1
|
Shao M, Chen J, Zhang F, Su Q, Lin X, Wang W, Chen C, Ren H, Zheng S, Hui S, Qin S, Ni Y, Zhong J, Yang J. 4-Octyl itaconate attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis. Ren Fail 2024; 46:2403653. [PMID: 39291665 PMCID: PMC11411562 DOI: 10.1080/0886022x.2024.2403653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease. Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy. Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions. Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayao Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiwei Wang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Suocheng Hui
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Maden M, Ider M, Or ME, Dokuzeylül B, Gülersoy E, Kılıçkaya MC, Bilgiç B, Durgut MK, İzmirli S, Iyigün SS, Telci DZ, Naseri A. The clinical efficacy of cGMP-specific sildenafil on mitochondrial biogenesis induction and renal damage in cats with acute on chronic kidney disease. BMC Vet Res 2024; 20:499. [PMID: 39478527 PMCID: PMC11526613 DOI: 10.1186/s12917-024-04345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Mitochondrial biogenesis (MB) induction has recently emerged as potential therapeutic approaches in kidney pathology and the mitochondria-targeted therapies should be investigated to improve treatment of animals with kidney diseases. This study aimed to investigate the effects of MB induction with sildenafil citrate on the cGMP/NO pathway, glomerular filtration, and reduction of kidney damage and fibrosis (TGF-β/SMAD pathway) in cats with acute on chronic kidney disease (ACKD). Thirty-three cats were divided into the non-azotemic (healthy) group (n:8) and the ACKD group (n:25), comprising different breeds, sexes, and ages. Sildenafil citrate was administered to the non-azotemic and ACKD groups (2.5 mg/kg, PO, q12 hours) for 30 days. Serum and urine NO, MDA, NGAL, KIM-1, TGF-β1, IL-18, FGF 23, PGC-1α and cGMP concentrations were measured. RESULTS Serum cGMP concentrations increased (P < 0.05) in the non-azotemic group during the 2nd (median 475.99 pmol/mL) and 3rd (median 405.01 pmol/mL) weeks of the study, whereas serum cGMP concentrations decreased in the ACKD group during the 4th(median 188.52 pmol/mL) week compared to the non-azotemic group (P < 0.05). No difference was observed in serum biomarker concentrations except NO, which increased in the 4th week (P < 0.05). The urinary concentrations of NO, MDA, PGC-1α, TGF-β1, NGAL, KIM-1, IL-18, and FGF 23 in the ACKD group were found to be higher compared to those in the non-azotemic group from the 1st to the 4th week (P < 0.05). In the ACKD group, the urine PGC-1α concentration in the 2nd (median 6.10 ng/mL) week was lower compared to that in the 0 and 1st (median 7.65 and 7.21 ng/mL, respectively) week, and the NO concentration in the 3rd (median 28.94 µmol/mL) week was lower than that in the 0th (median 37.43 µmol/mL) week (P < 0.05). CONCLUSIONS While sildenafil citrate has been determined to induce a low level of MB and to have a beneficial effect on glomerular filtration, it is observed to be ineffective in mitigating renal damage and fibrosis via the TGF-β/SMAD pathway in cats with ACKD.
Collapse
Affiliation(s)
- Mehmet Maden
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye.
