1
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2024:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
2
|
Kanai K, Oka A, Kariya S, Fujiwara T, Higaki T, Makihara S, Haruna T, Akamatsu M, Nishizaki K, Ando M, Okano M. Role of nasal polyp-derived innate lymphoid cells in staphylococcal enterotoxin-induced cellular responses. Allergol Int 2024; 73:477-480. [PMID: 38307820 DOI: 10.1016/j.alit.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Affiliation(s)
- Kengo Kanai
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Aiko Oka
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan.
| | - Shin Kariya
- Department of Otolaryngology-Head and Neck Surgery, Kawasaki Medical School, Okayama, Japan
| | - Tazuko Fujiwara
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaya Higaki
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Makihara
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takenori Haruna
- Department of Otorhinolaryngology, Himeji St. Mary's Hospital, Himeji, Japan
| | - Maki Akamatsu
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuhiro Okano
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan; Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
D’Auria E, Minutoli M, Colombo A, Sartorio MUA, Zunica F, Zuccotti G, Lougaris V. Allergy and autoimmunity in children: non-mutually exclusive diseases. A narrative review. Front Pediatr 2023; 11:1239365. [PMID: 38027278 PMCID: PMC10652575 DOI: 10.3389/fped.2023.1239365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
In last decades a simultaneous increase in the prevalence of atopic and autoimmune disorders in pediatric population has been observed. Despite the Th1-Th2 paradigm, supporting the polarization of the immune system with Th1 response involved in autoimmune diseases and Th2 response leading to hypersensitivity reactions, recent evidence suggests a possible coexistence of common pathogenic pathways as result of shared immune dysregulation. Similar genes and other mechanisms such as epithelial barrier damage, gut microbiota dysbiosis and reduced number of T regs and IL-10 contribute to the onset of allergy and autoimmunity. IgA deficiency is also hypothesized to be the crosslink between celiac disease and allergy by lowering gut mucous membrane protection from antigens and allergens. The present narrative review aims to give an overview of the co-occurrence of allergic and autoimmune disorders (celiac disease, inflammatory bowel diseases, type 1 diabetes mellitus, thyroid disease, juvenile idiopathic arthritis) in pediatric population, based on the available evidence. We also highlighted the common pathogenic pathways that may underpin both. Our findings confirm that allergic and autoimmune diseases are commonly associated, and clinicians should therefore be aware of the possible coexistence of these conditions in order to ameliorate disease management and patient care. Particular attention should be paid to the association between atopic dermatitis or asthma and celiac disease or type 1 diabetes and vice versa, for therapeutic interventions. Further studies are needed to better clarify mechanisms involved in the pathogenesis and eventually identify new therapeutic strategies.
Collapse
Affiliation(s)
- Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Martina Minutoli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Alessandra Colombo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | | | - Fiammetta Zunica
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, ASST – Spedali Civili di Brescia, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Jia H, Wan H, Zhang D. Innate lymphoid cells: a new key player in atopic dermatitis. Front Immunol 2023; 14:1277120. [PMID: 37908364 PMCID: PMC10613734 DOI: 10.3389/fimmu.2023.1277120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common allergic inflammatory skin condition mainly caused by gene variants, immune disorders, and environmental risk factors. The T helper (Th) 2 immune response mediated by interleukin (IL)-4/13 is generally believed to be central in the pathogenesis of AD. It has been shown that innate lymphoid cells (ILCs) play a major effector cell role in the immune response in tissue homeostasis and inflammation and fascinating details about the interaction between innate and adaptive immunity. Changes in ILCs may contribute to the onset and progression of AD, and ILC2s especially have gained much attention. However, the role of ILCs in AD still needs to be further elucidated. This review summarizes the role of ILCs in skin homeostasis and highlights the signaling pathways in which ILCs may be involved in AD, thus providing valuable insights into the behavior of ILCs in skin homeostasis and inflammation, as well as new approaches to treating AD.
Collapse
Affiliation(s)
- Haiping Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huiying Wan
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
6
|
Seya T. Innate-Acquired Linkage in Immunotherapy. Cells 2023; 12:cells12030371. [PMID: 36766712 PMCID: PMC9913783 DOI: 10.3390/cells12030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The evolution of the human species is the result of genetic variation [...].
