1
|
Savardekar A, Fernandes E, Padhye-Pendse A, Gupta T, Pol J, Phadke M, Desai S, Jadhav S, Rajwade J, Banerjee A. Adipocytes Promote Endometrial Cancer Progression Through Activation of the SIRT1-HMMR Signaling Axis. Mol Carcinog 2024; 63:2363-2381. [PMID: 39254492 DOI: 10.1002/mc.23815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Adipocyte is a predominant component of the omental adipose tissue that influences the tumor microenvironment and increases the risk of endometrial cancer progression (EC), however, little is known about the underlying mechanism. In this study, using a co-culture model, we found that the adipocyte-EC cell interaction promoted SIRT1 signaling in vitro and in vivo xenograft mice models. Furthermore, immunostaining of SIRT1 protein showed significantly higher expression of SIRT1 in endometrial cancer patients than in normal endometria. RNA sequencing analysis revealed HMMR (hyaluronan-mediated motility receptor), an oncogene, as a downstream effector of SIRT1 in adipocyte-associated EC. Transient knockdown and chromatin immunoprecipitation assays showed that SIRT1 inhibition impedes transcription of the HMMR gene via FOXM1, and reduced expression of HMMR in co-cultured EC cells blocks AURKA activation via TPX2, leading to cell cycle arrest. This is the first study to report the positive correlation between SIRT1 and HMMR in EC patient tumors and might be used as a potential biomarker in EC. Notably, SIRT1 regulates HMMR expression in a FOXM1-dependent manner, and interfering with SIRT1 may provide a promising strategy for the management of endometrial cancer.
Collapse
Affiliation(s)
- Akanksha Savardekar
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Ellerhea Fernandes
- Department of Surgery, Wanless Mission Hospital, Miraj, Maharashtra, India
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | | | - Tanish Gupta
- Department of Electrical and Electronics Engineering, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Jaydeep Pol
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Madhura Phadke
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sharad Desai
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sachin Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
2
|
Zhao F, Zhang T, Wei J, Chen L, Liu Z, Jin Y, Liu M, Zhou H, Hu Y, Sheng X. Integrated single-cell transcriptomic analyses identify a novel lineage plasticity-related cancer cell type involved in prostate cancer progression. EBioMedicine 2024; 109:105398. [PMID: 39418984 PMCID: PMC11530610 DOI: 10.1016/j.ebiom.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cancer cell plasticity is the ability of neoplastic cells to alter their identity and acquire new biological properties under microenvironmental pressures. In prostate cancer (PCa), lineage plasticity often results in therapy resistance and trans-differentiation to neuroendocrine (NE) lineage. However, identifying the cancer cells harboring lineage plasticity-related status remains challenging. METHODS Based on 13 multi-center human PCa bulk transcriptomic cohorts (samples = 3314) and 9 bulk transcriptomic datasets derived from PCa experimental models, we established an integrated lineage plasticity-related gene signature, termed LPSig. Leveraging this gene signature, AUCell enrichment analysis was applied to identify the cell population with high lineage plasticity from a comprehensive single-cell RNA-sequencing (scRNA-seq) meta-atlas assembled by us, which consisted of 10 public human PCa scRNA-seq datasets (samples = 93, cells = 222,529). Moreover, additional scRNA-seq dataset of human PCa, multiplex immunohistochemistry staining for human PCa tissues, in vitro and in vivo functional experiments, as well as qPCR and Western blot analyses were employed to validate our findings. FINDINGS We found that LPSig could finely capture the dynamics of tumor lineage plasticity throughout the progression of PCa, accurately estimating the status of lineage plasticity. Based on LPSig, we identified a previously undefined minority population of lineage plasticity-related PCa cells (LPCs) from the human PCa scRNA-seq meta-atlas assembled by this study. Furthermore, in-depth dissection revealed pivotal roles of LPCs in trans-differentiation, tumor recurrence, and poor patient survival during PCa progression. Furthermore, we identified HMMR as a representative cell surface marker for LPCs, which was validated using additional scRNA-seq datasets and multiplexed immunohistochemistry. Moreover, HMMR was transcriptionally inhibited by androgen receptor (AR), and was required for the aggressive adenocarcinoma features and NE phenotype. INTERPRETATION Our study uncovers a novel population of lineage plasticity-related cells with low AR activity, stemness-like traits, and elevated HMMR expression, that may facilitate poor prognosis in PCa. FUNDING This work was supported by National Key R&D Program of China (2022YFA0807000), National Natural Science Foundation of China (82160584), Advanced Prostate Cancer Diagnosis and Treatment Technology Innovation Team of Kunming Medical University (CXTD202216), and Reserve Talents of Young and Middle-aged Academic Leaders in Yunnan Province (202105AC160013).
Collapse
Affiliation(s)
- Faming Zhao
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlan Wei
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo 0316, Norway
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xia Sheng
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Liu J, Yang H, Li P, Zhou Y, Zhang Z, Zeng Q, Zhang X, Sun Y. Microarray analysis points to LMNB1 and JUN as potential target genes for predicting metastasis promotion by etoposide in colorectal cancer. Sci Rep 2024; 14:23661. [PMID: 39390002 PMCID: PMC11467296 DOI: 10.1038/s41598-024-72674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Etoposide is a second-line chemotherapy agent widely used for metastatic colorectal cancer. However, we discovered that etoposide treatment induced greater motility potential in four colorectal cancer cell lines. Therefore, we used microarrays to test the mRNA of these cancer cell lines to investigate the mechanisms of etoposide promoting colorectal cancer metastasis. Differentially expressed genes (DEGs) were identified by comparing the gene expression profiles in samples from etoposide-treated cells and untreated cells in all four colorectal cancer cell lines. Next, these genes went through the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Among the top 10 genes including the upregulated and downregulated, eight genes had close interaction according to the STRING database: FAS, HMMR, JUN, LMNB1, MLL3, PLK2, STAG1 and TBL1X. After etoposide treatment, the cell cycle, metabolism-related and senescence signaling pathways in the colorectal cancer cell lines were significantly downregulated, whereas necroptosis and oncogene pathways were significantly upregulated. We suggest that the differentially expressed genes LMNB1 and JUN are potential targets for predicting colorectal cancer metastasis. These results provide clinical guidance in chemotherapy, and offer direction for further research in the mechanism of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jiafei Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Hongjie Yang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Peng Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yuanda Zhou
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Zhichun Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Qingsheng Zeng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yi Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Zhai D, Tang L, Zhang H, Wang X, Ma N, Zhang X, Cheng M, Shen R. FOXM1 mediates methotrexate resistance in osteosarcoma cells by promoting autophagy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1289-1299. [PMID: 39086352 PMCID: PMC11532242 DOI: 10.3724/abbs.2024084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/06/2024] [Indexed: 08/02/2024] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer mostly found in adolescents and elderly individuals. The treatment of OS is still largely dependent on traditional chemotherapy. However, the high incidence of drug resistance remains one of the greatest impediments to limiting improvements in OS treatment. Recent findings have indicated that the transcription factor FOXM1 plays an important role in various cancer-related events, especially drug resistance. However, the possible role of FOXM1 in the resistance of OS to methotrexate (MTX) remains to be explored. Here, we find that FOXM1, which confers resistance to MTX, is highly expressed in OS tissues and MTX-resistant cells. FOXM1 overexpression promotes MTX resistance by enhancing autophagy in an HMMR/ATG7-dependent manner. Importantly, silencing of FOXM1 or inhibiting autophagy reverses drug resistance. These findings demonstrate a new mechanism for FOXM1-induced MTX resistance and provide a promising target for improving OS chemotherapy outcomes.
Collapse
Affiliation(s)
- Luoyang Wang
- Department of ImmunologySchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Dongchang Zhai
- Department of Special MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Lei Tang
- Department of Special MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Hui Zhang
- Organ Transplantation Centerthe Affiliated Hospital of Qingdao UniversityNo.59 Haier RoadLaoshan DistrictQingdao266061China
| | - Xinlong Wang
- Department of Basic MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Ning Ma
- Department of MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Xiaoyue Zhang
- Department of MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| | - Mingguo Cheng
- Orthopedic SurgeryThe Third People’s Hospital of QingdaoQingdao266100China
| | - Ruowu Shen
- Department of Special MedicineSchool of Basic MedicineQingdao UniversityQingdao266071China
| |
Collapse
|
5
|
Li WZ, Liu XX, Shi YJ, Wang XR, Li L, Tai ML, Yi F. Unveiling the mechanism of high sugar diet induced advanced glycosylation end products damage skin structure via extracellular matrix-receptor interaction pathway. J Cosmet Dermatol 2024; 23:2496-2508. [PMID: 38501159 DOI: 10.1111/jocd.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AGEs accumulate in the skin as a result of a high-sugar diet and play an important role in the skin aging process. OBJECTIVES The aim of this study was to characterize the mechanism underlying the effect of a high-sugar diet on skin aging damage at a holistic level. METHODS We established a high-sugar diet mouse model to compare and analyze differences in physiological indexes. The effect of a high-sugar diet on skin aging damage was analyzed by means of a transcriptome study and staining of pathological sections. Furthermore, the differences in the protein expression of AGEs and ECM components between the HSD and control groups were further verified by immunohistochemistry. RESULTS The skin in the HSD group mice tended toward a red, yellow, dark, and deep color. In addition, the epidermis was irregular with anomalous phenomena, the epidermis was thinned, and the dermis lost its normal structure and showed vacuolated changes. Transcriptomics results revealed significant downregulation of the ECM-receptor interaction pathway, significant upregulation of the expression of AGEs and significant downregulation of the expression levels of COLI, FN1, LM5, and TNC, among others ECM proteins and ECM receptors. CONCLUSIONS High-sugar diets cause skin aging damage by inducing the accumulation of AGEs, disrupting the expression of ECM proteins and their receptors, and downregulating the ECM-receptor interaction pathway, which affects cellular behavioral functions such as cell proliferation, migration, and adhesion, as well as normal skin tissue structure.
