1
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
2
|
Roca M, Besnardeau L, Christians E, McDougall A, Chenevert J, Castagnetti S. Acquisition of the spindle assembly checkpoint and its modulation by cell fate and cell size in a chordate embryo. Development 2023; 150:285941. [PMID: 36515557 DOI: 10.1242/dev.201145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance system that preserves genome integrity by delaying anaphase onset until all chromosomes are correctly attached to spindle microtubules. Recruitment of SAC proteins to unattached kinetochores generates an inhibitory signal that prolongs mitotic duration. Chordate embryos are atypical in that spindle defects do not delay mitotic progression during early development, implying that either the SAC is inactive or the cell-cycle target machinery is unresponsive. Here, we show that in embryos of the chordate Phallusia mammillata, the SAC delays mitotic progression from the 8th cleavage divisions. Unattached kinetochores are not recognized by the SAC machinery until the 7th cell cycle, when the SAC is acquired. After acquisition, SAC strength, which manifests as the degree of mitotic lengthening induced by spindle perturbations, is specific to different cell types and is modulated by cell size, showing similarity to SAC control in early Caenorhabditis elegans embryos. We conclude that SAC acquisition is a process that is likely specific to chordate embryos, while modulation of SAC efficiency in SAC proficient stages depends on cell fate and cell size, which is similar to non-chordate embryos.
Collapse
Affiliation(s)
- Marianne Roca
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Elisabeth Christians
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Janet Chenevert
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Stefania Castagnetti
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| |
Collapse
|
3
|
Allais A, FitzHarris G. Absence of a robust mitotic timer mechanism in early preimplantation mouse embryos leads to chromosome instability. Development 2022; 149:275859. [DOI: 10.1242/dev.200391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT
Preimplantation embryos often consist of a combination of euploid and aneuploid cells, suggesting that safeguards preventing the generation and propagation of aneuploid cells in somatic cells might be deficient in embryos. In somatic cells, a mitotic timer mechanism has been described, in which even a small increase in the duration of M phase can cause a cell cycle arrest in the subsequent interphase, preventing further propagation of cells that have undergone a potentially hazardously long M phase. Here, we report that cell divisions in the mouse embryo and embryonic development continue even after a mitotic prolongation of several hours. However, similar M-phase extensions caused cohesion fatigue, resulting in prematurely separated sister chromatids and the production of micronuclei. Only extreme prolongation of M phase caused a subsequent interphase arrest, through a mechanism involving DNA damage. Our data suggest that the simultaneous absence of a robust mitotic timer and susceptibility of the embryo to cohesion fatigue could contribute to chromosome instability in mammalian embryos.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Adélaïde Allais
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 1 , H2X 0A9 Montréal, Québec , Canada
| | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 1 , H2X 0A9 Montréal, Québec , Canada
- Université de Montréal 2 Department of OBGYN, and Department of Pathology and Cell Biology , , H3T 1C5 Montréal, Québec , Canada
| |
Collapse
|
4
|
Zieger E, Schwaha T, Burger K, Bergheim I, Wanninger A, Calcino AD. Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 2022; 10:894434. [PMID: 35774230 PMCID: PMC9237387 DOI: 10.3389/fcell.2022.894434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Thomas Schwaha
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Katharina Burger
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Andrew D. Calcino
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| |
Collapse
|
5
|
Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon ( Acipenser ruthenus). Int J Mol Sci 2022; 23:6392. [PMID: 35742841 PMCID: PMC9223696 DOI: 10.3390/ijms23126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Aleš Tomčala
- Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic;
| | - Mariola Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| |
Collapse
|
6
|
Gazo I, Gomes IDL, Savy T, Besnardeau L, Hebras C, Benaicha S, Brunet M, Shaliutina O, McDougall A, Peyrieras N, Dumollard R. High-content analysis of larval phenotypes for the screening of xenobiotic toxicity using Phallusia mammillata embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105768. [PMID: 33592501 DOI: 10.1016/j.aquatox.2021.105768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In recent years, pollution of surface waters with xenobiotic compounds became an issue of concern in society and has been the object of numerous studies. Most of these xenobiotic compounds are man-made molecules and some of them are qualified as endocrine disrupting chemicals (EDCs) when they interfere with hormones actions. Several studies have investigated the teratogenic impacts of EDCs in vertebrates (including marine vertebrates). However, the impact of such EDCs on marine invertebrates is much debated and still largely obscure. In addition, DNA-altering genotoxicants can induce embryonic malformations. The goal of this study is to develop a reliable and effective