1
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
2
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024:AD.2024.0083. [PMID: 38739940 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Alblowy AH, Maan N, Ibrahim AA. Optimal control strategies for SGLT2 inhibitors as a novel anti-tumor agent and their effect on human breast cancer cells with the effect of time delay and hyperglycemia. Comput Biol Med 2023; 166:107552. [PMID: 37826954 DOI: 10.1016/j.compbiomed.2023.107552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Breast cancer is the most frequent cancer in the world, and it continues to have a significant impact on the total number of cancer deaths. Recently, oncology findings hint at the role of excessive glucose in cancer progression and immune cells' suppression. Sequel to this revelation is ongoing researches on possible inhibition of glucose flow into the tumor micro-environment as therapeutics for malignant treatment. In this study, the effect of glucose blockage therapeutics such as SGLT-2 inhibitors drug on the dynamics of normal, tumors and immune cells interaction is mathematically studied. The asymptomatic nature of the breast cancer is factored into the model using time delay. We first investigate the boundedness and non-negativity of the solution. The condition for existence of critical equilibrium point is determined, and its global stability conditions are derived using Lyapunov function. This revealed that a timely administration of the SGLT-2 inhibitors drug can eliminate tumor cells. Secondly, we determine the sufficient and necessary conditions for optimal control strategy of SGLT-2 inhibitors so as to avert side effects on normal cells using a Pontryagin's Minimum Principle. The results showed that if the ingestion rate of the inhibitor drug is equal to the digestion rate, the tumor cells can be completely eliminated within 9 months without side effects. The analytical results were numerically verified and the qualitative views of interacting cells dynamics is showcased.
Collapse
Affiliation(s)
- Abeer Hamdan Alblowy
- Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 2440, Saudi Arabia; Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Normah Maan
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Abdulkareem Afolabi Ibrahim
- Department of Mathematics and Statistics, Federal Polytechnic Kaura Namoda, Kaura-Namoda, Zamfara State, Nigeria.
| |
Collapse
|
5
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
6
|
Oh M, Batty S, Banerjee N, Kim TH. High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells. Mol Biol Cell 2023; 34:ar79. [PMID: 37195739 PMCID: PMC10398875 DOI: 10.1091/mbc.e22-12-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The mechanical properties, or mechanotypes, of cells are largely determined by their deformability and contractility. The ability of cancer cells to deform and generate contractile force is critical in multiple steps of metastasis. Identifying soluble cues that regulate cancer cell mechanotypes and understanding the underlying molecular mechanisms regulating these cellular mechanotypes could provide novel therapeutic targets to prevent metastasis. Although a strong correlation between high glucose level and cancer metastasis has been demonstrated, the causality has not been elucidated, and the underlying molecular mechanisms remain largely unknown. In this study, using novel high-throughput mechanotyping assays, we show that human breast cancer cells become less deformable and more contractile with increased extracellular glucose levels (>5 mM). These altered cell mechanotypes are due to increased F-actin rearrangement and nonmuscle myosin II (NMII) activity. We identify the cAMP-RhoA-ROCK-NMII axis as playing a major role in regulating cell mechanotypes at high extracellular glucose levels, whereas calcium and myosin light-chain kinase (MLCK) are not required. The altered mechanotypes are also associated with increased cell migration and invasion. Our study identifies key components in breast cancer cells that convert high extracellular glucose levels into changes in cellular mechanotype and behavior relevant in cancer metastasis.