Collapse
Affiliation(s)
- Wan-Zhao Li
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yu-Jing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Rui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Mei-Ling Tai
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Abu Aziz N, Christianus A, Wan Solahudin WMS, Ismail IS, Low CF. Comparative proteome analysis revealed potential biomarkers and the underlying immune mechanisms in Vibrio-resistant hybrid grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. JOURNAL OF FISH DISEASES 2024; 47:e13940. [PMID: 38523352 DOI: 10.1111/jfd.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Vibrio alginolyticus is the causative agent of vibriosis, a common bacterial infection in grouper aquaculture that is associated with the development of haemorrhagic and non-haemorrhagic ulcerations on the fish. In the present study, comparative proteome analysis was performed on serum samples from Vibrio-resistant and Vibrio-susceptible grouper. Samples were analysed using high-throughput LC-MS/MS and identified 2770 unique peptides that corresponded to 344 proteins. Subsequent analysis identified 21 proteins that were significantly up-regulated in the resistant group compared to the control and the susceptible groups. Those proteins are associated with immunostimulatory effects, signalling and binding cascade, metabolism, and maintaining tissue integrity and physiological condition. Besides, potential protein biomarkers related to the immune system were identified, which could be associated with the disease-resistant phenotype. These data provide insights into the underlying immune mechanism of hybrid groupers upon Vibrio sp. infection.
Collapse
Affiliation(s)
- Nurhikmah Abu Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Annie Christianus
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | | | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Wu H, Liu Y, Liu Q, Li Z, Wan Y, Cao C, Wu B, Liu M, Liang R, Hu L, Zhang W, Lan M, Yao Q, Zhou H, Lan H, Chen L, Zhang Y, Zhang X, Bian XW, Xu C. HMMR triggers immune evasion of hepatocellular carcinoma by inactivation of phagocyte killing. SCIENCE ADVANCES 2024; 10:eadl6083. [PMID: 38838151 PMCID: PMC11152120 DOI: 10.1126/sciadv.adl6083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.
Collapse
Affiliation(s)
- Hong Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Yiqiang Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Qianshi Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Zhaoshen Li
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Yejian Wan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Chenhui Cao
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Binghuo Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - MingXin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Renchuan Liang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Wenyi Zhang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Mei Lan
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Quan Yao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Hang Zhou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haitao Lan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Yu Zhang
- The Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
- Jinfeng Laboratory, Chongqing 400039, P. R. China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
- Jinfeng Laboratory, Chongqing 400039, P. R. China
| |
Collapse
|
8
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
9
|
Su Z, He Y, You L, Zhang G, Chen J, Liu Z. Coupled scRNA-seq and Bulk-seq reveal the role of HMMR in hepatocellular carcinoma. Front Immunol 2024; 15:1363834. [PMID: 38633247 PMCID: PMC11021596 DOI: 10.3389/fimmu.2024.1363834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background Hyaluronan-mediated motility receptor (HMMR) is overexpressed in multiple carcinomas and influences the development and treatment of several cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Methods The "limma" and "GSVA" packages in R were used to perform differential expression analysis and to assess the activity of signalling pathways, respectively. InferCNV was used to infer copy number variation (CNV) for each hepatocyte and "CellChat" was used to analyse intercellular communication networks. Recursive partitioning analysis (RPA) was used to re-stage HCC patients. The IC50 values of various drugs were evaluated using the "pRRophetic" package. In addition, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm HMMR expression in an HCC tissue microarray. Flow cytometry (FCM) and cloning, Edu and wound healing assays were used to explore the capacity of HMMR to regulate HCC tumour. Results Multiple cohort studies and qRT-PCR demonstrated that HMMR was overexpressed in HCC tissue compared with normal tissue. In addition, HMMR had excellent diagnostic performance. HMMR knockdown inhibited the proliferation and migration of HCC cells in vitro. Moreover, high HMMR expression was associated with "G2M checkpoint" and "E2F targets" in bulk RNA and scRNA-seq, and FCM confirmed that HMMR could regulate the cell cycle. In addition, HMMR was involved in the regulation of the tumour immune microenvironment via immune cell infiltration and intercellular interactions. Furthermore, HMMR was positively associated with genomic heterogeneity with patients with high HMMR expression potentially benefitting more from immunotherapy. Moreover, HMMR was associated with poor prognosis in patients with HCC and the re-staging by recursive partitioning analysis (RPA) gave a good prognosis prediction value and could guide chemotherapy and targeted therapy. Conclusion The results of the present study show that HMMR could play a role in the diagnosis, prognosis, and treatments of patients with HCC based on bulk RNA-seq and scRAN-seq analyses and is a promising molecular marker for HCC.
Collapse
Affiliation(s)
| | | | | | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Farhadi A, Xue L, Zhao Q, Han F, Xu C, Chen H, Li E. Identification of key genes and molecular pathways associated with claw regeneration in mud crab (Scylla paramamosain). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101184. [PMID: 38154166 DOI: 10.1016/j.cbd.2023.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Wang J, Sun L, Liu Y, Zhang Y. FIGNL1 Promotes Hepatocellular Carcinoma Formation via Remodeling ECM-receptor Interaction Pathway Mediated by HMMR. Curr Gene Ther 2024; 24:249-263. [PMID: 37929733 PMCID: PMC11071652 DOI: 10.2174/0115665232274223231017052707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The development of novel biomarkers is crucial for the treatment of HCC. In this study, we investigated a new molecular therapeutic target for HCC. Fidgetin-like 1 (FIGNL1) has been reported to play a vital role in lung adenocarcinoma. However, the potential function of FIGNL1 in HCC is still unknown. OBJECTIVE This study aims to investigate the key regulatory mechanisms of FIGNL1 in the formation of HCC. METHODS The regulatory effect of FIGNL1 on HCC was studied by lentivirus infection. In vitro, the effects of FIGNL1 on the proliferation, migration and apoptosis of cells were investigated by CCK8, colony formation assay, transwell and flow cytometry. Meanwhile, the regulation of FIGNL1 on HCC formation in vivo was studied by subcutaneous transplanted tumors. In addition, using transcriptome sequencing technology, we further explored the specific molecular mechanism of FIGNL1 regulating the formation of HCC. RESULTS Functionally, we demonstrated that FIGNL1 knockdown significantly inhibited HCC cell proliferation, migration and promoted cell apoptosis in vitro. Similarly, the knockdown of FIGNL1 meaningfully weakened hepatocarcinogenesis in nude mice. Transcriptome sequencing revealed that FIGNL1 affected the expression of genes involved in extracellular matrix-receptor (ECM-receptor) interaction pathway, such as hyaluronan mediated motility receptor (HMMR). Further validation found that overexpression of HMMR based on knockdown FIGNL1 can rescue the expression abundance of related genes involved in the ECM-receptor interaction pathway. CONCLUSION Our study revealed that FIGNL1 could modulate the ECM-receptor interaction pathway through the regulation of HMMR, thus regulating the formation of HCC.
Collapse
Affiliation(s)
- Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Linmao Sun
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Yunguang Zhang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
12
|
Zhang H, Xu Y, Han H, Ye X, Cheng L, Shen Y, Wan X. Comprehensive Analysis Identifies Hyaluronan Mediated Motility Receptor and Cell Division Cycle 25C as Potential Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241287904. [PMID: 39323031 PMCID: PMC11440566 DOI: 10.1177/10732748241287904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, but its pathogenic mechanisms remain unclear. This study aimed to identify the potential biomarkers underlying the diagnosis and treatment of HNSCC. METHODS Weighted gene co-expression network analysis (WGCNA) followed by pathway enrichment analysis, analysis of infiltrating immune cells, survival analysis, and methylation analysis were applied to identify the potential hub genes underlying the prognosis of HNSCC. The expression of hub genes was validated by immunofluorescence staining. RESULTS A total of 10,274 differentially expressed genes (DEGs) were identified. Through WGCNA, the yellow module (R2 = 0.33, P = 2e-14) was confirmed to be the most significantly associated with the histological grade of HNSCC, and the "Cell Cycle" proved to be the most enriched signaling pathway. Based on the results of survival analysis and immune cell infiltration, 10 hub genes (HMMR, CENPK, AURKA, CDC25C, FEN1, CKS1B, MAJIN, PCLAF, SPC25, and STAG3) were identified. Eight of these (excluding MAJIN and STAG3) were confirmed by performing survival analysis using another dataset (GSE41613). Further, we identified 4 methylation loci in 3 hub genes (cg15122828 and cg20554926 in HMMR, cg12519992 in CDC25C, and cg2655739 in KIAA0101/PCLAF) as being significantly related to survival. Finally, we demonstrated the high mRNA and protein expression of HMMR and CDC25C in HNSCC patients. CONCLUSION Two real hub genes (HMMR and CDC25C) and 3 methylation loci were identified that could potentially serve as prognostic and therapeutic targets for HNSCC, which is significant for studying the pathological mechanisms underlying HNSCC and for developing novel therapies for this disease.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haijun Han
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiongwei Ye
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Lu Cheng
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yueshuang Shen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Xiaochen Wan
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
13
|
Kozuki S, Kabata M, Sakurai S, Iwaisako K, Nishimura T, Toi M, Yamamoto T, Toyoshima F. Periportal hepatocyte proliferation at midgestation governs maternal glucose homeostasis in mice. Commun Biol 2023; 6:1226. [PMID: 38049528 PMCID: PMC10695921 DOI: 10.1038/s42003-023-05614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The maternal liver is challenged by metabolic demands throughout pregnancy. However, hepatocyte dynamics and their physiological significance in pregnancy remain unclear. Here, we show in mice that hepatocyte proliferation is spatiotemporally regulated in each liver lobular zone during pregnancy, with transient proliferation of periportal and pericentral hepatocytes during mid and late gestation, respectively. Using adeno-associated virus (AAV)-8-mediated expression of the cell cycle inhibitor p21 in hepatocytes, we show that inhibition of hepatocyte proliferation during mid, but not late, gestation impairs liver growth. Transcriptionally, genes involved in glucose/glycogen metabolism are downregulated in late pregnancy when midgestational hepatocyte proliferation is attenuated. In addition, hepatic glycogen storage is abolished, with concomitant elevated blood glucose concentrations, glucose intolerance, placental glycogen deposition, and fetal overgrowth. Laser capture microdissection and RNA-seq analysis of each liver lobular zone show zone-specific changes in the transcriptome during pregnancy and identify genes that are periportally expressed at midgestation, including the hyaluronan-mediated motility receptor (Hmmr). Knockdown of Hmmr in hepatocytes by AAV8-shHmmr suppresses periportal hepatocyte proliferation at midgestation and induces impaired hepatic glycogen storage, glucose intolerance, placental glycogen deposition and fetal overgrowth. Our results suggest that periportal hepatocyte proliferation during midgestation is critical for maternal glycogen metabolism and fetal size.
