1
|
Falkenhagen A, Panajotov J, Johne R. Colon-derived Caco-2 cells support replication of hepatitis E virus genotype 1 strain Sar55 generated by reverse genetics. Virus Res 2024; 347:199427. [PMID: 38917940 PMCID: PMC11261143 DOI: 10.1016/j.virusres.2024.199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The hepatitis E virus (HEV) is infecting over 20 million people annually with a high morbidity especially in pregnant women and immune-suppressed individuals. While HEV genotype 1 (HEV-1) infects only humans, genotype 3 (HEV-3) is zoonotic and commonly transmitted from infected animals to humans. Whereas a few reverse genetics systems enabling targeted genome manipulations exist for HEV-3, those for HEV-1 are still very limited, mainly because of inefficient cell culture replication. Here, the generation of HEV-1 strain Sar55 and HEV-3 strain 47832mc by transfecting in vitro-transcribed and capped virus genomes into different cell lines was attempted. Culture supernatants of colon-derived colorectal adenocarcinoma cell line Caco-2 contained HEV-1 and HEV-3 capable of infecting Caco-2 cells. Density gradient centrifugation analyses of culture supernatants confirmed that HEV-1 particles were quasi-enveloped in analogy to HEV-3 and that non-virion-associated capsid protein was secreted from cells. Following transfection or infection of Caco-2 cells, HEV-1 consistently reached higher titers than HEV-3 in culture supernatants, but HEV-1 generated by transfection of Caco-2 cells was unable to efficiently infect hepatoma cell lines PLC/PRF/5 or HuH7-Lunet BLR. Taken together, our results indicate that HEV-1 is able to exert a complete replication cycle in Caco-2 cells. An efficient cell culture system for this genotype will be useful for studying species tropism, but further research is required to determine the significance of HEV-1 replication in colon-derived cells.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Jessica Panajotov
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Panajotov J, Falkenhagen A, Gadicherla AK, Johne R. Molecularly generated rat hepatitis E virus strains from human and rat show efficient replication in a human hepatoma cell line. Virus Res 2024; 344:199364. [PMID: 38522562 PMCID: PMC10995862 DOI: 10.1016/j.virusres.2024.199364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Whereas HEV genotypes 1-4 of species Paslahepevirus balayani are commonly found in humans, infections with ratHEV (species Rocahepevirus ratti) were previously considered to be restricted to rats. However, several cases of human ratHEV infections have been described recently. To investigate the zoonotic potential of this virus, a genomic clone was constructed here based on sequence data of ratHEV strain pt2, originally identified in a human patient with acute hepatitis from Hongkong. For comparison, genomic clones of ratHEV strain R63 from a rat and of HEV genotype 3 strain 47832mc from a human patient were used. After transfection of in vitro-transcribed RNA from the genomic clones into the human hepatoma cell line HuH-7-Lunet BLR, virus replication was shown for all strains by increasing genome copy numbers in cell culture supernatants. These cells developed persistent virus infections, and virus particles in the culture supernatant as well as viral antigen within the cells were demonstrated. All three generated virus strains successfully infected fresh HuH-7-Lunet BLR cells. In contrast, the human hepatoma cell lines HuH-7 and PLC/PRF/5 could only be infected with the genotype 3 strain and to a lesser extent with ratHEV strain R63. Infection of the rat-derived hepatoma cell lines clone 9, MH1C1 and H-4-II-E did not result in efficient virus replication for either strain. The results indicate that ratHEV strains from rats and humans can infect human hepatoma cells. The replication efficiency is strongly dependent on the cell line and virus strain. The investigated rat hepatoma cell lines could not be infected and other rat-derived cells should be tested in future to identify permissive cell lines from rats. The developed genomic clone can represent a useful tool for future research investigating pathogenicity and zoonotic potential of ratHEV.
