1
|
Liu J, Ji Z, He Q, Chen H, Xu X, Mei Q, Hu Y, Zhang H. Direct conversion of human umbilical cord mesenchymal stem cells into dopaminergic neurons for Parkinson's disease treatment. Neurobiol Dis 2024; 201:106683. [PMID: 39343249 DOI: 10.1016/j.nbd.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits due to the depletion of nigrostriatal dopamine. Stem cell differentiation therapy emerges as a promising treatment option for sustained symptom relief. In this study, we successfully developed a one-step differentiation system using the YFBP cocktail (Y27632, Forskolin, SB431542, and SP600125) to effectively convert human umbilical cord mesenchymal stem cells (hUCMSCs) into dopaminergic neurons without genetic modification. This approach addresses the challenge of rapidly and safely generating functional neurons on a large scale. After a 7-day induction period, over 80 % of the cells were double-positive for TUBB3 and NEUN. Transcriptome analysis revealed the dual roles of the cocktail in inducing fate erasure in mesenchymal stem cells and activating the neuronal program. Notably, these chemically induced cells (CiNs) did not express HLA class II genes, preserving their immune-privileged status. Further study indicated that YFBP significantly downregulated p53 signaling and accelerated the differentiation process when Pifithrin-α, a p53 signaling inhibitor, was applied. Additionally, Wnt/β-catenin signaling was transiently activated within one day, but the prolonged activation hindered the neuronal differentiation of hUCMSCs. Upon transplantation into the striatum of mice, CiNs survived well and tested positive for dopaminergic neuron markers. They exhibited typical action potentials and sodium and potassium ion channel activity, demonstrating neuronal electrophysiological activity. Furthermore, CiNs treatment significantly increased the number of tyrosine hydroxylase-positive cells and the concentration of dopamine in the striatum, effectively ameliorating movement disorders in PD mice. Overall, our study provides a secure and reliable framework for cell replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhongqing Ji
- Department of Orthopedics, Suzhou Yongding Hospital, Suzhou 215200, China
| | - Qisheng He
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Huanhuan Chen
- The Suqian Clinical College of Xuzhou Medical University, Suqian 223800, China
| | - Xiaojing Xu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qiuhao Mei
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Ya'nan Hu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Bostani A, Hoveizi E, Naddaf H, Razeghi J. Nerve Regeneration Through Differentiation of Endometrial-Derived Mesenchymal Stem Cells into Nerve-Like Cells Using Polyacrylonitrile/Chitosan Conduit and Berberine in a Rat Sciatic Nerve Injury Model. Mol Neurobiol 2024:10.1007/s12035-024-04344-9. [PMID: 38997619 DOI: 10.1007/s12035-024-04344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Nervous injuries are common in humans. One of the most advanced treatment methods is neural tissue engineering. This research aims to utilize nerve-like cells (NLCs) derived from endometrial mesenchymal stem cells (EnMSCs) on a polyacrylonitrile/chitosan (PAN/CS) scaffold, along with berberine, for the reconstruction of a rat sciatic nerve injury model. In this experimental study, EnMSCs were obtained through enzymatic digestion and identified using flow cytometry and their differentiation into adipocyte and osteoblast. PAN nanofiber scaffolds were produced through electrospinning, and EnMSCs were neurally differentiated on these scaffolds for grafting into an animal model. The expression of Nestin, Map-2, Tuj-1, and NF genes in NLCs was confirmed through RT-PCR and immunocytochemistry. Twenty-five adult male rats were used in this study, divided into 5 groups: (1) Scaffold/Cells/Berberine, (2) Scaffold/Cells, (3) Scaffold, (4) Berberine, and (5) Control. The animals were maintained for 8 weeks, and their sciatic nerve function (SFI) was assessed. Additionally, histological examinations were performed using hematoxylin/eosin, luxol fast blue staining, and immunohistochemistry. According to the results, extraction, identification, and differentiation of EnMSCs and fabrication of PAN conduit and its transplantation were successfully performed. The best behavioral performance and histology were observed in the Scaffold/Cells/Berberine group. The SFI test results were -24.08 for the Scaffold/Cells/Berberine group and -39.27 for the control group. The nerve diameter in these two groups was 591 µm and 80 µm, respectively, and the percentage of new nerve formation was 18.5% in the Scaffold/Cells/Berberine group and 0.2% in the control group. The immunohistochemistry results demonstrated that the intensity of the green color was higher in the groups with cells compared to the groups without cells. Furthermore, in the luxol staining results, all groups showed a significant improvement compared to the control group. In the Scaffold/Cells/Berberine group, fibers, and axons appeared denser, more organized, and displayed a higher intensity of blue staining. According to the results of this study, EnMSCs demonstrated efficient differentiation into NLCs. With the assistance of PAN/CS scaffolds and simultaneous administration of berberine, EnMSCs have the potential for nerve regeneration and recovery from sciatic nerve injury in the rat animal model.