Collapse
Affiliation(s)
- Satoshi Kozuki
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Department of Target Therapy Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
- Department of Homeostatic Medicine, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Zhang X, Huang D, Li K, Han C, Li H, Li C, Liu L. Hmmr Acts as a Key Regulator in the ADSCs Proliferation and Mitosis. Stem Cell Rev Rep 2023:10.1007/s12015-023-10563-9. [PMID: 37222947 DOI: 10.1007/s12015-023-10563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Obesity is a common chronic health problem that requires lifelong efforts for the successful treatment. The proliferation of ADSCs is an essential step in the development of obesity. Identifying key regulators of ADSCs will be a novel strategy for adipogenesis inhibition and obesity prevention. In this study, transcriptomes of 15532 ADSCs were firstly profiled by single cell RNA-sequencing. On the basis of gene expression patterns, 15 cell subpopulations (six defined cell types) were distinguished. A subpopulation was identified as CD168+ ADSCs, and it was demonstrated to play a vital role in ADSCs proliferation. Furthermore, Hmmr, a specific marker gene of CD168+ ADSCs was found to be a critical gene associated with ADSCs proliferation and mitosis. Hmmr knockout resulted that ADSCs growth nearly arrested and aberrant nuclear division occurred. Finally, it was revealed that Hmmr promoted ADSCs proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway. This study identified Hmmr as a key regulator in ADSCs proliferation and mitosis, and suggested that Hmmr may be a novel target for obesity prevention.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Dou Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Kaide Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chaoying Han
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cai Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
15
|
Zhang C, Huang Y, Fang C, Liang Y, Jiang D, Li J, Ma H, Jiang W, Feng Y. Construction and validation of a prognostic model based on ten signature cell cycle-related genes for early-stage lung squamous cell carcinoma. Cancer Biomark 2023; 36:313-326. [PMID: 36938730 DOI: 10.3233/cbm-220227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
BACKGROUND We performed a bioinformatics analysis to screen for cell cycle-related differentially expressed genes (DEGs) and constructed a model for the prognostic prediction of patients with early-stage lung squamous cell carcinoma (LSCC). METHODS From a gene expression omnibus (GEO) database, the GSE157011 dataset was randomly divided into an internal training group and an internal testing group at a 1:1 ratio, and the GSE30219, GSE37745, GSE42127, and GSE73403 datasets were merged as the external validation group. We performed single-sample gene set enrichment analysis (ssGSEA), univariate Cox analysis, and difference analysis, and identified 372 cell cycle-related genes. Additionally, we combined LASSO/Cox regression analysis to construct a prognostic model. Then, patients were divided into high-risk and low-risk groups according to risk scores. The internal testing group, discovery set, and external verification set were used to assess model reliability. We used a nomogram to predict patient prognoses based on clinical features and risk values. Clinical relevance analysis and the Human Protein Atlas (HPA) database were used to verify signature gene expression. RESULTS Ten cell cycle-related DEGs (EIF2B1, FSD1L, FSTL3, ORC3, HMMR, SETD6, PRELP, PIGW, HSD17B6, and GNG7) were identified and a model based on the internal training group constructed. From this, patients in the low-risk group had a higher survival rate when compared with the high-risk group. Time-dependent receiver operating characteristic (tROC) and Cox regression analyses showed the model was efficient and accurate. Clinical relevance analysis and the HPA database showed that DEGs were significantly dysregulated in LSCC tissue. CONCLUSION Our model predicted the prognosis of early-stage LSCC patients and demonstrated potential applications for clinical decision-making and individualized therapy.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, China.,Department of Thoracic Surgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, China
| | - Yong Huang
- Department of Thoracic Surgery, Haimen People's Hospital, Nantong, Jiangsu, China.,Department of Thoracic Surgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, China
| | - Chen Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Thoracic Surgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu, China
| | - Yingkuan Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiaxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Jiang
- Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Guo K, Liu C, Shi J, Lai C, Gao Z, Luo J, Li Z, Tang Z, Li K, Xu K. HMMR promotes prostate cancer proliferation and metastasis via AURKA/mTORC2/E2F1 positive feedback loop. Cell Death Dis 2023; 9:48. [PMID: 36750558 PMCID: PMC9905489 DOI: 10.1038/s41420-023-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
Although dysregulated HMMR is linked to prostate cancer (PCa) prognosis, the precise mechanisms remain unclear. Here, we sought to elucidate the role of HMMR in PCa progression as well as underlying mechanism. Herein, we found that upregulation of HMMR frequently observed in PCa samples and was associated with poor prognosis. Additionally, HMMR significantly promoted PCa proliferation and metastasis through gain- and loss-of function approaches in vitro and in vivo. Mechanistically, HMMR may interact with AURKA and elevated AURKA protein level through inhibiting ubiquitination-mediated degradation, which subsequently activated mTORC2/AKT pathway to ensure the reinforcement of PCa progression. Moreover, upregulated E2F1 caused from sustained activation of mTORC2/AKT pathway in turn function as transcription factor to promote HMMR transcription, thereby forming a positive feedback loop to trigger PCa progression. Importantly, administration of the mTOR inhibitor partially antagonised HMMR-mediated PCa progression in vivo. In summary, we not only reveal a novel possible post-translation mechanism mediated by HMMR involved in AURKA regulation, but also describe a positive feedback loop that contributes to PCa deterioration, suggesting HMMR may serve as a potential promising therapeutic target in PCa.
Collapse
Affiliation(s)
- Kaixuan Guo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Cheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Juanyi Shi
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong P. R. China
| | - Cong Lai
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Ze Gao
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Jiawen Luo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuohang Li
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuang Tang
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
17
|
Zhu H, Tan J, Pan X, Ouyang H, Zhang Z, Li M, Zhao Y. HELLPAR/RRM2 axis related to HMMR as novel prognostic biomarker in gliomas. BMC Cancer 2023; 23:125. [PMID: 36750807 PMCID: PMC9903609 DOI: 10.1186/s12885-023-10596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Gliomas are the most frequent type of central nervous system tumor, accounting for more than 70% of all malignant CNS tumors. Recent research suggests that the hyaluronan-mediated motility receptor (HMMR) could be a novel potential tumor prognostic marker. Furthermore, mounting data has highlighted the important role of ceRNA regulatory networks in a variety of human malignancies. The complexity and behavioural characteristics of HMMR and the ceRNA network in gliomas, on the other hand, remained unknown. METHODS Transcriptomic expression data were collected from TCGA, GTEx, GEO, and CGGA database.The relationship between clinical variables and HMMR was analyzed with the univariate and multivariate Cox regression. Kaplan-Meier method was used to assess OS. TCGA data are analyzed and processed, and the correlation results obtained were used to perform GO, GSEA, and ssGSEA. Potentially interacting miRNAs and lncRNAs were predicted by miRWalk and StarBase. RESULTS HMMR was substantially expressed in gliomas tissues compared to normal tissues. Multivariate analysis revealed that high HMMR expression was an independent predictive predictor of OS in TCGA and CGGA. Functional enrichment analysis found that HMMR expression was associated with nuclear division and cell cycle. Base on ssGSEA analysis, The levels of HMMR expression in various types of immune cells differed significantly. Bioinformatics investigation revealed the HEELPAR-hsa-let-7i-5p-RRM2 ceRNA network, which was linked to gliomas prognosis. And through multiple analysis, the good predictive performance of HELLPAR/RRM2 axis for gliomas patients was confirmed. CONCLUSION This study provides multi-layered and multifaceted evidence for the importance of HMMR and establishes a HMMR-related ceRNA (HEELPAR-hsa-let-7i-5p-RRM2) overexpressed network related to the prognosis of gliomas.
Collapse
Affiliation(s)
- Huaxin Zhu
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Jiacong Tan
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Xinyi Pan
- grid.260463.50000 0001 2182 8825Huankui Academy, Nanchang University, Honggutan New District, Jiangxi 330006 Nanchang, China
| | - Hengyang Ouyang
- grid.260463.50000 0001 2182 8825Huankui Academy, Nanchang University, Honggutan New District, Jiangxi 330006 Nanchang, China
| | - Zhixiong Zhang
- grid.412604.50000 0004 1758 4073Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
In silico analysis revealed the potential circRNA-miRNA-mRNA regulative network of non-small cell lung cancer (NSCLC). Comput Biol Med 2023; 152:106315. [PMID: 36495751 DOI: 10.1016/j.compbiomed.2022.106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The primary source of death in the world is non-small cell lung cancer (NSCLC). However, NSCLCs pathophysiology is still not completely understood. The current work sought to study the differential expression of mRNAs involved in NSCLC and their interactions with miRNAs and circRNAs. METHODS We utilized three microarray datasets (GSE21933, GSE27262, and GSE33532) from the GEO NCBI database to identify the differentially expressed genes (DEGs) in NSCLC. We employed DAVID Functional annotation tool to investigate the underlying GO biological process, molecular functions, and KEGG pathways involved in NSCLC. We performed the Protein-protein interaction (PPI) network, MCODE, and CytoHubba analysis from Cytoscape software to identify the significant DEGs in NSCLC. We utilized miRnet to anticipate and build interaction between miRNAs and mRNAs in NSCLC and ENCORI to predict the miRNA-circRNA relationships and build the ceRNA regulatory network. Finally, we executed the gene expression and Kaplan-Meier survival analysis to validate the significant DEGs in the ceRNA network utilizing TCGA NSCLC and GEPIA data. RESULTS We revealed a total of 156 overlapped DEGs (47 upregulated and 109 downregulated genes) in NSCLC. The PPI network, MCODE, and CytoHubba analysis revealed 12 hub genes (cdkn3, rrm2, ccnb1, aurka, nuf2, tyms, kif11, hmmr, ccnb2, nek2, anln, and birc5) that are associated with NSCLC. We identified that these 12 genes encode 12 mRNAs that are strongly linked with 8 miRNAs, and further, we revealed that 1 circRNA was associated with this 5 miRNA. We constructed the ceRNAs network that contained 1circRNA-5miRNAs-7mRNAs. The expression of these seven significant genes in LUAD & LUSC (NSCLC) was considerably higher in the TCGA database than in normal tissues. Kaplan-Meier survival plot reveals that increased expression of these hub genes was related to a poor survival rate in LUAD. CONCLUSION Overall, we developed a circRNA-miRNA-mRNA regulation network to study the probable mechanism of NSCLC.
