1
|
Zhang H, Xiang L, Yuan H, Yu H. ARL11 knockdown alleviates spinal cord injury by inhibiting neuroinflammation and M1 activation of microglia in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167522. [PMID: 39307293 DOI: 10.1016/j.bbadis.2024.167522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury and microglia are major participants in neuroinflammation after injury. ADP-ribosylation factor-like GTPase 11 (ARL11) is a GTP-binding protein. Whether ARL11 is involved in the SCI progression is unknown. In the impactor-induced moderate SCI mouse model, ARL11 protein and mRNA expression were significantly increased in the injury site. LPS (100 ng/mL) and IFN-γ (20 ng/mL) were incubated with BV2 cells (immortalized mouse microglial cell line) to drive them into an M1-like phenotype. ARL11 up-regulation was also observed in activated microglia in SCI mice and LPS and IFN-γ treated BV2 cells. Basso Mouse Scale scores and inclined plate test revealed that ARL11 deletion promoted motor function recovery in SCI mice. Pathological examination showed ARL11 knockdown reduced spinal cord tissue damage, increased neuron numbers, and inhibited neuronal apoptosis in SCI mice. ARL11 knockdown notably inhibited IL-1β and IL-6 production in vivo and in vitro. Furthermore, ARL11 deletion significantly inhibited iNOS protein and mRNA expression in vivo and in vitro, and COX-2 expression in vivo. Mechanism studies revealed that ARL11 silencing decreased phosphorylated ERK1/2 protein expression. Additionally, ELF1 knockdown significantly inhibited ARL11 protein and mRNA expression in vitro. ELF1 acted as a transcription activator in regulating ARL11 expression by binding to the promoter. In conclusion, ARL11 knockdown protects neurons by inhibiting M1 microglia-induced neuroinflammation, thereby promoting motor functional recovery in SCI mice. This may occur in part under the regulation of ELF1. Our study provides a new molecular target for SCI treatment.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Hong Yuan
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
3
|
González‐Llera L, Sobrido‐Cameán D, Quelle‐Regaldie A, Sánchez L, Barreiro‐Iglesias A. An in vivo drug screen in zebrafish reveals that cyclooxygenase 2-derived prostaglandin D 2 promotes spinal cord neurogenesis. Cell Prolif 2024; 57:e13594. [PMID: 38155412 PMCID: PMC11056714 DOI: 10.1111/cpr.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.
Collapse
Affiliation(s)
- Laura González‐Llera
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Daniel Sobrido‐Cameán
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
- Present address:
Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Ana Quelle‐Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary ScienceUniversidade de Santiago de CompostelaLugoSpain
- Present address:
Translational Research for Neurological DiseasesInstitut Imagine, INSERM UMR 1163, Université Paris CitéParisFrance
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary ScienceUniversidade de Santiago de CompostelaLugoSpain
- Preclinical Animal Models GroupHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
| | - Antón Barreiro‐Iglesias
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
4
|
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, Khan Afridi S, Lai S, Qiu X, Liu C, Li H, Long Y, Wang Y, Connolly K, Elias JA, Lee CG, Cui Y, Huang YWA, Qiu W, Tang C. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. SCIENCE ADVANCES 2023; 9:eadg8148. [PMID: 37756391 PMCID: PMC10530095 DOI: 10.1126/sciadv.adg8148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening β-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/β-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huilu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Jack A. Elias
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Chun Geun Lee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
5
|
