pA, NH2-pG) and pyrimidine (NH2-pU, NH2-pC) nucleoside 5′-phosphoramidates can modify the expression of genes that control the biosynthesis of both stilbenes and lignin in Vitis vinifera cv. Monastrell suspension-cultured cells. We investigated the expression of genes encoding for phenylalanine ammonia-lyase (PAL1), cinnamate-4-hydroxylase (C4H1), 4-coumarate:coenzyme A ligase (4CL1), chalcone synthase (CHS1), stilbene synthase (STS1), cinnamoyl-coenzyme A:NADP oxidoreductase (CCR2), and cinnamyl alcohol dehydrogenase (CAD1). Each of the tested NH2-pNs also induced the expression of the trans-resveratrol cell membrane transporter VvABCG44 gene and caused the accumulation of trans-resveratrol and trans-piceid in grape cells as well as in the culture medium. NH2-pC, however, evoked the most effective induction of phenylpropanoid pathway genes such as PAL1, C4H1, 4CL1, and STS1. Moreover, this nucleotide also induced at short times the accumulation of N-benzoylputrescine (BenPut), one of the phenylamides that are derivatives of phenylpropanoid and polyamines. The investigated nucleotides did not change either the lignin content or the cell dry weight, nor did they affect the cell viability throughout the experiment. The results suggest that nucleoside 5′-phosphoramidates could be considered as new signaling molecules.
Collapse
|
14
|
P2K1 Receptor, Heterotrimeric Gα Protein and CNGC2/4 Are Involved in Extracellular ATP-Promoted Ion Influx in the Pollen of Arabidopsis thaliana. PLANTS 2021; 10:plants10081743. [PMID: 34451790 PMCID: PMC8400636 DOI: 10.3390/plants10081743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
As an apoplastic signal, extracellular ATP (eATP) is involved in plant growth and development. eATP promotes tobacco pollen germination (PG) and pollen tube growth (PTG) by stimulating Ca2+ or K+ absorption. Nevertheless, the mechanisms underlying eATP-stimulated ion uptake and their role in PG and PTG are still unclear. Here, ATP addition was found to modulate PG and PTG in 34 plant species and showed a promoting effect in most of these species. Furthermore, by using Arabidopsis thaliana as a model, the role of several signaling components involved in eATP-promoted ion (Ca2+, K+) uptake, PG, and PTG were investigated. ATP stimulated while apyrase inhibited PG and PTG. Patch-clamping results showed that ATP promoted K+ and Ca2+ influx into pollen protoplasts. In loss-of-function mutants of P2K1 (dorn1-1 and dorn1-3), heterotrimeric G protein α subunit (gpa1-1, gpa1-2), or cyclic nucleotide gated ion channel (cngc2, cngc4), eATP-stimulated PG, PTG, and ion influx were all impaired. Our results suggest that these signaling components may be involved in eATP-promoted PG and PTG by regulating Ca2+ or K+ influx in Arabidopsis pollen grains.
Collapse
|
15
|
Williams WR. Phytohormones: structural and functional relationship to purine nucleotides and some pharmacologic agents. PLANT SIGNALING & BEHAVIOR 2021; 16:1837544. [PMID: 33100143 PMCID: PMC7781725 DOI: 10.1080/15592324.2020.1837544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Structural components of second messenger signaling (nucleotides and associated enzyme systems) within plant and animal cells have more in common than the hormones that initiate metabolic and functional changes. Neurotransmitters and hormones of mammalian pharmacologic classes relate to purine nucleotides in respect of chemical structure and the molecular changes they initiate. This study compares the molecular structures of purine nucleotides with compounds from the abscisic acid, auxin, brassinosteroid, cytokinin, gibberellin, and jasmonate classes by means of a computational program. The results illustrate how phytohomones relate to each other through the structures of nucleotides and cyclic nucleotides. Molecular similarity within the phytohormone structures relates to synergism, antagonism and the modulation of nucleotide function that regulates germination and plant development. As with the molecular evolution of mammalian hormones, cell signaling and cross-talk within the phytohormone classes is purine nucleotide centered.
Collapse
Affiliation(s)
- W. Robert Williams
- Faculty of Life Sciences & Education, University of South Wales, Cardiff, UK
| |
Collapse
|
16
|
Ferguson F, McLennan AG, Urbaniak MD, Jones NJ, Copeland NA. Re-evaluation of Diadenosine Tetraphosphate (Ap 4A) From a Stress Metabolite to Bona Fide Secondary Messenger. Front Mol Biosci 2020; 7:606807. [PMID: 33282915 PMCID: PMC7705103 DOI: 10.3389/fmolb.2020.606807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular homeostasis requires adaption to environmental stress. In response to various environmental and genotoxic stresses, all cells produce dinucleoside polyphosphates (NpnNs), the best studied of which is diadenosine tetraphosphate (Ap4A). Despite intensive investigation, the precise biological roles of these molecules have remained elusive. However, recent studies have elucidated distinct and specific signaling mechanisms for these nucleotides in prokaryotes and eukaryotes. This review summarizes these key discoveries and describes the mechanisms of Ap4A and Ap4N synthesis, the mediators of the cellular responses to increased intracellular levels of these molecules and the hydrolytic mechanisms required to maintain low levels in the absence of stress. The intracellular responses to dinucleotide accumulation are evaluated in the context of the "friend" and "foe" scenarios. The "friend (or alarmone) hypothesis" suggests that ApnN act as bona fide secondary messengers mediating responses to stress. In contrast, the "foe" hypothesis proposes that ApnN and other NpnN are produced by non-canonical enzymatic synthesis as a result of physiological and environmental stress in critically damaged cells but do not actively regulate mitigating signaling pathways. In addition, we will discuss potential target proteins, and critically assess new evidence supporting roles for ApnN in the regulation of gene expression, immune responses, DNA replication and DNA repair. The recent advances in the field have generated great interest as they have for the first time revealed some of the molecular mechanisms that mediate cellular responses to ApnN. Finally, areas for future research are discussed with possible but unproven roles for intracellular ApnN to encourage further research into the signaling networks that are regulated by these nucleotides.
Collapse
Affiliation(s)
- Freya Ferguson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Alexander G McLennan
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Nigel J Jones
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nikki A Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
17
|
Tribute to Prof. Geoffrey Burnstock: transition of purinergicsignaling to drug discovery. Purinergic Signal 2020; 17:3-8. [PMID: 32794053 DOI: 10.1007/s11302-020-09717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
Geoffrey Burnstock made a chance observation early in his research career that did not fit the conventional scientific dogma-non-noradrenergic, non-cholinergic (NANC) nerves. Instead of rejecting these as an artifact, he followed their logical course to characterize the actions of extracellular ATP on nerves and muscles, eventually founding a large branch of pharmacology around purinergic signaling. The solid proof that validated his concept and dismissed many detractors was the cloning of seven ionotropic P2X receptors and eight metabotropic P2Y receptors, which are expressed in some combination in every tissue and organ. Given the broad importance of this signaling system in biology, medicinal chemists, inspired by Burnstock, began creating synthetic agonists and antagonists for these purinergic receptors. Various ligands have advanced to clinical trials, for disorders of the immune, nervous, cardiovascular, and other systems, and a few are already approved. Thus, medically important approaches have been derived from Burnstock's original pharmacological concepts and his constant guiding of the course of the field. The therapeutic potential of modulators of purinergic signaling is vast.
Collapse
|