Collapse
|
19
|
Centrosome Amplification Is a Potential Molecular Target in Paediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:cancers15010154. [PMID: 36612150 PMCID: PMC9818390 DOI: 10.3390/cancers15010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.
Collapse
|
20
|
Significance of Identifying Key Genes Involved in HBV-Related Hepatocellular Carcinoma for Primary Care Surveillance of Patients with Cirrhosis. Genes (Basel) 2022; 13:genes13122331. [PMID: 36553600 PMCID: PMC9778294 DOI: 10.3390/genes13122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Cirrhosis is frequently the final stage of disease preceding the development of hepatocellular carcinoma (HCC) and is one of the risk factors for HCC. Preventive surveillance for early HCC in patients with cirrhosis is advantageous for achieving early HCC prevention and diagnosis, thereby enhancing patient prognosis and reducing mortality. However, there is no highly sensitive diagnostic marker for the clinical surveillance of HCC in patients with cirrhosis, which significantly restricts its use in primary care for HCC. To increase the accuracy of illness diagnosis, the study of the effective and sensitive genetic biomarkers involved in HCC incidence is crucial. In this study, a set of 120 significantly differentially expressed genes (DEGs) was identified in the GSE121248 dataset. A protein-protein interaction (PPI) network was constructed among the DEGs, and Cytoscape was used to extract hub genes from the network. In TCGA database, the expression levels, correlation analysis, and predictive performance of hub genes were validated. In total, 15 hub genes showed increased expression, and their positive correlation ranged from 0.80 to 0.90, suggesting they may be involved in the same signaling pathway governing HBV-related HCC. The GSE10143, GSE25097, GSE54236, and GSE17548 datasets were used to investigate the expression pattern of these hub genes in the progression from cirrhosis to HCC. Using Cox regression analysis, a prediction model was then developed. The ROC curves, DCA, and calibration analysis demonstrated the superior disease prediction accuracy of this model. In addition, using proteomic analysis, we investigated whether these key hub genes interact with the HBV-encoded oncogene X protein (HBx), the oncogenic protein in HCC. We constructed stable HBx-expressing LO2-HBx and Huh-7-HBx cell lines. Co-immunoprecipitation coupled with mass spectrometry (Co-IP/MS) results demonstrated that CDK1, RRM2, ANLN, and HMMR interacted specifically with HBx in both cell models. Importantly, we investigated 15 potential key genes (CCNB1, CDK1, BUB1B, ECT2, RACGAP1, ANLN, PBK, TOP2A, ASPM, RRM2, NEK2, PRC1, SPP1, HMMR, and DTL) participating in the transformation process of HBV infection to HCC, of which 4 hub genes (CDK1, RRM2, ANLN, and HMMR) probably serve as potential oncogenic HBx downstream target molecules. All these findings of our study provided valuable research direction for the diagnostic gene detection of HBV-related HCC in primary care surveillance for HCC in patients with cirrhosis.
Collapse
|
21
|
Shi Y, Dai S, Lei Y. Development and validation of a combined metabolism and immune prognostic model in lung adenocarcinoma. J Thorac Dis 2022; 14:4983-4997. [PMID: 36647508 PMCID: PMC9840026 DOI: 10.21037/jtd-22-1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Background Tumor metabolism and immune response can affect the biological behavior of tumor cells. There is an obvious relationship between glycolysis and immune response. However, the association between metabolism and immune response and prognosis in lung adenocarcinoma (LUAD) has not yet been examined in a comprehensive and detailed manner. The establishment of reliable models for predicting the prognosis of LUAD based on glycolysis ability and immune status is still highly anticipated. Methods The expression of genes were obtained from online databases, and the differentially expressed genes in LUAD tissues and adjacent tissues were identified. We used LUAD samples in The Cancer Genome Atlas (TCGA) database as training set and the Gene Expression Omnibus (GEO) databases as validation sets. The best predictive model was constructed using least absolute selection and shrinkage operator (LASSO) regression and Cox regression. The receiver operator characteristic (ROC) curve is used to verify the accuracy of the model. The expression status of the Glycolysis-related genes (GRGs) and the status of the immune cells in LUCD patients were further analyzed. The protein levels of the 3 identified genes were then tested in LUAD patients. Results We identified 3 GRGs and immune-related genes (i.e., fibroblast growth factor 2, hyaluronan-mediated motor receptor, and nuclear receptor 0B2) and constructed a stable comprehensive index of glycolysis and immunity (CIGI) prediction model. The validation results for this CIGI model were quite stable across different datasets and patient subgroups and the CIGI score can be included as an independent prognostic factor for LUAD patients. The area under the curve (AUC) values of 1-, 3- and 5-year of the finally established nomogram model are 0.767, 0.735 and 0.769. Further analysis showed that LUAD patients in the low-risk group had lower levels of glycolytic gene expression than those in the high-risk group and exhibited an immunosuppressed state. Finally, hyaluronan-mediated motor receptor may play a role in inhibiting cancer, while fibroblast growth factor 2 and nuclear receptor 0B2 may play roles in promoting cancer. Conclusions In this study, we established a new prognostic prediction model for LUAD patients that combines glycolysis ability and immune status.
Collapse
Affiliation(s)
- Yu Shi
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihui Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Lei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Zhou DH, Du QC, Fu Z, Wang XY, Zhou L, Wang J, Hu CK, Liu S, Li JM, Ma ML, Yu H. Development and validation of an epithelial–mesenchymal transition-related gene signature for predicting prognosis. World J Clin Cases 2022; 10:9285-9302. [PMID: 36159424 PMCID: PMC9477694 DOI: 10.12998/wjcc.v10.i26.9285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Currently, there are many therapeutic methods for lung adenocarcinoma (LUAD), but the 5-year survival rate is still only 15% at later stages. Epithelial– mesenchymal transition (EMT) has been shown to be closely associated with local dissemination and subsequent metastasis of solid tumors. However, the role of EMT in the occurrence and development of LUAD remains unclear.
AIM To further elucidate the value of EMT-related genes in LUAD prognosis.
METHODS Univariate, least absolute shrinkage and selection operator, and multivariate Cox regression analyses were applied to establish and validate a new EMT-related gene signature for predicting LUAD prognosis. The risk model was evaluated by Kaplan–Meier survival analysis, principal component analysis, and functional enrichment analysis and was used for nomogram construction. The potential structures of drugs to which LUAD is sensitive were discussed with respect to EMT-related genes in this model.
RESULTS Thirty-three differentially expressed genes related to EMT were found to be highly associated with overall survival (OS) by using univariate Cox regression analysis (log2FC ≥ 1, false discovery rate < 0.001). A prognostic signature of 7 EMT-associated genes was developed to divide patients into two risk groups by high or low risk scores. Kaplan–Meier survival analysis showed that the OS of patients in the high-risk group was significantly poorer than that of patients in the low-risk group (P < 0.05). Multivariate Cox regression analysis showed that the risk score was an independent risk factor for OS (HR > 1, P < 0.05). The results of receiver operator characteristic curve analysis suggested that the 7-gene signature had a perfect ability to predict prognosis (all area under the curves > 0.5).
CONCLUSION The EMT-associated gene signature classifier could be used as a feasible indicator for predicting OS.
Collapse
Affiliation(s)
- De-Hua Zhou
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Qian-Cheng Du
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Zheng Fu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Xin-Yu Wang
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ling Zhou
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jian Wang
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Cheng-Kai Hu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Shun Liu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Jun-Min Li
- Surgical Intensive Care Unit, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Meng-Li Ma
- Surgical Intensive Care Unit, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Hua Yu
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
23
|
Fang Z, Wang F, Zhang M, Huang H, Lin Z. Identification of Co-Expression Modules and Genes Associated With Tumor Progression in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2022; 28:1610481. [PMID: 36052378 PMCID: PMC9426548 DOI: 10.3389/pore.2022.1610481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common head-and-neck cancer with a deficiency of early diagnosis and poor prognosis. To identify potential diagnostic and prognostic markers of OSCC, we firstly used weighted gene co-expression network analysis (WGCNA) to build a co-expression module from GSE42743. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on specified units from selected modules utilizing Database for Annotation, Visualization, and Integrated Discovery (DAVID). Additionally, we identified and validate hub genes of these specified modules from multiple datasets like GEPIA and TCGA. In total 16 co-expression modules were built by 17,238 genes of 74 tumor samples utilizing WGCNA. Through pathway and functional enrichment analysis, the turquoise module was most firmly relevant to the cell cycle, oocyte meiosis, and p53 signaling pathway. Hub genes VRK1, NUP37, HMMR, SPC25, and RUVBL1 were identified to be related to oral cancer at both molecular level and clinical levels. The expressions of these genes differed in tumor tissues and normal tissues. Meanwhile, patients with high hub gene expression had a poor prognosis clinically. To conclude, five hub genes were identified to be relevant to oral cancer from the molecular level and the clinical level. Therefore, the detection of these genes was of great significance. They can be regarded as diagnostic and prognostic biomarkers for oral cancer. Also, they could shed light on the improvement of patients’ overall survival and prognosis, which needs further analysis in the future.