Collapse
Affiliation(s)
- Mijung Oh
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Skylar Batty
- Undergraduate Pipeline Network Summer Research Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tae-Hyung Kim
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131
| |
Collapse
|
7
|
Huntingtin-associated protein 1 is a potential tumor suppressor for gastric cancer. Mol Biol Rep 2023; 50:1517-1531. [PMID: 36509909 DOI: 10.1007/s11033-022-08090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastric cancer is heterogeneous cancer and the causes of this disease are complex. New diagnostic and therapeutic targets are urgently needed to explore. Huntingtin-associated protein 1 (HAP1) is directly related to Huntington's disease (HD). However, patients with Huntington's disease have a lower incidence of cancer. Therefore, we are committed to studying the correlation between HAP1 and gastric carcinogenesis and development. METHODS AND RESULTS Immunohistochemical staining, western blot analysis, and RT-qPCR were conducted to explore the localization and expression of HAP1 in gastric cancer. To study the biological significance of HAP1, we overexpressed HAP1 in both MKN28 and AGS cell lines by lentivirus infection. To explore the role of HAP1 in cell proliferation, the cells counting assay, EdU incorporation assay, and colony formation assay were carried out. We performed the wound healing assay and transwell assay to study the cell migration and invasion. To further investigate whether HAP1 could regulate gastric cancer cell death during glucose deprivation, Annexin V-FITC/PI staining was performed. In our study, we elucidated that HAP1 was downregulated in gastric cancer. What's more, overexpressing HAP1 inhibited cell proliferation, cell migration and invasion, and triggered apoptosis during glucose deprivation. More importantly, the antitumor properties and mechanisms of HAP1 have been elucidated further in gastric cancer. CONCLUSIONS Taken together, the available evidence implies that HAP1 may serve as a potential tumor suppressor, making it a significant target in preventing and treating gastric cancer. This research provides a theoretical basis for the early diagnosis, clinical targeted therapy, and prognosis evaluation of gastric cancer.
Collapse
|
8
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
9
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
10
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
11
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
12
|
ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast 2022; 2022:5567174. [PMID: 35096052 PMCID: PMC8791755 DOI: 10.1155/2022/5567174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.
Collapse
|
13
|
Tang X, Chen W, Liu H, Liu N, Chen D, Tian D, Wang J. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett 2022; 23:47. [PMID: 34992680 PMCID: PMC8721856 DOI: 10.3892/ol.2021.13165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Solute carrier family 7 member 11 (SLC7A11) is a major transporter regulating cysteine metabolism and is widely expressed in a variety of tumor cells. SLC7A11 plays an important role in the occurrence, development, invasion and metastasis of tumors by regulating the transport of cysteine in the tumor microenvironment. SLC7A11 is expected to become a new therapeutic target and prognostic indicator for the individualized treatment of patients. According to relevant research reports, SLC7A11 can predict the stages and metastasis of liver, breast and lung cancer. Therefore, an in-depth exploration of the role of SLC7A11 in tumors may be important for the screening, early diagnosis, treatment and prognosis of patients with tumors. The current review summarizes the research progress on SLC7A11 in liver cancer, lung cancer and other tumors on the basis of previous primary studies. In addition, the present review systematically elaborates on the three main aspects of SLC7A11 pathways in some tumors, the cancer-promoting mechanisms, and the therapeutic relationship between SLC7A11 and tumors. Finally, the present review aims to provide a reference for assessing whether SLC7A11 can be used as a prognostic indicator and treatment target for tumor patients, and the future research direction with regard to SLC7A11 in tumors.
Collapse
Affiliation(s)
- Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei Chen
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Hui Liu
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dalong Tian
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
14
|
Wang SF, Chang YL, Tzeng YD, Wu CL, Wang YZ, Tseng LM, Chen S, Lee HC. Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin-estrogen receptor loop signaling. Cancer Lett 2021; 523:82-99. [PMID: 34610415 DOI: 10.1016/j.canlet.2021.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Many breast cancer patients harbor high estrogen receptor (ER) expression in tumors that can be treated with endocrine therapy, which includes aromatase inhibitors (AI); unfortunately, resistance often occurs. Mitochondrial dysfunction has been thought to contribute to progression and to be related to hormone receptor expression in breast tumors. Mitochondrial alterations in AI-resistant breast cancer have not yet been defined. In this study, we characterized mitochondrial alterations and their roles in AI resistance. MCF-7aro AI-resistant breast cancer cells were shown to have significant changes in mitochondria. Low expressions of mitochondrial genes and proteins could be poor prognostic factors for breast cancer patients. Long-term mitochondrial inhibitor treatments-mediated mitochondrial stress adaptation could induce letrozole resistance. ERα-amphiregulin (AREG) loop signaling was activated and contributed to mitochondrial stress adaptation-mediated letrozole resistance. The up-regulation of AREG-epidermal growth factor receptor (EGFR) crosstalk activated the PI3K/Akt/mTOR and ERK pathways and was responsible for ERα activation. Moreover, mitochondrial stress adaptation-increased intracellular levels of reactive oxygen species (ROS) and calcium were shown to induce AREG expression and secretion. In conclusion, our results support the claim that mitochondrial stress adaptation contributes to AI resistance via ROS/calcium-mediated AREG-ERα loop signaling and provide possible treatment targets for overcoming AI resistance.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yen-Dun Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Ling Wu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuan-Zhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
15
|
Cao B, Deng H, Cui H, Zhao R, Li H, Wei B, Chen L. Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation. Cancer Cell Int 2021; 21:481. [PMID: 34507580 PMCID: PMC8434706 DOI: 10.1186/s12935-021-02193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. Methods Correlation and enrichment analyses of PGM1 were conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan–Meier Plotter database were analyzed to evaluate correlations between PGM1 expression and survival time of GC patients. Cell counting kit-8, 5-Ethynyl-2-deoxyuridine, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and expression levels of lipid enzymes were determined to reflect on lipid metabolism. Results Correlation and enrichment analyses suggested that PGM1 was closely associated with cell viability, proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients. It was also correlated with pathological tumor stage and pathological tumor node metastasis stage of GC. Under the glucose deprivation condition, knockdown of PGM1 significantly suppressed cell viability, proliferation and glycolysis, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity, effectively induced apoptosis and suppressed lipid metabolism in GC. However, orlistat conversely increased glycolytic levels. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism both in vitro and in vivo. Conclusions Downregulation of PGM1 expression under glucose deprivation enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02193-3.