Collapse
Affiliation(s)
- Aliasghar Bostani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Quintero-Espinosa DA, Velez-Pardo C, Jimenez-Del-Rio M. High Yield of Functional Dopamine-like Neurons Obtained in NeuroForsk 2.0 Medium to Study Acute and Chronic Rotenone Effects on Oxidative Stress, Autophagy, and Apoptosis. Int J Mol Sci 2023; 24:15744. [PMID: 37958728 PMCID: PMC10647258 DOI: 10.3390/ijms242115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Several efforts to develop new protocols to differentiate in in vitro human mesenchymal stromal cells (hMSCs) into dopamine (DA) neurons have been reported. We have formulated NeuroForsk 2.0 medium containing fibroblast growth factor type beta (FGFb), brain-derived neurotrophic factor (BDNF), melatonin, purmorphamine, and forskolin. We report for the first time that menstrual stromal cells (MenSCs) cultured in NeuroForsk 2.0 medium for 7 days transdifferentiated into DA-like neurons (DALNs) expressing specific DA lineage markers tyrosine hydroxylase-positive cells (TH+) and DA transporter-positive (DAT+) cells and were responsive to DA-induced transient Ca2+ influx. To test the usefulness of this medium, DALNs were exposed to rotenone (ROT), a naturally occurring organic neurotoxin used extensively to chemically induce an in vitro model of Parkinson's disease (PD), which is a movement disorder characterized by the specific loss of DA neurons. We wanted to determine whether ROT induces apoptotic cell death and autophagy pathway under acute or chronic conditions in DALNs. Here, we report that acute ROT exposure induced several molecular changes in DALNS. ROT induced a loss of mitochondrial membrane potential (ΔΨm), high expression of parkin (PRKN), and high colocalization of dynamin-related protein 1 (DRP1) with the mitochondrial translocase of the outer membrane of mitochondria 20 (TOMM20) protein. Acute ROT also induced the appearance of DJ-1Cys106-SO3, as evidenced by the generation of H2O2 and oxidative stress (OS) damage. Remarkably, ROT triggered the phosphorylation of leucine-rich repeat kinase 2 (LRRK2) at residue Ser935 and phosphorylation of α-Syn at residue Ser129, a pathological indicator. ROT induced the accumulation of lipidated microtubule-associated protein 1B-light chain 3 (LC3B), a highly specific marker of autophagosomes. Finally, ROT induced cleaved caspase 3 (CC3), a marker of activated caspase 3 (CASP3) in apoptotic DALNs compared to untreated DANLs. However, the chronic condition was better at inducing the accumulation of lysosomes than the acute condition. Importantly, the inhibitor of the LRRK2 kinase PF-06447475 (PF-475) almost completely blunted ROT-induced apoptosis and reduced ROT-induced accumulation of lysosomes in both acute and chronic conditions in DALNs. Our data suggest that LRRK2 kinase regulated both apoptotic cell death and autophagy in DALNs under OS. Given that defects in mitochondrial complex I activity are commonly observed in PD, ROT works well as a chemical model of PD in both acute and chronic conditions. Therefore, prevention and treatment therapy should be guided to relieve DALNs from mitochondrial damage and OS, two of the most important triggers in the apoptotic cell death of DALNs.
Collapse
Affiliation(s)
| | | | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (D.A.Q.-E.); (C.V.-P.)