Collapse
Affiliation(s)
| | | | - Ashish K Gadicherla
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany; Center for Quantitative Cell Imaging, University of Wisconsin, Madison, USA
| | - Reimar Johne
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany.
| |
Collapse
|
3
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Oechslin N, Da Silva N, Ankavay M, Moradpour D, Gouttenoire J. A genome-wide CRISPR/Cas9 screen identifies a role for Rab5A and early endosomes in hepatitis E virus replication. Proc Natl Acad Sci U S A 2023; 120:e2307423120. [PMID: 38109552 PMCID: PMC10756275 DOI: 10.1073/pnas.2307423120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.
Collapse
Affiliation(s)
- Noémie Oechslin
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Nathalie Da Silva
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Maliki Ankavay
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| |
Collapse
|
5
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Santos-Silva S, Matos M, Pintado C, Figueira L, Matos AC, Mesquita JR, Coelho AC. Prevalence and Risk Factors for Hepatitis E Virus in Wild Boar and Red Deer in Portugal. Microorganisms 2023; 11:2576. [PMID: 37894234 PMCID: PMC10609178 DOI: 10.3390/microorganisms11102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic foodborne virus with an annual infection prevalence of 20 million human cases, which seriously affects public health and economic development in both developed and developing countries. To better understand the epidemiology of HEV in Central Portugal, a cross-sectional study was conducted from 2016 to 2023 with sera samples from wild ungulates. The seroprevalence and risk factors for HEV seropositivity were evaluated in the present study. Specifically, antibodies against HEV were determined by a commercial enzyme-linked immune-sorbent assay (ELISA). Our results show that in the 650 sera samples collected from 298 wild red deer and 352 wild boars in Portugal, 9.1% red deer and 1.7% wild boar were positive for antibodies to HEV. Regarding age, the seropositivity in juvenile wild ungulates was 1.3%, whereas it was 7.2% in adults. Logistic regression models investigated risk factors for seropositivity. The odds of being seropositive was 3.6 times higher in adults than in juveniles, and the risk was 4.2 times higher in red deer than in wild boar. Both wild ungulate species were exposed to HEV. The higher seroprevalence in red deer suggests that this species may make a major contribution to the ecology of HEV in Central Portugal. Further research is needed to understand how wildlife affects the epidemiology of HEV infections in Portugal.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Schrader JA, Burkard TL, Brüggemann Y, Gömer A, Meister TL, Fu RM, Mehnert AK, Dao Thi VL, Behrendt P, Durantel D, Broering R, Vondran FWR, Todt D, Kinast V, Steinmann E. EGF receptor modulates HEV entry in human hepatocytes. Hepatology 2023; 77:2104-2117. [PMID: 36745934 PMCID: PMC10187617 DOI: 10.1097/hep.0000000000000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.
Collapse
Affiliation(s)
- Jil A. Schrader
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas L. Burkard
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Toni L. Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Rebecca M. Fu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Ann-Kathrin Mehnert
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Viet L. Dao Thi
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Patrick Behrendt
- TWINCORE Center for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Center for Infection Research (HZI), Institute for Experimental Virology, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover - Braunschweig, Hannover, Germany
| | - David Durantel
- CIRI—International Center for Infectiology Research, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Volker Kinast
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
7
|
Ferri G, Giantomassi G, Piccinini A, Olivastri A, Vergara A. Hepatitis E Virus RNA Detection from Hunted Wild Boars in Central Italy: an Epidemiological Investigation. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:158-166. [PMID: 37029274 PMCID: PMC10261184 DOI: 10.1007/s12560-023-09554-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Every year, foodborne pathogens, including the hepatitis E virus (HEV), cause thousands of infections in different continents. Final consumers become infected through the ingestion of contaminated animal origin foodstuffs. Generally, in industrialized countries, HEV genotype 3 is involved in sporadic outbreaks. Infections have been described, in Europe and Japan as consequence of pork products and contaminated wild boar's primary or processed products (liver and muscle tissues) consumption. In Central Italy, hunting activities are largely practiced. In these small and rural communities, game meat and liver are ingested by hunters' families or at local and traditional restaurants. Therefore, these food chains can be considered critical HEV reservoirs. In this study, 506 liver and diaphragm tissues were collected from hunted wild boars in the Southern Marche region (Central Italy) and were screened for HEV RNA detection. From the 10.87% of liver and 2.76% of muscle samples, HEV3 subtype c was discovered. The observed prevalence values resulted in line with previous investigations performed in other Central Italian regions, but higher than Northern ones (3.7% and 1.9% from liver tissue). Therefore, the obtained epidemiological data highlighted the wide occurrence of HEV RNA circulation in a low-investigated area. Basing on results, a One-health approach was adopted due to the sanitary relevance of this Public Health concern.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy.