Collapse
Affiliation(s)
- Bo Cao
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Deng
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruiyang Zhao
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hanghang Li
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Wei
- Medical School of Chinese PLA, Beijing, 100853, China. .,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Medical School of Chinese PLA, Beijing, 100853, China. .,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Zheng YW, Miao XY, Xiong L, Chen B, Kong FH, Zhou JJ, Liu ZT, Wen Y, Zhang ZJ, Zou H. Sulfasalazine Sensitizes Polyhematoporphyrin-Mediated Photodynamic Therapy in Cholangiocarcinoma by Targeting xCT. Front Pharmacol 2021; 12:723488. [PMID: 34483935 PMCID: PMC8414975 DOI: 10.3389/fphar.2021.723488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Cholangiocarcinoma (CCA), which is highly malignant, shows a relatively poor prognosis, due to the insensitivity of the tumour to chemotherapy and radiotherapy. Photodynamic therapy (PDT) has become a promising palliative therapeutic option for patients with unresectable cholangiocarcinoma (CCA), while the functional amount of ROS is limited by intracellular redox systemen. Sulfasalazine (SASP), a well-known anti-inflammatory agent, which also acts as an inhibitor of the amino acid transport system xc (xCT), decreases the intracellular glutathione (GSH) level, thus weakening the antioxidant defence of the cell by inhibition of the antiporter. However, the combination of SASP and PDT remains unexplored. We have reported that polyhematoporphyrin (PHP)-mediated PDT inhibits the cell viability of CCA cells and organoids. Furthermore, in PHP-enriched HCCC-9810 and TFK-1CCA cells, SASP enhances the sensitivity to PHP-mediated PDT through a GSH-dependent mechanism. We found that PHP-PDT can up-regulate xCT expression to promote cells against overloaded ROS, while SASP reduces GSH levels. After the combination of SASP and PHP-PDT, cell viability and GSH levels were significantly inhibited. xCT was also observed to be inhibited by SASP in human organoid samples. Our findings suggest that, in combination with PDT, SASP has potential as a promising approach against CCA.
Collapse
Affiliation(s)
- Yan-Wen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiong-Ying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan-Hua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiang-Jiao Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Tao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress. Biomedicines 2021; 9:biomedicines9091101. [PMID: 34572286 PMCID: PMC8466651 DOI: 10.3390/biomedicines9091101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.