| |
Collapse
|
5
|
Ott K, Heikkinen T, Lehtimäki KK, Paldanius K, Puoliväli J, Pussinen R, Andriambeloson E, Huyard B, Wagner S, Schnack C, Wahler A, von Einem B, von Arnim CAF, Burmeister Y, Weyer K, Seilheimer B. Vertigoheel promotes rodent cognitive performance in multiple memory tests. Front Neurosci 2023; 17:1183023. [PMID: 37325043 PMCID: PMC10264630 DOI: 10.3389/fnins.2023.1183023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Cognitive impairment associated with old age or various brain disorders may be very disabling for affected individuals, placing their carers and public health services under considerable stress. The standard-of-care drugs produce only transient improvement of cognitive impairment in older people, so the search for novel, safe and effective therapeutics that would help to reverse or delay cognitive impairment is warranted. Repurposing pharmacological therapies with well-established safety record for additional indications is a promising recent trend in drug development. Vertigoheel (VH-04), a multicomponent drug made of Ambra grisea, Anamirta cocculus L., Conium maculatum, and Petroleum rectificatum, has been successfully used for several decades in the treatment of vertigo. Here, we investigated effects of VH-04 on cognitive performance in standard behavioral tests assessing different types of memory and explored cellular and molecular underpinnings of VH-04's biological activity. Methods In the majority of behavioral experiments, namely in the spontaneous and rewarded alternation tests, passive avoidance test, contextual/cued fear conditioning, and social transmission of food preference, we examined the ability of single and repeated intraperitoneal administrations of VH-04 to improve cognitive parameters of mice and rats disrupted by the application of the muscarinic antagonist scopolamine. In addition, we also assessed how VH-04 affected novel object recognition and influenced performance of aged animals in Morris water maze. Furthermore, we also studied the effects of VH-04 on primary hippocampal neurons in vitro and mRNA expression of synaptophysin in the hippocampus. Results Administration of VH-04 positively influenced visual recognition memory in the novel object recognition test and alleviated the impairments in spatial working memory and olfactory memory caused by the muscarinic antagonist scopolamine in the spontaneous alternation and social transmission of food preference tests. In addition, VH-04 improved retention of the spatial orientation memory of old rats in the Morris water maze. In contrast, VH-04 did not have significant effects on scopolamine-induced impairments in tests of fear-aggravated memory or rewarded alternation. Experiments in vitro showed that VH-04 stimulated neurite growth and possibly reversed the age-dependent decrease in hippocampal synaptophysin mRNA expression, which implies that VH-04 may preserve synaptic integrity in the aging brain. Discussion Our findings allow a cautious conclusion that in addition to its ability to alleviate manifestations of vertigo, VH-04 may be also used as a cognitive enhancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anke Wahler
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Christine A. F. von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
6
|
Gupta S, Rawat S, Krishnakumar V, Rao EP, Mohanty S. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell Tissue Res 2022; 388:535-548. [PMID: 35316374 DOI: 10.1007/s00441-022-03615-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Mesenchymal stromal cells (MSCs) are emerging as an ideal candidate for regenerative medicine. It is known that the culture conditions impact the cellular properties of MSCs and their therapeutic behavior. Moreover, maintenance of MSCs in low oxygen tension for a short duration has shown to be beneficial for MSCs as it is similar to that of their physiological niche. However, the precise mechanism through which hypoxia pre-conditioning affects MSCs is not clear yet. Thus, in this study, we have investigated the effect of hypoxia exposure (1% O2) on tissue-specific MSCs over a period of time under serum-free culture conditions and evaluated the changes in expression of immuno-modulatory molecules and exosome biogenesis and secretion markers. It was observed that all MSCs responded differentially towards hypoxia exposure as indicated by the expression of HIF-1α. Moreover, this short-term exposure did not induce any changes in MSCs cellular morphology, proliferation rate, and surface marker profiling. In addition, we observed an enhancement in the expression of immunomodulatory factors (HLA-G, PGE-2, and IDO) after hypoxia exposure of 12 to 24 h in all tissue-specific MSCs. Interestingly, we have also observed the upregulation in exosome secretion that was further corelated to the upregulation of expression of exosome biogenesis and secretion markers (ALIX, TSG101, RAB27a, RAB27b). Though there was a differential response of MSCs where WJ-MSCs and BM-MSCs showed upregulation of these markers at 6-12 h of hypoxia pre-conditioning, while AD-MSCs showed similar changes beyond 24 h of hypoxia exposure.
Collapse
Affiliation(s)
- Suchi Gupta
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Vishnu Krishnakumar
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India.