Nango H, Kosuge Y. Present State and Future Perspectives of Prostaglandins as a Differentiation Factor in Motor Neurons. Cell Mol Neurobiol 2021; 42:2097-2108. [PMID: 34032949 DOI: 10.1007/s10571-021-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Protection of 6-OHDA neurotoxicity by PGF 2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells. Toxicology 2021; 450:152686. [PMID: 33486071 DOI: 10.1016/j.tox.2021.152686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin that destroy dopaminergic neurons and widely used to establish animal models of Parkinson's disease. Prostaglandins (PGs) are involved in various cellular processes, including the damage and repair of neuronal cells. However, the function of PGF2α in neuronal cells remains unclear. In this study, we investigated the effects of PGF2α against 6-OHDA-mediated toxicity in human neuroblastoma SH-SY5Y cells and elucidated its underlying molecular mechanism. When the cells were treated with 6-OHDA (50 μM) for 6 h, the expression levels of PGF2α synthetic enzymes; cyclooxygenase-2 and aldo-keto reductase 1C3 as PGF2α synthase were enhanced in an incubation-time-dependent manner. In addition, the production of PGF2α was increased in 6-OHDA-treated cells. Fluprostenol, a PGF2α receptor (FP) agonist (500 nM), suppressed 6-OHDA-induced cell death by decreasing the production of reactive oxygen species (ROS) and increasing the expression of the anti-oxidant genes. These fluprostenol-mediated effects were inhibited by co-treatment with AL8810, an FP receptor antagonist (1 μM) or transfection with FP siRNA (20 nM). Moreover, 6-OHDA-induced phosphorylation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase family, was inhibited by co-incubation with AL8810. Furthermore, fluprostenol itself enhanced ERK phosphorylation and further elevated the 6-OHDA-induced phosphorylation of ERK. In addition, 6-OHDA induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), activating anti-oxidant gene expression, was repressed by co-culturing with AL8810. These results indicate that PGF2α suppressed 6-OHDA-induced neuronal cell death by enhancing anti-oxidant gene expression via the FP receptor-ERK-Nrf2 signaling. Thus, FP receptor is a potential target for inhibition of ROS-mediated neuronal cell death.
Collapse
|
7
|
Nango H, Kosuge Y, Sato M, Shibukawa Y, Aono Y, Saigusa T, Ito Y, Ishige K. Highly Efficient Conversion of Motor Neuron-Like NSC-34 Cells into Functional Motor Neurons by Prostaglandin E 2. Cells 2020; 9:cells9071741. [PMID: 32708195 PMCID: PMC7409148 DOI: 10.3390/cells9071741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Motor neuron diseases are a group of progressive neurological disorders that degenerate motor neurons. The neuroblastoma × spinal cord hybrid cell line NSC-34 is widely used as an experimental model in studies of motor neuron diseases. However, the differentiation efficiency of NSC-34 cells to neurons is not always sufficient. We have found that prostaglandin E2 (PGE2) induces morphological differentiation in NSC-34 cells. The present study investigated the functional properties of PGE2-differentiated NSC-34 cells. Retinoic acid (RA), a widely-used agent inducing cell differentiation, facilitated neuritogenesis, which peaked on day 7, whereas PGE2-induced neuritogenesis took only 2 days to reach the same level. Whole-cell patch-clamp recordings showed that the current threshold of PGE2-treated cell action potentials was lower than that of RA-treated cells. PGE2 and RA increased the protein expression levels of neuronal differentiation markers, microtubule-associated protein 2c and synaptophysin, and to the same extent, motor neuron-specific markers HB9 and Islet-1. On the other hand, protein levels of choline acetyltransferase and basal release of acetylcholine in PGE2-treated cells were higher than in RA-treated cells. These results suggest that PGE2 is a rapid and efficient differentiation-inducing factor for the preparation of functionally mature motor neurons from NSC-34 cells.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Correspondence: (Y.K.); (K.I.); Tel.: +81-47-465-4027 (Y.K.)
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.S.); (Y.S.)
- Department of Biology Tokyo Dental College, 2-9-7 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.S.); (Y.S.)
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-shi, Chiba 271-8587, Japan; (Y.A.); (T.S.)
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-shi, Chiba 271-8587, Japan; (Y.A.); (T.S.)
| | - Yoshihisa Ito
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Pharmacy Education Center, Yokohama University of Pharmacy, 601 Matanocho, Totuka-ku, Yokohama 245-0066, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Correspondence: (Y.K.); (K.I.); Tel.: +81-47-465-4027 (Y.K.)
| |
Collapse
|