Collapse
|
18
|
Zhuang J, Liu X, Yang Y, Zhang Y, Guan G. Sulfasalazine, a potent suppressor of gastric cancer proliferation and metastasis by inhibition of xCT: Conventional drug in new use. J Cell Mol Med 2021; 25:5372-5380. [PMID: 33988296 PMCID: PMC8184680 DOI: 10.1111/jcmm.16548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to explore the role of sulfasalazine on proliferation and metastasis in gastric cancer by inhibition of xCT. The relationships between clinical characteristics and xCT expression were analysed. An immunohistochemical staining assay and Western blot were performed among gastric cancers and normal gastric tissues. qPCR and Western blot were also used to evaluate the mRNA and protein expression in the normal gastric cell and eight gastric cancer cells, respectively. CCK‐8 and colony formation assays were used to evaluate the effect of sulfasalazine on the proliferation and colony formation ability of three gastric cancers. The effect of sulfasalazine on the migration and invasion abilities of three cancer cells was assessed by the Transwell assay. xCT protein is up‐regulated in gastric cancer specimens and cells. Three gastric cancer cells with high, medium and low expression of xCT were selected for the following analyses. CCK‐8 assays revealed that sulfasalazine could attenuate the proliferation of HGC‐27 and AGS. Also, the colony formation assay revealed that sulfasalazine might attenuate the colony formation ability in HGC‐27 and AGS cells. Plus, the Transwell assays demonstrated that sulfasalazine might attenuate the migration and invasion abilities in HGC‐27 and AGS cells. In conclusion, higher expression of xCT is associated with advanced tumour stage and poor overall survival of gastric cancer. Sulfasalazine can attenuate the proliferation, colony formation, metastasis and invasion of gastric cancer in vitro. Further study is required to validate our findings.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xing Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yiyi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, Chen G, Liang Y, Zhang Q. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother 2020; 132:110821. [PMID: 33068934 DOI: 10.1016/j.biopha.2020.110821] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The sodium-glucose transporter 2 (SGLT2) inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate the potential ability of SGLT2 inhibitors to attenuate cancer growth of SGLT2-expressing cancer cells, but there is little known about the effects of SGLT2 inhibitors on breast cancer. The goal in this research was to assess the anticancer activity of SGLT2 inhibitors in breast cancerin vitro and in vivo. METHODS We test the SGLT2 expression in breast cancer using immunohistochemistry and immunoblot assay. MTT cytotoxicity assay, colony formation assay and human breast cancer cells nude mice xenograft model were performed to detect the effects of SGLT2 inhibitors on cancer cell proliferation and growth. Flow Cytometry assay was performed to determine if the SGLT2 inhibitors induced cell cycle arrest and apoptosis. RESULTS We proved that SGLT2 expresses in breast cancer cell lines and human breast tumor tissue samples. SGLT2 inhibitors Dapagliflozin and Canagliflozin exhibited a potent anti-proliferative effect in breast cancer cells as demonstrated by MTT, clonogenic survival assay in vitro and xenograft growth model in vivo. Furthermore, we found that SGLT2 inhibitors arrested cell cycle in G1/G0 phase and induced cell apoptosis. Western blot analysis demonstrated that treatment with SGLT2 inhibitors increased the phosphorylation of Amp-activated protein kinase (AMPK) and decreased the phosphorylation of 70 kDa ribosomal protein S6 kinase 1 (p70S6K1) in breast cancer cells. CONCLUSIONS These findings indicate that SGLT2 inhibitor-therapy induced AMPK-mediated cell cycle arrest and apoptosis, which is a potential novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine, School of Clinical Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jin Zhu
- Department of Breast Surgical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330046, China
| | - Sheng-Jian Yu
- Institute of Tumor, Taizhou University, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Huai-Lu Ma
- Institute of Tumor, Taizhou University, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jie Chen
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xiao-Fei Ding
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Guang Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China; Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Yong Liang
- Institute of Tumor, Taizhou University, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China; Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Qiang Zhang
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
20
|
Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells 2020; 9:cells9092028. [PMID: 32899180 PMCID: PMC7565710 DOI: 10.3390/cells9092028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells perform a metabolic rewiring to sustain an increased growth rate and compensate for the redox stress caused by augmented energy metabolism. The metabolic changes are not the same in all cancers. Some features, however, are considered hallmarks of this disease. As an example, all cancer cells rewire the amino acid metabolism for fulfilling both the energy demand and the changed signaling routes. In these altered conditions, some amino acids are more frequently used than others. In any case, the prerequisite for amino acid utilization is the presence of specific transporters in the cell membrane that can guarantee the absorption and the traffic of amino acids among tissues. Tumor cells preferentially use some of these transporters for satisfying their needs. The evidence for this phenomenon is the over-expression of selected transporters, associated with specific cancer types. The knowledge of the link between the over-expression and the metabolic rewiring is crucial for understanding the molecular mechanism of reprogramming in cancer cells. The continuous growth of information on structure-function relationships and the regulation of transporters will open novel perspectives in the fight against human cancers.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Filomena Rovella
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) via Amendola 122/O, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-09-8449-2939
| |
Collapse
|