| |
Collapse
|
7
|
Role of Nuclear-Receptor-Related 1 in the Synergistic Neuroprotective Effect of Umbilical Cord Blood and Erythropoietin Combination Therapy in Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2022; 23:ijms23052900. [PMID: 35270042 PMCID: PMC8911165 DOI: 10.3390/ijms23052900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/10/2022] Open
Abstract
Neonatal hypoxic–ischemic encephalopathy (HIE) results in neurological impairments; cell-based therapy has been suggested as a therapeutic avenue. Previous research has demonstrated the synergistically potentiated therapeutic efficacy of human umbilical cord blood (UCB) by combining recombinant human erythropoietin (EPO) treatment for recovery from HIE. However, its molecular mechanism is not entirely understood. In the present study, we analyzed the mechanisms underlying the effect of combination treatment with EPO and UCB by transcriptomic analysis, followed by gene enrichment analysis. Mouse HIE model of the neonate was prepared and randomly divided into five groups: sham, HIE, and UCB, EPO, and UCB+EPO treatments after HIE. A total of 376 genes were differentially expressed when |log2FC| ≥ 1-fold change expression values were considered to be differentially expressed between UCB+EPO and HIE. Further assessment through qRT-PCR and gene enrichment analysis confirmed the expression and correlation of its potential target, Nurr1, as an essential gene involved in the synergistic effect of the UCB+EPO combination. The results indicated the remarkable activation of Wnt/β-catenin signaling by reducing the infarct size by UCB+EPO treatment, accompanied by Nurr1 activity. In conclusion, these findings suggest that the regulation of Nurr1 through the Wnt/β-catenin pathway exerts a synergistic neuroprotective effect in UCB and EPO combination treatment.
Collapse
|
8
|
Quintero-Espinosa D, Soto-Mercado V, Quintero-Quinchia C, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Latent Tri-lineage Potential of Human Menstrual Blood-Derived Mesenchymal Stromal Cells Revealed by Specific In Vitro Culture Conditions. Mol Neurobiol 2021; 58:5194-5209. [PMID: 34269964 DOI: 10.1007/s12035-021-02442-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023]
Abstract
Human menstrual blood-derived mesenchymal stromal cells (MenSCs) have become not only an important source of stromal cells for cell therapy but also a cellular source for neurologic disorders in vitro modeling. By using culture protocols originally developed in our laboratory, we show that MenSCs can be converted into floating neurospheres (NSs) using the Fast-N-Spheres medium for 24-72 h and can be transdifferentiated into functional dopaminergic-like (DALNs, ~ 26% TH + /DAT + flow cytometry) and cholinergic-like neurons (ChLNs, ~ 46% ChAT + /VAChT flow cytometry) which responded to dopamine- and acetylcholine-triggered neuronal Ca2+ inward stimuli when cultured with the NeuroForsk and the Cholinergic-N-Run medium, respectively in a timely fashion (i.e., 4-7 days). Here, we also report a direct transdifferentiation method to induce MenSCs into functional astrocyte-like cells (ALCs) by incubation of MenSCs in commercial Gibco® Astrocyte medium in 7 days. The MSC-derived ALCs (~ 59% GFAP + /S100β +) were found to respond to glutamate-induced Ca2+ inward stimuli. Altogether, these results show that MenSCs are a reliable source to obtain functional neurogenic cells to further investigate the neurobiology of neurologic disorders.
Collapse
Affiliation(s)
- Diana Quintero-Espinosa
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia
| | - Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia
| | - Catherine Quintero-Quinchia
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University Research Center (URC), University of Antioquia (UdeA), Calle 70 no. 52-21, and Calle 62 no. 52-59, Building 1, Room 412, Medellin, Colombia.
| |
Collapse
|
9
|
Karakaş N, Kiliç Ü. Integrin α5β1 Mediated Cellular Reorganization in Human Mesenchymal Stem Cells During Neuronal Differentiation. In Vivo 2021; 35:2127-2134. [PMID: 34182488 DOI: 10.21873/invivo.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Mesenchymal stem cells (MSCs) have been widely used for yielding neurons in culture to study nervous system pathologies and develop regenerative approaches. In this study, cellular rearrangements of human MSCs related to the expression of the fibronectin common receptor integrin α5β1 and its cell surface localization during neuronal differentiation, were examined. MATERIALS AND METHODS Proliferation kinetics of neuronal induced hMSCs (hMd-Neurons) were quantified by BrdU assay, and hMd-Neurons were immunostained for neuronal marker expression. Additionally, cDNA and protein samples were collected at different time points for integrin α5β1 expression analysis. RESULTS Endogenous integrin α5β1 expression was significantly upregulated by day 6 and maintained until day 12. Cell surface localization of α5β1 integrin was increased by day 6; the integrin was internalized into the cytosol by day 12. CONCLUSION Integrin dynamics around day 6 of differentiation might be involved in neuronal differentiation and maturation or specification of hMd-Neurons.
Collapse
Affiliation(s)
- Nihal Karakaş
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; .,Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ülkan Kiliç
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| |
Collapse
|