Collapse
Affiliation(s)
- Zhijie Fang
- Department of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Feifei Wang
- Department of Nursing, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, China
| | - Mengya Zhang
- Department of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hua Huang
- Department of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhiqiang Lin
- Department of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Zhiqiang Lin,
| |
Collapse
|
24
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
25
|
A Novel Risk Score Model of Lactate Metabolism for Predicting over Survival and Immune Signature in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153727. [PMID: 35954390 PMCID: PMC9367335 DOI: 10.3390/cancers14153727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Since the discovery of the WarBurg effect, the veil of the tumorigenic role of lactic acid has been gradually revealed. Recently, it was proposed that lactic acid that is produced by tumor cells was secreted into the extracellular space to create immunosuppressive tumor microenvironment (TME) in a variety of ways. However, the intersection genes and the association with immunotherapy are unclear. At present, we identified six lactate-metabolism-associated genes, which were thought to enable tumor progression, that were related to LUAD immunotherapy and we constructed an LAR-score risk model. Abstract Background: The role of lactate acid in tumor progression was well proved. Recently, it was found that lactate acid accumulation induced an immunosuppressive microenvironment. However, these results were based on a single gene and it was unclear that lactate acid genes were associated with immunotherapy and able to predict overall survival. Methods: Genes and survival data were acquired from TCGA, GEO and GENECARDS. PCA and TSNE were used to distinguish sample types according to lactate metabolism-associated gene expression. A Wilcox-test examined the expression differences between normal and tumor samples. The distribution in chromatin and mutant levels were displayed by Circo and MAfTools. The lactate metabolism-associated gene were divided into categories by consistent clustering and visualized by Cytoscape. Immune cell infiltration was evaluated by CIBERSORT and LM22 matrix. Enrichment analysis was performed by GSVA. We used the ConsensusClusterPlus package for consistent cluster analysis. A prognostic model was constructed by Univariate Cox regression and Lasso regression analysis. Clinical specimens were detected their expression of genes in model by IHC. Results: Most lactate metabolism-associated gene were significantly differently expressed between normal and tumor samples. There was a strong correlation between the expression of lactate metabolism-associated gene and the abundance of immune cells. We divided them into two clusters (lactate.cluster A,B) with significantly different survival. The two clusters showed a difference in signal, immune cells, immune signatures, chemokines, and clinical features. We identified 162 differential genes from the two clusters, by which the samples were divided into three categories (gene.cluster A,B,C). They also showed a difference in OS and immune infiltration. Finally, a risk score model that was composed of six genes was constructed. There was significant difference in the survival between the high and low risk groups. ROC curves of 1, 3, 5, and 10 years verified the model had good predictive efficiency. Gene expression were correlated with ORR and PFS in patients who received anti-PD-1/L1. Conclusion: The lactate metabolism-associated genes in LUAD were significantly associated with OS and immune signatures. The risk scoring model that was constructed by us was able to well identify and predict OS and were related with anti-PD-1/L1 therapy outcome.
Collapse
|
26
|
The Genetic Association Identified Between Intervertebral Disc Degeneration and Associated Risk Factors Based on a Systems Biology Approach. Spine (Phila Pa 1976) 2022; 47:E370-E384. [PMID: 34919076 DOI: 10.1097/brs.0000000000004312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Genetic cross-over study of intervertebral disc degeneration (IDD) and its associated risk factors. OBJECTIVE The purpose is to identify molecular biomarkers that may be involved in the IDD process and to provide effective recommendations in combination with drug analysis via systems biology methods. SUMMARY OF BACKGROUND DATA The pathogenesis and genetic links of IDD are still unclear. Related research is mainly based on a single data set or gene, and the impact of related risk factors on IDD is often ignored. METHODS Identifying disease-associated biomarkers and therapeutic targets through a systems biology approach that Integrative network-based gene and multi-omics analysis. In this study, the differential expression of genes was analyzed through NCBI datasets, followed by enrichment analysis. The central protein was identified through the establishment of protein-protein interaction (PPI) network. Key genes were screened out by VENN diagram and reasonable suggestions were put forward based on gene-chemical drug analysis. RESULTS The IDD database analysis revealed 669 differentially expressed genes (DEGs) which were 22, 26, 168, 5, 38, 36, and 16 common DEGs with AG, SM, DEP, NAD, CED, OB, and HFD, respectively. GO and KEGG enrichment analysis may reveal the pathway by which these DEGs were involved. PPI network identified 10 central proteins including CCNB1, RETN, HMMR, BUB1, MPO, OIP5, HP, KIF11, BUB1B, and CDC25A. Three key genes BUB1, BUB1B, and CCNB1 were screened out and their expression might be related to the pathogenesis of IDD. According to the three chemical Dexamethasone, Nicotine, and Resvera-trol obtained from the analysis of genes-chemical drugs, reasonable treatment suggestions were put forward. CONCLUSION Genetic association between IDD and risk factors in the general population was revealed by association network. Important gene-related molecular pathways and chemical drugs closely related to IDD have been found. Further study can provide guidance for the treatment and prognosis of IDD.Level of Evidence: N/A.
Collapse
|
27
|
Cheng D, Wang L, Qu F, Yu J, Tang Z, Liu X. Identification and construction of a 13-gene risk model for prognosis prediction in hepatocellular carcinoma patients. J Clin Lab Anal 2022; 36:e24377. [PMID: 35421268 PMCID: PMC9102505 DOI: 10.1002/jcla.24377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
We attempted to screen out the feature genes associated with the prognosis of hepatocellular carcinoma (HCC) patients through bioinformatics methods, to generate a risk model to predict the survival rate of patients. Gene expression information of HCC was accessed from GEO database, and differentially expressed genes (DEGs) were obtained through the joint analysis of multi-chip. Functional and pathway enrichment analyses of DEGs indicated that the enrichment was mainly displayed in biological processes such as nuclear division. Based on TCGA-LIHC data set, univariate, LASSO, and multivariate Cox regression analyses were conducted on the DEGs. Then, 13 feature genes were screened for the risk model. Also, the hub genes were examined in our collected clinical samples and GEPIA database. The performance of the risk model was validated by Kaplan-Meier survival analysis and receiver operation characteristic (ROC) curves. While its universality was verified in GSE76427 and ICGC (LIRI-JP) validation cohorts. Besides, through combining patients' clinical features (age, gender, T staging, and stage) and risk scores, univariate and multivariate Cox regression analyses revealed that the risk score was an effective independent prognostic factor. Finally, a nomogram was implemented for 3-year and 5-year overall survival prediction of patients. Our findings aid precision prediction for prognosis of HCC patients.
Collapse
Affiliation(s)
- Daming Cheng
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Libing Wang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Fengzhi Qu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Jingkun Yu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Zhaoyuan Tang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Xiaogang Liu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| |
Collapse
|
28
|
Jiang X, Tang L, Yuan Y, Wang J, Zhang D, Qian K, Cho WC, Duan L. NcRNA-Mediated High Expression of HMMR as a Prognostic Biomarker Correlated With Cell Proliferation and Cell Migration in Lung Adenocarcinoma. Front Oncol 2022; 12:846536. [PMID: 35311097 PMCID: PMC8927766 DOI: 10.3389/fonc.2022.846536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Hyaluronan-mediated motility receptor (HMMR) plays a pivotal role in cell proliferation in various cancers, including lung cancer. However, its function and biological mechanism in lung adenocarcinoma (LUAD) remain unclear. Methods Data on HMMR expression from several public databases were extensively analyzed, including the prognosis of HMMR in the Gene Expression Profiling Interactive Analysis (GEPIA) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using DAVID and gene set enrichment analysis (GSEA) software. The correlation between HMMR expression and immune cell infiltration was analyzed in the Tumor Immune Estimation Resource (TIMER) database, and the gene and protein networks were examined using the GeneMANIA and STRING databases. Experimentally, the expression of HMMR in LUAD and lung cancer cell lines was determined using immunohistochemistry and quantitative RT-PCR assays. Besides, the function of HMMR on cancer cell proliferation and migration was examined using cell growth curve and colony formation, Transwell, and wound healing assays. Results In this study, we found that HMMR was elevated in LUAD and that its high expression was associated with poor clinicopathological features and adverse outcomes in LUAD patients. Furthermore, our results demonstrated that the expression of HMMR was positively correlated with immune cell infiltration and immune modulation. Interestingly, diverse immune cell infiltration affects the prognosis of LUAD. In the functional assay, depletion of HMMR significantly repressed the cancer cell growth and migration of LUAD. Mechanically, we found that that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR in LUAD. Depletion of TMPO-AS1 and overexpression of let-7b-5p could result in the decreased expression of HMMR in LUAD cells. Furthermore, we found that TMPO-AS1 was positively correlated with HMMR, yet negatively correlated with let-7b-5p expression in LUAD. Conclusions Our findings elucidated that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR, which may be considered as a biomarker to predict prognosis in LUAD.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/ Kunming Institute of Zoology, Kunming, China
| | - Lin Tang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kebao Qian
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Lincan Duan
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Dai Z, Wang K, Gao Y. The critical role of B4GALT4 in promoting microtubule spindle assembly in HCC through the regulation of PLK1 and RHAMM expression. J Cell Physiol 2022; 237:617-636. [PMID: 34270095 DOI: 10.1002/jcp.30531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Beta 1,4-galactosyltransferase (B4GALT)-family glycosyltransferases are involved in multiple biological processes promoting cancer progression, regulating the dynamic network of cancer cell proliferation and apoptosis, and are associated with metastasis. However, their roles in the dysregulation of expressions and functions in hepatocellular carcinoma (HCC) remain unclear. Herein, bioinformatic approaches have been applied to investigate their expression profiles, and to obtain correlations between gene expressions and clinicopathological parameters as well as downstream target genes in HCC. Multiple databases were used to screen the expressions of B4GALT family members in tumor tissues, and to evaluate their prognostic value among HCC patients in different aspects. Results indicated an overall upregulation of B4GALTs' transcription levels in tumor tissues and a strong correlation with poor prognosis. Through Gene Ontology analysis, gene set enrichment analysis, and verification of single-cell RNA sequencing data, we established a connection between the B4GALT family and microtubule spindle assembly, which particularly highlighted the role of B4GALT4 in this phenomenon. B4GALT4 knockdown downregulated the production of lumican, and repressed the expressions of polo-like kinase 1 and RHAMM by regulating the transforming growth factor-beta pathway, thus suggesting that B4GALT4 is a critical promotor for HCC. We believe that these studies will provide valuable insight into the role of B4GALT family members in HCC and lead to the development of new strategies to improve the outcomes for patients with HCC.