| | - Merve Ider
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Mehmet Erman Or
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Banu Dokuzeylül
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Erdem Gülersoy
- Faculty of Veterinary Medicine, Department of Internal Medicine, Harran University, Şanlıurfa, Türkiye
| | - Merve Cansu Kılıçkaya
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Bengü Bilgiç
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Murat Kaan Durgut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Semih İzmirli
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Suleyman Serhat Iyigün
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Deniz Zeynep Telci
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| |
Collapse
|
3
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
5
|
Liu R, Wang J, Zhang L, Wang S, Li X, Liu Y, Yu H. GLIDR-mediated regulation of tumor malignancy and cisplatin resistance in non-small cell lung cancer via the miR-342-5p/PPARGC1A axis. BMC Cancer 2024; 24:1126. [PMID: 39256686 PMCID: PMC11385156 DOI: 10.1186/s12885-024-12845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a significant cause of cancer-related mortality, with drug resistance posing a substantial obstacle to effective therapy. LncRNAs have emerged as pivotal regulators of NSCLC progression, suggesting potential targets for cancer diagnosis and treatment. Therefore, identifying new lncRNAs as therapeutic targets and comprehending their underlying regulatory mechanisms are crucial for treating NSCLC. MATERIALS AND METHODS RNA-sequencing data from 149 lung adenocarcinoma (LUAD) patients, including 130 responders and 19 nonresponders to primary treatment, were analyzed to identify the most effective lncRNAs. The effects and regulatory pathways of the selected lncRNAs on NSCLC and cisplatin resistance were investigated. RESULTS Glioblastoma-downregulated RNA (GLIDR) was the most effective lncRNA in nonresponsive NSCLC patients undergoing primary treatment, and it was highly expressed in NSCLC patients and those with cisplatin-resistant NSCLC. Reducing GLIDR expression enhanced cisplatin sensitivity in resistant NSCLC and decreased the malignant characteristics of NSCLC. Moreover, bioinformatic analysis and luciferase assays revealed that microRNA-342-5p (miR-342-5p) directly targets GLIDR. MiR-342-5p overexpression inhibited NSCLC cell proliferation, migration, and invasion, whereas miR-342-5p inhibition promoted NSCLC malignancy, which was rescued by suppressing GLIDR. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PPARGC1A) was identified as a downstream target of miR-342-5p. PPARGC1A inhibition increased cisplatin sensitivity in resistant NSCLC. Moreover, PPARGC1A inhibition suppresses NSCLC malignancy, whereas PPARGC1A overexpression promoted it. Furthermore, GLIDR overexpression was found to counteract the inhibitory effects of miR-342-5p on PPARGC1A, and increased PPARGC1A expression reversed the inhibition of NSCLC malignancies caused by decreased GLIDR. CONCLUSIONS GLIDR is a prognostic marker for cisplatin treatment in NSCLC and a therapeutic target in cisplatin-resistant NSCLC. GLIDR promotes NSCLC progression by sponging miR-342-5p to regulate PPARGC1A expression and regulates cisplatin resistance through the miR-342-5p/PPARGC1A axis, underscoring its potential as a therapeutic target in cisplatin-resistant NSCLC.
Collapse
Affiliation(s)
- Ruihua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lichun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
6
|
Wang L, Tao Y, Wang X, Gan Y, Zeng Y, Li S, Zhu Q. Aqueous extract of Phellinus igniarius ameliorates hyperuricemia and renal injury in adenine/potassium oxonate-treated mice. Biomed Pharmacother 2024; 177:116859. [PMID: 38879892 DOI: 10.1016/j.biopha.2024.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Phellinus igniarius is an important medicinal and edible fungus with diverse biological activities. This study aimed to investigate the effects of aqueous extract from P. igniarius (API) on the treatment of hyperuricemia (HUA) and related kidney damage. The chemical constituents of API were determined. The therapeutic effects of API on HUA and renal injury were assessed in adenine/potassium oxonate (PO)-treated mice. The constituent analysis of API revealed a predominance of polysaccharides (33.4 %), followed by total flavonoids (9.1 %), and total triterpenoids (3.5 %). Compared to control, the adenine/PO treatment greatly elevated serum uric acid (UA) levels but this elevation was attenuated by API. In the liver, the expression and activity of xanthine oxidase (XOD) were increased by HUA which were diminished by API. Furthermore, API was found to enhance the expression of UA transporter ABCG2 in the kidney and intestine of HUA mice, suggesting elevating UA excretion. Additionally, API ameliorated HUA-induced renal injury, as indicated by reduced serum BUN/creatinine levels, decreased glomerular and tubular damage, and lowered fibrotic levels. Network pharmacology analysis predicted that P. igniarius may regulate mitochondrial function to improve HUA-related renal injury. This prediction was then substantialized by the API-induced upregulation of NAD+/NADH ratio, ATP level, SOD2 activity, and expression of SOD2/PCG-1α/PPARγ in the kidney of HUA mice. Our results demonstrate that API may effectively ameliorate HUA by reducing UA production in the liver and enhancing UA excretion in the kidney and intestine, and it might be a potential therapy to HUA-related renal injury.