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, and Hokkaido University International Institute for Zoonosis Control, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
8
|
Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23073464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
|
9
|
Zhang H, Liu J, Zhang P, Li D, Feng G, Huandike M, Sun S, Chai L, Zhou J. Herbal Formula Longteng Decoction Promotes the Regression of Synovial Inflammation in Collagen-Induced Arthritis Mice by Regulating Type 2 Innate Lymphocytes. Front Pharmacol 2021; 12:778845. [PMID: 35002715 PMCID: PMC8735860 DOI: 10.3389/fphar.2021.778845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The etiology and pathogenesis of rheumatoid arthritis (RA) have not yet been fully elucidated, with greater adverse drug effects in traditional treatment of RA. It is particularly necessary to develop and study Chinese herbal formula as a supplement and alternative drug for the treatment of RA. The traditional Chinese medicine compound Longteng Decoction (LTD), as an empirical prescription in the treatment of RA in Dongzhimen Hospital of Beijing University of Chinese Medicine, has been widely used in clinic. Type 2 innate lymphocytes (ILC2s) have specific transcription factors and signature cytokines that are very similar to Th cells, which have been proved to be necessary in addressing RA inflammation, and are potential targets for RA prevention and treatment. Our previous studies have confirmed that LTD can intervene in the differentiation of peripheral blood Th17 and Treg cells, reduce joint pain index and swelling degree, shorten the time of morning stiffness, reduce ESR, and inhibit joint inflammation. However, it is unclear whether LTD can promote the regression of RA synovial inflammation by regulating the immune response mechanism of ILC2s.Therefore, our team established a collagen-induced arthritis mouse model and conducted an experimental study with LTD as the intervention object. The results showed that joint swelling, synovial inflammatory infiltration, and articular cartilage destruction were alleviated in CIA mice after intervention with LTD. The proliferation and differentiation of Th17 inflammatory cells and the secretion of proinflammatory cytokines (IL-17 and IFN-γ) were inhibited. In addition, LTD can also activate ILC2s to secrete the anti-inflammatory cytokine IL-4, activate the STAT6 signaling pathway, and act synergistic with Treg cells to inhibit the infiltration of type M1 macrophages in synovial tissue and promote its transformation to M2 phenotype. Taken together, these results confirm that LTD can be used as an adjunct or alternative to RA therapy by modulating the ILC2s immune response network and slowing down the inflammatory process of synovial tissue.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Rheumatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Ullah A, Ahmad S, Ismail S, Afsheen Z, Khurram M, Tahir ul Qamar M, AlSuhaymi N, Alsugoor MH, Allemailem KS. Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10961. [PMID: 34682706 PMCID: PMC8535705 DOI: 10.3390/ijerph182010961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Morganella morganii is one of the main etiological agents of hospital-acquired infections and no licensed vaccine is available against the pathogen. Herein, we designed a multi-epitope-based vaccine against M. morganii. Predicted proteins from fully sequenced genomes of the pathogen were subjected to a core sequences analysis, followed by the prioritization of non-redundant, host non-homologous and extracellular, outer membrane and periplasmic membrane virulent proteins as vaccine targets. Five proteins (TonB-dependent siderophore receptor, serralysin family metalloprotease, type 1 fimbrial protein, flagellar hook protein (FlgE), and pilus periplasmic chaperone) were shortlisted for the epitope prediction. The predicted epitopes were checked for antigenicity, toxicity, solubility, and binding affinity with the DRB*0101 allele. The selected epitopes were linked with each other through GPGPG linkers and were joined with the cholera toxin B subunit (CTBS) to boost immune responses. The tertiary structure of the vaccine was modeled and blindly docked with MHC-I, MHC-II, and Toll-like receptors 4 (TLR4). Molecular dynamic simulations of 250 nanoseconds affirmed that the designed vaccine showed stable conformation with the receptors. Further, intermolecular binding free energies demonstrated the domination of both the van der Waals and electrostatic energies. Overall, the results of the current study might help experimentalists to develop a novel vaccine against M. morganii.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Muhammad Khurram
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | | | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Poonpanichakul T, Chan-In W, Opasawatchai A, Loison F, Matangkasombut O, Charoensawan V, Matangkasombut P. Innate Lymphoid Cells Activation and Transcriptomic Changes in Response to Human Dengue Infection. Front Immunol 2021; 12:599805. [PMID: 34079535 PMCID: PMC8165392 DOI: 10.3389/fimmu.2021.599805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Dengue virus (DENV) infection has a global impact on public health. The clinical outcomes (of DENV) can vary from a flu-like illness called dengue fever (DF), to a more severe form, known as dengue hemorrhagic fever (DHF). The underlying innate immune mechanisms leading to protective or detrimental outcomes have not been fully elucidated. Helper innate lymphoid cells (hILCs), an innate lymphocyte recently discovered, functionally resemble T-helper cells and are important in inflammation and homeostasis. However, the role of hILCs in DENV infection had been unexplored. Methods We performed flow cytometry to investigate the frequency and phenotype of hILCs in peripheral blood mononuclear cells from DENV-infected patients of different disease severities (DF and DHF), and at different phases (febrile and convalescence) of infection. Intracellular cytokine staining of hILCs from DF and DHF were also evaluated by flow cytometry after ex vivo stimulation. Further, the hILCs were sorted and subjected to transcriptome analysis using RNA sequencing. Differential gene expression analysis was performed to compare the febrile and convalescent phase samples in DF and DHF. Selected differentially expressed genes were then validated by quantitative PCR. Results Phenotypic analysis showed marked activation of all three hILC subsets during the febrile phase as shown by higher CD69 expression when compared to paired convalescent samples, although the frequency of hILCs remained unchanged. Upon ex vivo stimulation, hILCs from febrile phase DHF produced significantly higher IFN-γ and IL-4 when compared to those of DF. Transcriptomic analysis showed unique hILCs gene expression in DF and DHF, suggesting that divergent functions of hILCs may be associated with different disease severities. Differential gene expression analysis indicated that hILCs function both in cytokine secretion and cytotoxicity during the febrile phase of DENV infection. Conclusions Helper ILCs are activated in the febrile phase of DENV infection and display unique transcriptomic changes as well as cytokine production that correlate with severity. Targeting hILCs during early innate response to DENV might help shape subsequent immune responses and potentially lessen the disease severity in the future.