Collapse
Affiliation(s)
- Zhe Dai
- Department of Biochemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Kun Wang
- Division of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yin Gao
- Department of Biochemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
30
|
Tang Y, Xiao Y, Liao R. Role of hyaluronan mediated motility receptor gene in oral squamous cell carcinoma and clinical prognosis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1315-1324. [PMID: 35232899 PMCID: PMC10930581 DOI: 10.11817/j.issn.1672-7347.2021.200955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To screen genes related to the prognosis of oral squamous cell carcinoma (OSCC), and to explore its role and mechanism in the occurrence and development of OSCC. METHODS The data and the biological information in 330 OSCC tumor samples with head and neck squamous cell carcinoma (HNSCC) (OSCC group) and 37 normal samples (normal sample group) were screened and included, which came from the cancer genome atlas (TCGA) database. The differentially expressed genes were screened out by biological information analysis between the 2 groups. Furthermore, according to the tumor T grade (T1+T2 group: 114 cases, T3+T4 group: 216 cases), metastasis (positive group: 163 cases, negative group: 167 cases) and pathological grade (G1+G2 group: 244 cases, G3 +G4 group: 86 cases), the samples were divided into different groups respectively, and the differential genes were obtained separately, then the intersections of the differential expressed genes related to the prognosis of OSCC were screened. The different gene with the largest different multiples [hyaluronan mediated motility receptor (HMMR)] was selected for the next step in order to explore the relationship between HMMR and clinical grading (Stage I+II group: 69 cases, Stage III +IV group: 261 cases), as well as the relationship between T grade, metastasis and pathological grade. According to the median value of HMMR expression, the samples were divided into a high expression group and a low expression group (high expression group: 165 cases, low expression group: 165 cases); Kaplan-Meier survival analysis was used to explore the relationship between HMMR expression and prognosis. Tumor tissue specimens and corresponding normal oral mucosal tissue specimens in 50 OSCC patients, who underwent surgery in the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine from January 2014 to January 2016, were collected. Real-time RT-PCR and Western blotting and immunohistochemistry were used to verify the bioinformatics analysis results. Kaplan-Meier survival analysis was used to examine the relationship between the positive and negative expression of HMMR immunohistochemical staining (positive group: 32 cases, negative group: 18 cases) and prognostic related factors, and Cox regression analysis model was used to explore the prognostic risk factors of OSCC. The cell proliferation experiment and the cell scratch experiment were used to evaluate the effect of down-regulation of HMMR on the proliferation and migration of OSCC cells. RESULTS HMMR was highly expressed in OSCC tissues. Compared with the low HMMR expression group, the prognostic related factors in the HMMR high expression group was significantly lower, with significant difference (all P<0.05); the high expression of HMMR was significantly related with the T grade (RR=1.33, P<0.05), lymphonodus metastasis (RR=1.74, P<0.05), the clinical stage (RR=1.49, P<0.05), and it was an independent prognostic risk factor for OSCC (RR=1.45, P<0.05). Down-regulation of HMMR can inhibit the proliferation and migration of OSCC cells, with significant difference (P<0.05 or P<0.01). CONCLUSIONS HMMR, as a proto-oncogene of OSCC, can promote the occurrence and development of OSCC, and it may be used as a potential early diagnostic marker and a new target for therapy.
Collapse
Affiliation(s)
- Yan Tang
- Department of Stomatology, Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005.
| | - Yanbo Xiao
- Department of Stomatology, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410007, China.
| | - Ruoyi Liao
- Department of Stomatology, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410007, China
| |
Collapse
|
31
|
Yan Z, He M, He L, Wei L, Zhang Y. Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis. Front Immunol 2021; 12:723271. [PMID: 34925311 PMCID: PMC8671815 DOI: 10.3389/fimmu.2021.723271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly lethal disease. Effective prognostic tools to guide clinical decision-making for HCC patients are lacking. Objective We aimed to establish a robust prognostic model based on differentially expressed genes (DEGs) in HCC. Methods Using datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Genome Consortium (ICGC), DEGs between HCC tissues and adjacent normal tissues were identified. Using TCGA dataset as the training cohort, we applied the least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analyses to identify a multi-gene expression signature. Proportional hazard assumptions and multicollinearity among covariates were evaluated while building the model. The ICGC cohort was used for validation. The Pearson test was used to evaluate the correlation between tumor mutational burden and risk score. Through single-sample gene set enrichment analysis, we investigated the role of signature genes in the HCC microenvironment. Results A total of 274 DEGs were identified, and a six-DEG prognostic model was developed. Patients were stratified into low- or high-risk groups based on risk scoring by the model. Kaplan-Meier analysis revealed significant differences in overall survival and progression-free interval. Through univariate and multivariate Cox analyses, the model proved to be an independent prognostic factor compared to other clinic-pathological parameters. Time-dependent receiver operating characteristic curve analysis revealed satisfactory prediction of overall survival, but not progression-free interval. Functional enrichment analysis showed that cancer-related pathways were enriched, while immune infiltration analyses differed between the two risk groups. The risk score did not correlate with levels of PD-1, PD-L1, CTLA4, or tumor mutational burden. Conclusions We propose a six-gene expression signature that could help to determine HCC patient prognosis. These genes may serve as biomarkers in HCC and support personalized disease management.
Collapse
Affiliation(s)
- Zongcai Yan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meiling He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lifeng He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liuxia Wei
- Department of Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
32
|
Díaz M, Pibuel M, Paglilla N, Poodts D, Álvarez E, Papademetrio DL, Hajos SE, Lompardía SL. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci 2021; 287:120065. [PMID: 34678263 DOI: 10.1016/j.lfs.2021.120065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
AIMS Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-β-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.
Collapse
Affiliation(s)
- Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Matías Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nadia Paglilla
- Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elida Álvarez
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela L Papademetrio
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia E Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina L Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
33
|
Kim SH, Hwang S, Song GW, Jung DH, Moon DB, Yang JD, Yu HC. Identification of key genes and carcinogenic pathways in hepatitis B virus-associated hepatocellular carcinoma through bioinformatics analysis. Ann Hepatobiliary Pancreat Surg 2021; 26:58-68. [PMID: 34907098 PMCID: PMC8901975 DOI: 10.14701/ahbps.21-108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Backgrounds/Aims Mechanisms for the development of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients remain unclear. The aim of the present study was to identify genes and pathways involved in the development of HBV-associated HCC. Methods The GSE121248 gene dataset, which included 70 HCCs and 37 adjacent liver tissues, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HCCs and adjacent liver tissues were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were then performed. Results Of 134 DEGs identified, 34 were up-regulated and 100 were down-regulated in HCCs. The 34 up-regulated DEGs were mainly involved in nuclear division, organelle fission, spindle and midbody formation, histone kinase activity, and p53 signaling pathway, whereas the 100 down-regulated DEGs were involved in steroid and hormone metabolism, collagen-coated extracellular matrix, oxidoreductase activity, and activity on paired donors, including incorporation or reduction of molecular oxygen, monooxygenase activity, and retinol metabolism. Analyses of protein-protein interaction networks with a high degree of connectivity identified significant modules containing 14 hub genes, including ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, ECT2, HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, and TOP2A, which were mainly associated with nuclear division, organelle fission, spindle formation, protein serine/threonine kinase activity, p53 signaling pathway, and cell cycle. Conclusions This study identified key genes and carcinogenic pathways that play essential roles in the development of HBV-associated HCC. This may provide important information for the development of diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok-Bog Moon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
34
|
Tang YP, Yin YX, Xie MZ, Liang XQ, Li JL, Li KZ, Hu BL. Systematic Analysis of the Clinical Significance of Hyaluronan-Mediated Motility Receptor in Colorectal Cancer. Front Mol Biosci 2021; 8:733271. [PMID: 34765644 PMCID: PMC8575689 DOI: 10.3389/fmolb.2021.733271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background: The role of hyaluronan-mediated motility receptor (HMMR) in colorectal cancer (CRC) remains unclear. The present study aimed to explore the association of HMMR with the development and prognosis of CRC using sequence datasets, clinical tissues, blood samples, and cell lines. Methods: CRC datasets were downloaded from TCGA and GEO databases. Forty CRC tissue samples, 120 CRC blood samples, and 100 healthy controls were collected. Four CRC cell lines (HCT116, HT-29, LoVo, and SW480) and one normal human colon mucosal epithelial cell line (NCM460) were cultured. RT-qPCR was used to determine the expression of HMMR in the tissues and cell lines. ELISA was used to measure HMMR levels in the blood samples. Results: The expression of HMMR was significantly increased in CRC tissues than in corresponding adjacent tissues based on TCGA and GEO datasets, and clinical CRC tissues. No associations were found between the expression of HMMR and the TNM stage or other clinical parameters. The expression of HMMR varied in different CRC cell lines. The blood levels of HMMR tended to be higher in patients with CRC than in healthy controls. TCGA and GEO datasets showed inconsistent results regarding the association of HMMR expression with the survival of patients with CRC. Conclusion: The expression of HMMR is increased in CRC tissues but not in the blood. The expression of HMMR is independent of CRC development and has no prognostic significance in patients with CRC.