test for assessing toxicity of chemicals using embryos of the ascidian (Phallusia mammillata) in order to find phenotypic signatures associated with xenobiotics. We evaluated embryonic malformations with high-content analysis of larval phenotypes by scoring several quantitative and qualitative morphometric endpoints on a single image of Phallusia tadpole larvae with semi-automated image analysis. Using this approach we screened different classes of toxicants including genotoxicants, known or suspected EDCs and nuclear receptors (NRs) ligands. The screen presented here reveals a specific phenotypic signature for ligands of retinoic acid receptor/retinoid X receptor. Analysis of larval morphology combined with DNA staining revealed that embryos with DNA aberrations displayed severe malformations affecting multiple aspects of embryonic development. In contrast EDCs exposure induced no or little DNA aberrations and affected mainly neural development. Therefore the ascidian embryo/larval assay presented here can allow to distinguish the type of teratogenicity induced by different classes of toxicants.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Isa D L Gomes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Thierry Savy
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Lydia Besnardeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Celine Hebras
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Sameh Benaicha
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Manon Brunet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Olena Shaliutina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Alex McDougall
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Nadine Peyrieras
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Rémi Dumollard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| |
Collapse
|
7
|
Kamenz J, Qiao R, Yang Q, Ferrell JE. Real-Time Monitoring of APC /C-Mediated Substrate Degradation Using Xenopus laevis Egg Extracts. Methods Mol Biol 2021; 2329:29-38. [PMID: 34085213 PMCID: PMC8750558 DOI: 10.1007/978-1-0716-1538-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C), a large E3 ubiquitin ligase, is a key regulator of mitotic progression. Upon activation in mitosis, the APC/C targets its two essential substrates, securin and cyclin B, for proteasomal destruction. Cyclin B is the activator of cyclin-dependent kinase 1 (Cdk1), the major mitotic kinase, and both cyclin B and securin are safeguards of sister chromatid cohesion. Conversely, the degradation of securin and cyclin B promotes sister chromatid separation and mitotic exit. The negative feedback loop between Cdk1 and APC/C-Cdk1 activating the APC/C and the APC/C inactivating Cdk1-constitutes the core of the biochemical cell cycle oscillator.Since its discovery three decades ago, the mechanisms of APC /C regulation have been intensively studied, and several in vitro assays exist to measure the activity of the APC /C in different activation states. However, most of these assays require the purification of numerous recombinant enzymes involved in the ubiquitylation process (e.g., ubiquitin, the E1 and E2 ubiquitin ligases, and the APC /C) and/or the use of radioactive isotopes. In this chapter, we describe an easy-to-implement method to continuously measure APC /C activity in Xenopus laevis egg extracts using APC /C substrates fused to fluorescent proteins and a fluorescence plate reader. Because the egg extract provides all important enzymes and proteins for the reaction, this method can be used largely without the need for recombinant protein purification. It can also easily be adapted to test the activity of APC /C mutants or investigate other mechanisms of APC /C regulation.
Collapse
Affiliation(s)
- Julia Kamenz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Duro J, Nilsson J. SAC during early cell divisions: Sacrificing fidelity over timely division, regulated differently across organisms: Chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. Bioessays 2020; 43:e2000174. [PMID: 33251610 DOI: 10.1002/bies.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Early embryogenesis is marked by a frail Spindle Assembly Checkpoint (SAC). The time of SAC acquisition varies depending on the species, cell size or a yet to be uncovered developmental timer. This means that for a specific number of divisions, biorientation of sister chromatids occurs unsupervised. When error-prone segregation is an issue, an aneuploidy-selective apoptosis system can come into play to eliminate chromosomally unbalanced cells resulting in healthy newborns. However, aneuploidy content can be too great to overcome, endangering viability. SAC generates a diffusible signal to lengthen time spent in mitosis if needed, ensuring correct chromosome segregation, a fundamental factor in the generation of euploid cells. Thus, it remains puzzling what benefit could come from delaying SAC acquisition till later in the development. In this review, we describe what is known on SAC acquisition in distinct species and highlight pending research as well as potential applications for such knowledge.
Collapse
Affiliation(s)
- Joana Duro
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
9
|
Défachelles L, Russo AE, Nelson CR, Bhalla N. The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength. Mol Biol Cell 2020; 31:2219-2233. [PMID: 32697629 PMCID: PMC7550697 DOI: 10.1091/mbc.e20-05-0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells.
Collapse
Affiliation(s)
- Lénaïg Défachelles
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|