| | | | - Andrea Piccinini
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy
| |
Collapse
|
8
|
Ferri G, Lauteri C, Festino AR, Piccinini A, Olivastri A, Vergara A. Hepatitis E Virus Detection in Hunted Wild Boar Liver and Muscle Tissues in Central Italy. Microorganisms 2022; 10:microorganisms10081628. [PMID: 36014046 PMCID: PMC9414245 DOI: 10.3390/microorganisms10081628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
In different European countries, including Italy, hepatitis E virus (HEV) has been recognized as an emerging public health concern. Humans are infected through the orofecal route by the ingestion of contaminated uncooked or undercooked animal-origin foodstuffs. Wild boars (Sus scrofa) have gained a crucial role as viral reservoirs. HEV-3 is the most frequently identified genotype from hunted wild boar liver and muscle tissues. The Marche region, more specifically Ascoli Piceno province, is characterized by a rooted hunting tradition and related product consumption. In this research study, 312 liver and 296 muscle specimens were screened using biomolecular assays, and HEV RNA was detected from 5.45% and 1.35% of liver and muscle samples, respectively. Phylogenetic analysis revealed that positive animals were infected by genotype 3 subtype c. Based on the environmental pathogen characteristics, HEV has also evolved to guarantee its survival in a wild environment. Therefore, wild boars and ruminants have a key role in its persistence. Epidemiological data regarding HEV circulation have resulted as necessary, and biomolecular analysis represents an important means of monitoring and establishing preventive measures. A multidisciplinary approach could provide a wide perspective regarding HEV and infectious implications on human, animal, and environmental health.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, Piano d’Accio, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861266886
| | - Carlotta Lauteri
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, Piano d’Accio, 64100 Teramo, Italy
| | - Anna Rita Festino
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, Piano d’Accio, 64100 Teramo, Italy
| | - Andrea Piccinini
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, Piano d’Accio, 64100 Teramo, Italy
| | - Alberto Olivastri
- Veterinary Service I.A.O.A., ASUR Marche, Area Vasta 5 Ascoli Piceno/San Benedetto del Tronto, 63900 Fermo, Italy
| | - Alberto Vergara
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, Piano d’Accio, 64100 Teramo, Italy
| |
Collapse
|
9
|
Ferri G, Piccinini A, Olivastri A, Vergara A. Hepatitis E virus detection in hunted wild boar ( Sus scrofa) livers in Central Italy. Ital J Food Saf 2022; 11:9979. [PMID: 35795462 PMCID: PMC9251872 DOI: 10.4081/ijfs.2022.9979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, responsible for numerous cases of infection in humans. Transmission occurs through the orofecal route, and ingestion of contaminated foods represents an important risk factor for final consumer's health. Wild animal species, in particular wild boar (Sus scrofa), are the main virus reservoirs; liver is the target organ, from which, through the hematic diffusion, HEV reaches different tissues and organs, as muscular one. The hygienic-sanitary critical issues connected with game meat food chain in general, and particularly wild boar, with special regards to any geographical area where this animal species can be directly in contact with humans, domestic ones (i.e., domestic pig), and other wild reservoirs (i.e., wild ruminants), finds favorable environmental conditions, have induced us to conduce the present scientific investigation. During the hunting season 2019/2020, a total of 156 wild boar livers were collected from provided plucks at slaughterhouse in Ascoli Piceno. Nested RT-PCR was used for the viral RNA detection. Results demonstrated a positivity of 5.12% (8/156), and the circulation in the screened area of genotype 3 subtype c, which is frequently identified in Central Italy. HEV sanitary relevance and the emerging role of any food chains in its transmission impose further detailed studies. The molecular screening of hunted wild boars' livers can provide important information about virus's circulation in wild animal populations in a specific area.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Post- Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo
| | - Andrea Piccinini
- Faculty of Veterinary Medicine, Post- Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo
| | - Alberto Olivastri