Collapse
Affiliation(s)
- Lei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yufeng Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuesong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhan Gan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
7
|
Rodrigo N, Chen H, Pollock CA, Glastras SJ. Kidney outcomes are altered by preconception weight modulation in rodent mothers with obesity. Sci Rep 2024; 14:17363. [PMID: 39075112 PMCID: PMC11286933 DOI: 10.1038/s41598-024-68234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Obesity increases the risk of chronic kidney disease. We have previously demonstrated the benefits of preconception maternal weight loss on fertility and pregnancy outcomes in a mouse model of maternal obesity. Here, we elucidate if preconception weight loss, either by diet modification or the glucose-like peptide 1 agonist liraglutide, used in the treatment of diabetes and obesity, improves maternal kidney outcomes in late gestation. C57BL/6 female mice were fed either a high-fat-diet (HFD) or a chow (control) diet for 8 weeks. To induce pre-pregnancy weight loss, HFD-fed dams were switched to chow diet (HFD-C) or administered liraglutide (0.3 mg/kg subcutaneous) whilst continuing on HFD (HFD-L). Liraglutide was discontinued one week prior to mating. HFD-V mice continued on HFD, with saline injections. A group of HFD-fed dams were 'diet switched' to chow after conception (post-conception, HFD-PC). Maternal body weight and glucose tolerance were measured: (1) preconception and (2) during late gestation followed by blood, urine and kidney collection. Serum creatinine, urinary creatinine and albumin, kidney tissue gene expression and protein were measured. In the preconception period, HFD-L and HFD-C mothers have lower urine albumin:creatinine ratios (UACR) and fatty acid synthase (FAS) protein expression (P < 0.005 vs. HFD-V). At late gestation, kidneys of HFD-V and HFD-PC dams have increased gene expression of insulin receptor and FAS (P < 0.05) and higher UACR compared to controls (P < 0.01). In the HFD-PC group, kidneys show increased mRNA and protein expression of metabolic and oxidative stress markers (FAS, 8-OHdG vs. control, P < 0.05, P < 0.0001 respectively). The preconception intervention groups with liraglutide, or diet change show reduced oxidative stress (protein expression of 8-OHdG, P < 0.05 vs. HFD), mRNA and protein expression of FAS (P < 0.05 vs. HFD), protein expression of fibrosis markers (collagen IV, fibronectin vs. HFD, P < 0.05), and UACR (P < 0.05 vs. HFD). This study suggests that preconception weight loss benefits maternal kidney health during pregnancy, superior to diet intervention once already pregnant.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia.
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, Australia.
- Department of Diabetes and Endocrinology, Nepean Hospital, Kingswood, NSW, Australia.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah J Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, Australia
| |
Collapse
|
8
|
Song X, Pickel L, Sung HK, Scholey J, Pei Y. Reprogramming of Energy Metabolism in Human PKD1 Polycystic Kidney Disease: A Systems Biology Analysis. Int J Mol Sci 2024; 25:7173. [PMID: 39000280 PMCID: PMC11240917 DOI: 10.3390/ijms25137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| |
Collapse
|
9
|
Feng L, Lin Z, Tang Z, Zhu L, Xu S, Tan X, Wang X, Mai J, Tan Q. Emodin improves renal fibrosis in chronic kidney disease by regulating mitochondrial homeostasis through the mediation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α). Eur J Histochem 2024; 68:3917. [PMID: 38742403 PMCID: PMC11128849 DOI: 10.4081/ejh.2024.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-β1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-β1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.
Collapse
Affiliation(s)
- Liuchang Feng
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Zaoqiang Lin
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Zeyong Tang
- Department of Nephrology, Guangzhou University of Chinese Medicine, Guangzhou.
| | - Lin Zhu
- Department of Nephrology, Shenzhen Hospital; Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Shu Xu
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen.
| | - Xi Tan
- Medicopsychology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Xinyuan Wang
- Medicopsychology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing.
| | - Jianling Mai
- Department of Hemodialysis, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou.