Collapse
Affiliation(s)
- Tiraput Poonpanichakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Varodom Charoensawan
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
12
|
Ebihara T, Tatematsu M, Fuchimukai A, Yamada T, Yamagata K, Takasuga S, Yamada T. Trained innate lymphoid cells in allergic diseases. Allergol Int 2021; 70:174-180. [PMID: 33328130 DOI: 10.1016/j.alit.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in peripheral tissues such as the lungs, skin, nasal cavity, and gut and provoke innate type 2 immunity against allergen exposure, parasitic worm infection, and respiratory virus infection by producing TH2 cytokines. Recent advances in understanding ILC2 biology revealed that ILC2s can be trained by IL-33 or allergic inflammation, are long-lived, and mount memory-like type 2 immune responses to any other allergens afterwards. In contrast, IL-33, together with retinoic acid, induces IL-10-producing immunosuppressive ILC2s. In this review, we discuss how the allergic cytokine milieu and other immune cells direct the generation of trained ILC2s with immunostimulatory or immunosuppressive recall capability in allergic diseases and infections associated with type 2 immunity. The molecular mechanisms of trained immunity by ILCs and the physiological relevance of trained ILC2s are also discussed.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
13
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Abstract
T lymphocytes, the major effector cells in cellular immunity, produce cytokines in immune responses to mediate inflammation and regulate other types of immune cells. Work in the last three decades has revealed significant heterogeneity in CD4+ T cells, in terms of their cytokine expression, leading to the discoveries of T helper 1 (Th1), Th2, Th17, and T follicular helper (Tfh) cell subsets. These cells possess unique developmental and regulatory pathways and play distinct roles in immunity and immune-mediated pathologies. Other types of T cells, including regulatory T cells and γδ T cells, as well as innate lymphocytes, display similar features of subpopulations, which may play differential roles in immunity. Mechanisms exist to prevent cytokine production by T cells to maintain immune tolerance to self-antigens, some of which may also underscore immune exhaustion in the context of tumors. Understanding cytokine regulation and function has offered innovative treatment of many human diseases.
Collapse
Affiliation(s)
- Chen Dong
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,Renji Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China;
| |
Collapse
|
15
|
Xian Y, Lv X, Xie M, Xiao F, Kong C, Ren Y. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s). Life Sci 2020; 262:118504. [PMID: 32991877 DOI: 10.1016/j.lfs.2020.118504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Of the three groups of innate lymphoid cells, the type 3 innate lymphoid cell(s) (ILC3) include the subgroup of enteric ILC3 that participates in many physiological functions of the organism, such as promoting the repair of damaged mucosa, maintaining the homeostasis of gut symbiotic microorganisms, and presenting specific antigens. ILC3 also includes splenic and decidual ILC3. Like other physiological processes in the organism, enteric ILC3 functions are precisely regulated at the endogenous and exogenous levels. However, there has been no review on the physiological functions and regulatory signals of intestinal ILC3. In this paper, based on the current research on the physiological functions of enteric ILC3 in animals and the human, we summarize the signals that regulate cytokine secretion, antigen presentation and the quantity of ILC3 under normal intestinal conditions. We discuss for the first time the classification of the promoting mechanism of secretagogues of ILC3 into direct and indirect types. We also propose that ILC3 can promote intestinal homeostasis, and intestinal homeostasis can ensure the physiological phenotype of ILC3. If homeostasis is disturbed, ILC3 may participate in intestinal pathological changes. Therefore, regulating ILC3 and maintaining intestinal homeostasis are critical to the body.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Minjia Xie
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Fuyang Xiao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Chenyang Kong
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China.
| |
Collapse
|
16
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|