Collapse
Affiliation(s)
- Yan-Ping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xin-Qiang Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
35
|
Shi J, Chen Y, Wang Z, Guo J, Tong C, Tong J, Hu W, Li C, Li X. Comprehensive Bioinformatics Analysis to Identify the Gene HMMR Associated With Lung Adenocarcinoma Prognosis and Its Mechanism of Action in Multiple Cancers. Front Oncol 2021; 11:712795. [PMID: 34692489 PMCID: PMC8526859 DOI: 10.3389/fonc.2021.712795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
Background Lung cancer is the third most frequently diagnosed cancer in the world, with lung adenocarcinoma (LUAD) as the most common pathological type. But studies on the predictive effect of a single gene on LUAD are limited. We aimed to discover new predictive markers for LUAD. Methods Differentially high-expressed genes at each stage were obtained from the TCGA and GTEx databases. The functions of these genes were investigated through GO enrichment and KEGG pathway analyses. Then, the key genes were selected by applying whole gene overall survival time. The expression of the key gene was studied in LUAD, and survival analysis was performed using Kaplan-Meier mapper, followed by univariate and multifactorial COX analysis. Finally, the gene expression and its prognostic significance in the pan-cancer were examined. Results A total of 10,106 DEGs were obtained from the two datasets. The top 266 differentially upregulated genes intersected with the top 1,497 overall survival-related genes, and 87 key genes were identified. High-expressed HMMR was associated with a poor prognosis of LUAD. Univariate and multifactorial Cox analysis showed that HMMR was an independent prognostic factor for LUAD patients. A high HMMR expression was strongly associated with the overall survival (OS) and disease-specific survival (DSS) in 11 cancer types and with poorer OS, DSS, and PFI in 10 cancer types. Conclusion HMMR may be an independent prognostic indicator and an important biomarker in diagnosing and predicting the survival of LUAD patients. Also, HMMR may be a key predictor of a variety of cancers.
Collapse
Affiliation(s)
- Jianguang Shi
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Yingqi Chen
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Zishan Wang
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Jin Guo
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Changyong Tong
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Jingjie Tong
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Wentao Hu
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Chenwei Li
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| | - Xinjian Li
- Thoracic Surgery Department, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
36
|
Tian S, Fu L, Zhang J, Xu J, Yuan L, Qin J, Zhang W. Identification of a DNA Methylation-Driven Genes-Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic Compounds and in vitro Characterization. Front Immunol 2021; 12:761326. [PMID: 34745136 PMCID: PMC8567755 DOI: 10.3389/fimmu.2021.761326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is a vital epigenetic change that regulates gene transcription and helps to keep the genome stable. The deregulation hallmark of human cancer is often defined by aberrant DNA methylation which is critical for tumor formation and controls the expression of several tumor-associated genes. In various cancers, methylation changes such as tumor suppressor gene hypermethylation and oncogene hypomethylation are critical in tumor occurrences, especially in breast cancer. Detecting DNA methylation-driven genes and understanding the molecular features of such genes could thus help to enhance our understanding of pathogenesis and molecular mechanisms of breast cancer, facilitating the development of precision medicine and drug discovery. In the present study, we retrospectively analyzed over one thousand breast cancer patients and established a robust prognostic signature based on DNA methylation-driven genes. Then, we calculated immune cells abundance in each patient and lower immune activity existed in high-risk patients. The expression of leukocyte antigen (HLA) family genes and immune checkpoints genes were consistent with the above results. In addition, more mutated genes were observed in the high-risk group. Furthermore, a in silico screening of druggable targets and compounds from CTRP and PRISM databases was performed, resulting in the identification of five target genes (HMMR, CCNB1, CDC25C, AURKA, and CENPE) and five agents (oligomycin A, panobinostat, (+)-JQ1, voxtalisib, and arcyriaflavin A), which might have therapeutic potential in treating high-risk breast cancer patients. Further in vitro evaluation confirmed that (+)-JQ1 had the best cancer cell selectivity and exerted its anti-breast cancer activity through CENPE. In conclusion, our study provided new insights into personalized prognostication and may inspire the integration of risk stratification and precision therapy.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, China
| | - Jia Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Li Yuan
- Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Innovation Center of Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
38
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
39
|
Li X, Zuo H, Zhang L, Sun Q, Xin Y, Zhang L. Validating HMMR Expression and Its Prognostic Significance in Lung Adenocarcinoma Based on Data Mining and Bioinformatics Methods. Front Oncol 2021; 11:720302. [PMID: 34527588 PMCID: PMC8435795 DOI: 10.3389/fonc.2021.720302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid-mediated motility receptor (HMMR), a tumor-related gene, plays a vital role in the occurrence and progression of various cancers. This research is aimed to reveal the effect of HMMR in lung adenocarcinoma (LUAD). We first obtained the gene expression profiles and clinical data of patients with LUAD from The Cancer Genome Atlas (TCGA) database. Then, based on the TCGA cohort, the HMMR expression difference between LUAD tissues and nontumor tissues was detected and verified with public tissue microarrays (TMAs), clinical LUAD specimen cohort, and Gene Expression Omnibus (GEO) cohort. Logistic regression analysis and chi-square test were adopted to study the correlation between HMMR expression and clinicopathological parameters. The effect of HMMR expression on survival was evaluated by Kaplan–Meier survival analysis and using the Cox regression model. Furthermore, Gene Set Enrichment Analysis (GSEA) was utilized to screen out signaling pathways related to LUAD and the co-expression analysis was employed to build the protein–protein interaction (PPI) network. The HMMR expression level in LUAD tissues was dramatically higher than that in nontumor tissues. Logistic regression analysis and chi-square test demonstrated that the high HMMR expression in LUAD has relation with gender, pathological stage, T classification, lymph node metastasis, and distant metastasis. The Kaplan–Meier curve suggested a poor prognosis for LUAD patients with high HMMR expression. Multivariate analysis implied that the high HMMR expression was a vital independent predictor of poor overall survival (OS). GSEA indicated that a total of 15 signaling pathways were enriched in samples with the high HMMR expression phenotype. The PPI network gave 10 genes co-expressed with HMMR. HMMR may be an oncogene in LUAD and is expected to become a potential prognostic indicator and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xia Li
- First Clinical College, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Haiwei Zuo
- School of Medical Information & Engineering, Xuzhou Medical University, Xuzhou, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Qiuwen Sun
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Sun H, Ma L, Chen J. Hyaluronan-mediated motility receptor expression functions as a prognostic biomarker in uterine carcinosarcoma based on bioinformatics analysis. J Int Med Res 2021; 49:3000605211021043. [PMID: 34111996 PMCID: PMC8202278 DOI: 10.1177/03000605211021043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Uterine carcinosarcoma (UCS) is a rare, aggressive tumour with a high metastasis rate and poor prognosis. This study aimed to explore potential key genes associated with the prognosis of UCS. METHODS Transcriptional expression data were downloaded from the Gene Expression Profiling Interactive Analysis database and differentially expressed genes (DEGs) were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses using Metascape. A protein-protein interaction network was constructed using the STRING website and Cytoscape software, and the top 30 genes obtained through the Maximal Clique Centrality algorithm were selected as hub genes. These hub genes were validated by clinicopathological and sequencing data for 56 patients with UCS from The Cancer Genome Atlas database. RESULTS A total of 1894 DEGs were identified, and the top 30 genes were considered as hub genes. Hyaluronan-mediated motility receptor (HMMR) expression was significantly higher in UCS tissues compared with normal tissues, and elevated expression of HMMR was identified as an independent prognostic factor for shorter survival in patients with UCS. CONCLUSIONS These results suggest that HMMR may be a potential biomarker for predicting the prognosis of patients with UCS.
Collapse
Affiliation(s)
- Hui Sun
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Li Ma
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Chen
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic Implication of a Novel Metabolism-Related Gene Signature in Hepatocellular Carcinoma. Front Oncol 2021; 11:666199. [PMID: 34150630 PMCID: PMC8213025 DOI: 10.3389/fonc.2021.666199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the main causes of cancer-associated deaths globally, accounts for 90% of primary liver cancers. However, further studies are needed to confirm the metabolism-related gene signature related to the prognosis of patients with HCC. Methods Using the “limma” R package and univariate Cox analysis, combined with LASSO regression analysis, a metabolism-related gene signature was established. The relationship between the gene signature and overall survival (OS) of HCC patients was analyzed. RT-qPCR was used to evaluate the expression of metabolism-related genes in clinical samples. GSEA and ssGSEA algorithms were used to evaluate differences in metabolism and immune status, respectively. Simultaneously, data downloaded from ICGC were used as an external verification set. Results From a total of 1,382 metabolism-related genes, a novel six-gene signature (G6PD, AKR1B15, HMMR, CSPG5, ELOVL3, FABP6) was constructed based on data from TCGA. Patients were divided into two risk groups based on risk scores calculated for these six genes. Survival analysis showed a significant correlation between high-risk patients and poor prognosis. ROC analysis demonstrated that the gene signature had good predictive capability, and the mRNA expression levels of the six genes were upregulated in HCC tissues than those in adjacent normal liver tissues. Independent prognosis analysis confirmed that the risk score and tumor grade were independent risk factors for HCC. Furthermore, a nomogram of the risk score combined with tumor stage was constructed. The calibration graph results demonstrated that the OS probability predicted by the nomogram had almost no deviation from the actual OS probability, especially for 3-year OS. Both the C-index and DCA curve indicated that the nomogram provides higher reliability than the tumor stage and risk scores. Moreover, the metabolic and immune infiltration statuses of the two risk groups were significantly different. In the high-risk group, the expression levels of immune checkpoints, TGF-β, and C-ECM genes, whose functions are related to immune escape and immunotherapy failure, were also upregulated. Conclusions In summary, we developed a novel metabolism-related gene signature to provide more powerful prognostic evaluation information with potential ability to predict the immunotherapy efficiency and guide early treatment for HCC.