- Veterinary Service I.A.O.A., ASUR Marche, Area Vasta 5 Ascoli Piceno/San Benedetto del Tronto, Italy
| | - Alberto Vergara
- Faculty of Veterinary Medicine, Post- Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo
| |
Collapse
|
10
|
Induction of Hepatitis E Virus Anti-ORF3 Antibodies from Systemic Administration of a Muscle-Specific Adeno-Associated Virus (AAV) Vector. Viruses 2022; 14:v14020266. [PMID: 35215859 PMCID: PMC8878420 DOI: 10.3390/v14020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.
Collapse
|
11
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Zhang C, Freistaedter A, Schmelas C, Gunkel M, Dao Thi VL, Grimm D. An RNA Interference/Adeno-Associated Virus Vector-Based Combinatorial Gene Therapy Approach Against Hepatitis E Virus. Hepatol Commun 2021; 6:878-888. [PMID: 34719133 PMCID: PMC8948557 DOI: 10.1002/hep4.1842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) is a major public health problem with limited therapeutic options. Here, we engineered adeno-associated viral vectors of serotype 6 (AAV6) to express short hairpin RNAs (shRNAs) against HEV transcripts with the prospect of down-regulating HEV replication in vivo. We designed 20 different shRNAs, targeting the genome of the HEV genotype 3 (GT3) Kernow-C1 p6 strain, for delivery upon AAV6 transduction. Using an original selectable HEV GT3 reporter replicon, we identified three shRNAs that efficiently down-regulated HEV replication. We further confirmed their inhibitory potency with full-length HEV infection. Seventy-two hours following transduction, HEV replication in both systems decreased by up to 95%. The three most potent inhibitory shRNAs identified were directed against the methyltransferase domain, the junction region between the open reading frames (ORFs), and the 3´ end of ORF2. Targeting all three regions by multiplexing the shRNAs further enhanced their inhibitory potency over a prolonged period of up to 21 days following transduction. Conclusion: Combining RNA interference and AAV vector-based gene therapy has great potential for suppressing HEV replication. Our strategy to target the viral RNA with multiplexed shRNAs should help to counteract viral escape through mutations. Considering the widely documented safety of AAV vector-based gene therapies, our approach is, in principle, amenable to clinical translation.
Collapse
Affiliation(s)
- Cindy Zhang
- Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.,Schaller Research group at Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Andrew Freistaedter
- Schaller Research group at Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Carolin Schmelas
- Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Manuel Gunkel
- High-Content Analysis of the Cell and Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research group at Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany.,German Center for Cardiovascular Research, Heidelberg, Germany
| |
Collapse
|
13
|
Ideno S, Inoue T, Takahashi K, Urayama T, Maeno H, Takeuchi K, Sakai K. Phenotypic characterization of cell culture-derived hepatitis E virus subjected to different chemical treatments: Application in virus removal via nanofiltration. J Virol Methods 2021; 296:114244. [PMID: 34302862 DOI: 10.1016/j.jviromet.2021.114244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Safety evaluation for the hepatitis E virus (HEV) is required for plasma fractionation products. Plasma-derived HEV (pHEV) is quite unique in that it is associated with a lipid membrane, which, when stripped during manufacturing processes, induces morphological changes in the virus, making it difficult to select proper HEV phenotypes for clearance studies. We developed a convenient system for the preparation of a high titer cell culture-derived HEV (cHEV). In this system, PLC/PRF/5 cells transfected with the wild-type HEV genome generated lipid membrane-associated cHEV for a long period even after cryopreservation. We also examined how this lipid membrane-associated cHEV can be used to verify the robustness of pHEV removal via 19-nm nanofiltration. Sodium-deoxycholate and trypsin (NaDOC/T) treatment not only dissolved lipid but also digested membrane-associated proteins from pHEV and cHEV, making the resulting cHEV particle smaller in size than any pHEV phenotypes generated by ethanol or solvent-detergent treatment in this study. In both 19-nm and 35-nm nanofiltration, cHEV behaved identically to pHEV. These results indicate that cHEV is a useful resource for viral clearance studies in term of availability, and the use of NaDOC/T-treated cHEV ensured robust pHEV removal capacity via 19-nm nanofiltration.