| | - Qinxiang Tan
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| |
Collapse
|
10
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
11
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
12
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
13
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Wang W, Wu D, Ding J, Wang J, Meng J, Ming K, Li S, Qiu T, Liu J, Yang DA. Modified rougan decoction attenuates hepatocyte apoptosis through ameliorating mitochondrial dysfunction by upregulated SIRT1/PGC-1α signaling pathway. Poult Sci 2023; 102:102992. [PMID: 37595499 PMCID: PMC10457587 DOI: 10.1016/j.psj.2023.102992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
The modified rougan decoction (MRGD) compound formula has been proven a certain ability to relieve lipopolysaccharide-enrofloxacin (LPS-ENR)-induced liver oxidant injury in chickens. Recent advances have shown that mitochondrial dysfunction affects the development of many diseases, leading to increased interest in exploring its effects. Using LPS-ENR-injured in vivo and in vitro to further evaluate the effects of MRGD on mitochondrial structure and function, and emphasized further investigation of its molecular mechanism. After LPS-ENR treatment, the levels of inflammation and apoptosis markers were increased, along with higher mitochondrial injury. Results showed that MRGD reduced inflammatory factors expression and inhibited the nuclear translocation of NF-κB P65, reducing the inflammatory response in vivo and in vitro. Additionally, MRGD pretreatment inhibited mitochondrial dysfunction, mitochondrial oxidative stress, and mitochondrial pathway apoptosis by maintaining mitochondrial structure and function. Moreover, treatment with the inhibitor EX527 showed that MRGD promoted mitochondrial biogenesis ability through the SIRT1/PGC-1α pathway and interfered with mitochondrial dynamics, and activate Nrf2. In summary, MRGD played a key role in promoting mitochondrial function and thus alleviating hepatocyte apoptosis in vivo and in vitro at least in part.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinli Wang
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, PR China
| | - Jinwu Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Ming
- College of Life Science, Hubei University, Wuhan 430062, PR China
| | - Siya Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxin Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Shlykova O, Izmailova O, Kabaliei A, Palchyk V, Shynkevych V, Kaidashev I. PPARG stimulation restored lung mRNA expression of core clock, inflammation- and metabolism-related genes disrupted by reversed feeding in male mice. Physiol Rep 2023; 11:e15823. [PMID: 37704580 PMCID: PMC10499569 DOI: 10.14814/phy2.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian rhythm system regulates lung function as well as local and systemic inflammations. The alteration of this rhythm might be induced by a change in the eating rhythm. Peroxisome proliferator-activated receptor gamma (PPARG) is a key molecule involved in circadian rhythm regulation, lung functions, and metabolic processes. We described the effect of the PPARG agonist pioglitazone (PZ) on the diurnal mRNA expression profile of core circadian clock genes (Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, and Per2) and metabolism- and inflammation-related genes (Nfe2l2, Pparg, Rela, and Cxcl5) in the male murine lung disrupted by reversed feeding (RF). In mice, RF disrupted the diurnal expression pattern of core clock genes. It decreased Nfe2l2 and Pparg and increased Rela and Cxcl5 expression in lung tissue. There were elevated levels of IL-6, TNF-alpha, total cells, macrophages, and lymphocyte counts in bronchoalveolar lavage (BAL) with a significant increase in vascular congestion and cellular infiltrates in male mouse lung tissue. Administration of PZ regained the diurnal clock gene expression, increased Nfe2l2 and Pparg expression, and reduced Rela, Cxcl5 expression and IL-6, TNF-alpha, and cellularity in BAL. PZ administration at 7 p.m. was more efficient than at 7 a.m.
Collapse
|
17
|
Sheng J, Li X, Lei J, Gan W, Song J. Mitochondrial quality control in acute kidney disease. J Nephrol 2023; 36:1283-1291. [PMID: 36800104 DOI: 10.1007/s40620-023-01582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Acute kidney disease (AKD) involves multiple pathogenic mechanisms, including maladaptive repair of renal cells that are rich in mitochondria. Maintenance of mitochondrial homeostasis and quality control is crucial for normal kidney function. Mitochondrial quality control serves to maintain mitochondrial function under various conditions, including mitochondrial bioenergetics, mitochondrial biogenesis, mitochondrial dynamics (fusion and fission) and mitophagy. To date, increasing evidence indicates that mitochondrial quality control is disrupted when acute kidney disease develops. This review describes the mechanisms of mitochondria quality control in acute kidney disease, aiming to provide clues to help design new clinical treatments.
Collapse
Affiliation(s)
- Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xian Li
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - WeiHua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
18
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
19
|
González-Soria I, Soto-Valadez AD, Martínez-Rojas MA, Ortega-Trejo JA, Pérez-Villalva R, Gamba G, Sánchez-Navarro A, Bobadilla NA. SerpinA3K Deficiency Reduces Oxidative Stress in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24097815. [PMID: 37175519 PMCID: PMC10177890 DOI: 10.3390/ijms24097815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
We previously showed that SerpinA3K is present in urine from rats and humans with acute kidney injury (AKI) and chronic kidney disease (CKD). However, the specific role of SerpinA3K during renal pathophysiology is unknown. To begin to understand the role of SerpinA3K on AKI, SerpinA3K-deficient (KOSA3) mice were studied 24 h after inducing ischemia/reperfusion (I/R) and compared to wild type (WT) mice. Four groups were studied: WT+S, WT+IR, KOSA3+S, and KOSA3+IR. As expected, I/R increased serum creatinine and BUN, with a GFR reduction in both genotypes; however, renal dysfunction was ameliorated in the KOSA3+IR group. Interestingly, the increase in UH2O2 induced by I/R was not equally seen in the KOSA3+IR group, an effect that was associated with the preservation of antioxidant enzymes' mRNA levels. Additionally, FOXO3 expression was initially greater in the KOSA3 than in the WT group. Moreover, the increase in BAX protein level and the decrease in Hif1a and Vegfa induced by I/R were not observed in the KOSA3+IR group, suggesting that these animals have better cellular responses to hypoxic injury. Our findings suggest that SerpinA3K is involved in the renal oxidant response, HIF1α/VEGF pathway, and cell apoptosis.