Collapse
Affiliation(s)
- Chaoyan Yuan
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingqian Chen
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinhua Ouyang
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Intensive Care Unit, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Zhang P, Feng J, Wu X, Chu W, Zhang Y, Li P. Bioinformatics Analysis of Candidate Genes and Pathways Related to Hepatocellular Carcinoma in China: A Study Based on Public Databases. Pathol Oncol Res 2021; 27:588532. [PMID: 34257537 PMCID: PMC8262246 DOI: 10.3389/pore.2021.588532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Background and Objective: Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor of the digestive system worldwide. Chronic hepatitis B virus (HBV) infection and aflatoxin exposure are predominant causes of HCC in China, whereas hepatitis C virus (HCV) infection and alcohol intake are likely the main risk factors in other countries. It is an unmet need to recognize the underlying molecular mechanisms of HCC in China. Methods: In this study, microarray datasets (GSE84005, GSE84402, GSE101685, and GSE115018) derived from Gene Expression Omnibus (GEO) database were analyzed to obtain the common differentially expressed genes (DEGs) by R software. Moreover, the gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protein-protein interaction (PPI) network was constructed, and hub genes were identified by the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape, respectively. The hub genes were verified using Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier Plotter online databases were performed on the TCGA HCC dataset. Moreover, the Human Protein Atlas (HPA) database was used to verify candidate genes’ protein expression levels. Results: A total of 293 common DEGs were screened, including 103 up-regulated genes and 190 down-regulated genes. Moreover, GO analysis implied that common DEGs were mainly involved in the oxidation-reduction process, cytosol, and protein binding. KEGG pathway enrichment analysis presented that common DEGs were mainly enriched in metabolic pathways, complement and coagulation cascades, cell cycle, p53 signaling pathway, and tryptophan metabolism. In the PPI network, three subnetworks with high scores were detected using the Molecular Complex Detection (MCODE) plugin. The top 10 hub genes identified were CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, TOP2A, TPX2, HMMR and CDC45. The other public databases confirmed that high expression of the aforementioned genes related to poor overall survival among patients with HCC. Conclusion: This study primarily identified candidate genes and pathways involved in the underlying mechanisms of Chinese HCC, which is supposed to provide new targets for the diagnosis and treatment of HCC in China.
Collapse
Affiliation(s)
- Peng Zhang
- School of Graduates, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Jing Feng
- School of Graduates, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Xue Wu
- School of Graduates, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Weike Chu
- School of Graduates, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Yilian Zhang
- School of Graduates, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China.,Tianjin Research Institute of Liver Diseases, Tianjin, China
| |
Collapse
|
43
|
Lu T, Zheng Y, Gong X, Lv Q, Chen J, Tu Z, Lin S, Pan J, Guo Q, Li J. High Expression of Hyaluronan-Mediated Motility Receptor Predicts Adverse Outcomes: A Potential Therapeutic Target for Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:608842. [PMID: 33763352 PMCID: PMC7982417 DOI: 10.3389/fonc.2021.608842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Several studies have shown that the hyaluronan-mediated motility receptor (HMMR) is overexpressed in various cancers and could be a potential prognostic factor. However, further research is still required to determine the prognostic value and potential function of HMMR in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Transcriptomic expression data were collected from the Cancer Genome Atlas database (TCGA) and Gene Expression Omnibus and the differences in HMMR expression between normal and tumor tissues were analyzed. The correlation between the methylation level of HMMR and its mRNA expression was analyzed via cBioPortal. Additionally, the data obtained from TCGA was analyzed with MethSurv to determine the prognostic value of the HMMR methylation levels in HNSCC. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to explore the potential biological functions of HMMR. Results: HMMR was highly expressed in HNSCC tumor tissue compared to normal tissue (p < 0.001). Multivariate analysis (MAV) showed that high HMMR mRNA expression was an independent prognostic factor of overall survival (OS) in TCGA (HR = 1.628, 95% CI: 1.169–2.266, p = 0.004) and GSE41613 data (HR = 2.238, p = 0.013). The methylation level of HMMR negatively correlated with the HMMR expression (R = −0.12, p < 0.001), and patients with low HMMR methylation had worse OS than patients with high methylation (p < 0.001). GSEA found that HMMR expression was associated with the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses, whereas ssGSEA showed that HMMR expression positively correlated with the infiltration level of Th2 cells. MAV confirmed that high HMMR protein expression was an inferior independent factor for OS (HR = 2.288, p = 0.045) and progression-free survival (HR = 2.247, p = 0.038) in 70 HNSCC. Conclusions: This study demonstrated that the upregulation of HMMR mRNA and protein in HNSCC is a biomarker for poor prognosis. The biological functions of HMMR are potentially related to the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses. These findings help to elucidate the role of HMMR in carcinogenesis and lay a foundation for further study.
Collapse
Affiliation(s)
- Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Yahan Zheng
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Qiaoli Lv
- National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Junjun Chen
- National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Ziwei Tu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
44
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
45
|
Zhu J, Wang L, Zhou Y, Hao J, Wang S, Liu L, Li J. Comprehensive analysis of the relationship between competitive endogenous RNA (ceRNA) networks and tumor infiltrating-cells in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1381-1398. [PMID: 33457008 DOI: 10.21037/jgo-20-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The innovation of immune checkpoint blockade (ICB) represents a promising shift in the treatment of advanced hepatocellular carcinoma (HCC). However, response to ICB has varied largely due to the high tumor heterogeneity and complex tumor microenvironment (TME). The competitive endogenous RNA (ceRNA) network also plays an important role in tumor occurrence and progression, but its relation with tumor-infiltrating immune cells (TICs) remains largely unexplored in HCC. The overriding objective of our study was thus to construct a prognosis-related risk model and to further evaluate the relationship between ceRNA networks and TICs. Methods Differentially expressed gene (DEG) analysis was performed to identify the differentially expressed RNAs. Lasso and multivariable Cox regression analyses were used to construct risk models, which were assessed by the area under the receiver operating characteristic curve (AUC of ROC) and Kaplan-Meier (K-M) curves. Then, a single-sample gene set enrichment analysis (ssGSEA) algorithm was adopted to dissect the TICs in HCC samples. Nomograms were constructed and calibration curves were used to verify the discrimination and accuracy of the nomograms. Finally, integration analysis was performed to validate the correlation of ceRNA and TICs. Results In the study, 7 differentially expressed RNAs [5 messenger RNA s (mRNAs) and 2 micro RNAs (miRNAs)] were incorporated to construct a ceRNA risk model. The AUC of the 1-, 3-, and 5-year overall survival (OS) were 0.784, 0.685, and 0.691 respectively. Likewise, 7 types TICs were in the TICs signature model and the AUC of the 1-, 3-, and 5-year OS were 0.706, 0.731, and 0.721 respectively. The integration analysis showed that 7 pairs of mRNA-TICs and 1 pair of miRNA-TICs had a close relation (all correlation coefficients >0.2, P<0.001). Conclusions Through constructing two risk models based on ceRNA network and TICs, we identified the hub RNAs and key TICs in the progression and prognosis of HCC, and further explored the relationship between ceRNA and TME. Importantly, targeting these hub RNAs may facilitate the remodeling of the TME and be a potential therapeutic alternative to enhancing the response to ICB, thus improving the prognosis of HCC patients.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yifan Zhou
- Department of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
46
|
A Novel Prognostic Index Based on the Analysis of Glycolysis-Related Genes in Head and Neck Squamous Cell Carcinomas. JOURNAL OF ONCOLOGY 2020; 2020:7353874. [PMID: 33029143 PMCID: PMC7532401 DOI: 10.1155/2020/7353874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
Aims The preferential dependence on glycolysis as a pathway of energy metabolism is a hallmark of cancer cells. However, the prognostic significance of glycolysis-related genes in head and neck squamous cell carcinoma (HNSCC) remains obscure. The purpose of this study was to identify glycolysis-related genes of prognostic value in HNSCC. Results Transcriptional and clinical data of 544 HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) dataset. By gene set enrichment analysis (GSEA) and by employing a univariate and subsequently a stepwise multivariate Cox proportional regression model, eight glycolysis-related genes of prognostic significance in HNSCC (KIF2A, JMJD8, HMMR, STC2, HK1, EXT2, GPR8, and STC1) were identified. The patients were clustered into two groups (high and low risk) based on the expression of these genes. High-risk patients had significantly a shorter overall survival than low-risk patients. Furthermore, a new prognostic indicator based on selected glycolysis-related genes was developed by multivariate Cox analysis that proved to be a better predictor of patient outcome compared to other clinical factors. Conclusion Our findings provide new insights into the role of glycolysis in HNSCC. The identified genes predict the patient prognosis and might substantially contribute to the development of individualized treatments.
Collapse
|
47
|
Zhang D, Liu J, Xie T, Jiang Q, Ding L, Zhu J, Ye Q. Oleate acid-stimulated HMMR expression by CEBPα is associated with nonalcoholic steatohepatitis and hepatocellular carcinoma. Int J Biol Sci 2020; 16:2812-2827. [PMID: 33061798 PMCID: PMC7545721 DOI: 10.7150/ijbs.49785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a type of nonalcoholic fatty liver disease and has become a major risk factor for hepatocellular carcinoma (HCC). However, the underlying pathophysiological mechanisms are still elusive. Here, we identify hyaluronan-mediated motility receptor (HMMR) as a critical gene associated with NASH/HCC by combination of bioinformatic analysis and functional experiments. Analysis of differentially expressed genes (DEGs) between normal controls and NASH/HCC identified 5 hub genes (HMMR, UBE2T, TYMS, PTTG1 and GINS2). Based on the common DEGs, analyses of univariate and multivariate Cox regression and the area under the curve (AUC) value of the receiver operating characteristic (ROC) indicate that HMMR is the most significant gene associated with NASH/HCC among five hub genes. Oleate acid (OA), one of fatty acids that induce cellular adipogenesis, stimulates HMMR expression via CCAAT/enhancer-binding protein α (CEBPα). CEBPα increases the expression of HMMR through binding to its promoter. HMMR promotes HCC cell proliferation in vitro via activation of G1/S and G2/M checkpoint transitions, concomitant with a marked increase of the positive cell cycle regulators, including cyclin D1, cyclin E, and cyclin B1. Knockdown of HMMR suppresses HCC tumor growth in nude mice. Our study identifies an important role of HMMR in NASH/HCC, and suggests that HMMR may be a useful target for therapy and prognostic prediction of NASH/HCC patients.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jiahong Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.,Department of Oncology, The Fourth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Tian Xie
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jianhua Zhu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.,Department of Oncology, The Fourth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|