Collapse
Affiliation(s)
- Shoji Ideno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan.
| | - Takamasa Inoue
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kadue Takahashi
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Takeru Urayama
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Hideki Maeno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Sakai
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| |
Collapse
|
14
|
Scholz J, Falkenhagen A, Johne R. The Translated Amino Acid Sequence of an Insertion in the Hepatitis E Virus Strain 47832c Genome, But Not the RNA Sequence, Is Essential for Efficient Cell Culture Replication. Viruses 2021; 13:v13050762. [PMID: 33926134 PMCID: PMC8145396 DOI: 10.3390/v13050762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
The hepatitis E virus (HEV) can cause hepatitis E in humans. Recently, the occurrence of HEV strains carrying insertions in their hypervariable genome region has been described in chronically infected patients. The insertions originate from human genes or from the HEV genome itself. Although their distinct functions are largely unknown, an involvement in efficient cell culture replication was shown for some strains. The HEV strain 47832c, originally isolated from a chronically infected transplant patient, carries a bipartite insertion composed of HEV genome duplications. Here, several mutants with deletions and substitutions of the insertion were generated and tested in cell culture. Complete deletion of the insertion abolished virus replication and even a single glycine to arginine substitution led to reduced cell culture growth. A mutant encoding a frameshift of the inserted sequence was not infectious, whereas a mutant carrying synonymous codons in this region replicated similar like the wild type. Substitution of the insertion with the S17 insertion from HEV strain Kernow C1-p6 did not result in viable virus, which might indicate strain- or cell type-specificity of the insertions. Generally, the translated amino acid sequence of the insertion, but not the RNA sequence, seems to be responsible for the observed effect.
Collapse
|
15
|
Talapko J, Meštrović T, Pustijanac E, Škrlec I. Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice. Healthcare (Basel) 2021; 9:healthcare9020133. [PMID: 33572764 PMCID: PMC7912707 DOI: 10.3390/healthcare9020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal-oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is a possibility of spreading HEV infections outside endemic areas. This problem is indeed global and requires increased hygiene measures in endemic areas, which entails special care for pregnant women in both endemic and non-endemic regions. As already highlighted, pregnant women could have significant health consequences due to the untimely diagnosis of HEV infection; hence, this is a population that should be targeted with a specific combination of testing approaches to ensure optimal specificity and sensitivity. Until we advance from predominantly supportive treatment in pregnancy and appraise the safety and efficacy of a HEV vaccine in this population, such screening approaches represent the mainstay of our public health endeavors.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| | - Tomislav Meštrović
- University Centre Varaždin, University North, HR-42000 Varaždin, Croatia;
- Clinical Microbiology and Parasitology Unit, Dr. Zora Profozić Polyclinic, HR-10000 Zagreb, Croatia
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|
16
|
Lozach PY. Cell Biology of Viral Infections. Cells 2020; 9:cells9112431. [PMID: 33171736 PMCID: PMC7694952 DOI: 10.3390/cells9112431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|