Collapse
Affiliation(s)
- Isaac González-Soria
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Axel D Soto-Valadez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Miguel Angel Martínez-Rojas
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Juan Antonio Ortega-Trejo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Andrea Sánchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
20
|
Ruan X, Cui G, Li C, Sun Z. Pan-Cancer Analysis Reveals PPRC1 as a Novel Prognostic Biomarker in Ovarian Cancer and Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040784. [PMID: 37109742 PMCID: PMC10146118 DOI: 10.3390/medicina59040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: As is well understood, peroxisome proliferator-activated receptor gamma cofactor-related 1 (PPRC1) plays a central role in the transcriptional control of the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) process, yet its critical role in pan-cancer remains unclear. Materials and Methods: In this paper, the expression levels of PPRC1 in different tumor tissues and corresponding adjacent normal tissues were analyzed based on four databases: The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), and Tumor Immune Estimation Resource (TIMER). Meanwhile, the prognostic value of PPRC1 was inferred using Kaplan-Meier plotter and forest-plot studies. In addition, the correlation between PPRC1 expression and tumor immune cell infiltration, immune checkpoints, and the tumor-stemness index was analyzed using TCGA and TIMER databases. Results: According to our findings, the expression level of PPRC1 was found to be different in different cancer types and there was a positive correlation between PPRC1 expression and prognosis in several tumor types. In addition, PPRC1 expression was found to be significantly correlated with immune cell infiltration, immune checkpoints, and the tumor-stemness index in both ovarian and hepatocellular carcinoma. Conclusions: PPRC1 demonstrated promising potential as a novel biomarker in pan-cancer due to its potential association with immune cell infiltration, expression of immune checkpoints, and the tumor-stemness index.
Collapse
Affiliation(s)
- Xingqiu Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Integrated Chinese and Western Medicine, Red Cross Hospital of Yulin City, Yulin 537000, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Changyu Li
- Department of Rehabilitation Medicine, Red Cross Hospital of Yulin City, Yulin 537000, China
| | - Zhiguang Sun
- The Second Clinical Medical Collegel, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
22
|
Zhang J, Chen B, Zou K. Effect of ketogenic diet on exercise tolerance and transcriptome of gastrocnemius in mice. Open Life Sci 2023; 18:20220570. [PMID: 36852401 PMCID: PMC9961969 DOI: 10.1515/biol-2022-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 02/25/2023] Open
Abstract
Ketogenic diet (KD) has been proven to be an optional avenue in weight control. However, the impacts of KD on muscle strength and exercise endurance remain unclear. In this study, mice were randomly allocated to normal diet and KD groups to assess their exercise tolerance and transcriptomic changes of the gastrocnemius. KD suppressed body-weight and glucose levels and augmented blood ketone levels of mice. The total cholesterol, free fatty acids, and β-hydroxybutyric acid levels were higher and triglycerides and aspartate aminotransferase levels were lower in KD group. There was no notable difference in running distance/time and weight-bearing swimming time between the two groups. Furthermore, KD alleviated the protein levels of PGC-1α, p62, TnI FS, p-AMPKα, and p-Smad3, while advancing the LC3 II and TnI SS protein levels in the gastrocnemius tissues. RNA-sequencing found that 387 differentially expressed genes were filtered, and Cpt1b, Acadl, Eci2, Mlycd, Pdk4, Ptprc, C1qa, Emr1, Fcgr3, and Ctss were considered to be the hub genes. Our findings suggest that KD effectively reduced body weight but did not affect skeletal muscle strength and exercise endurance via AMPK/PGC-1α, Smad3, and p62/LC3 signaling pathways and these hub genes could be potential targets for muscle function in KD-treated mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Police Physical Training, Zhejiang Police Collage, Zhejiang, China
| | - Bo Chen
- Department of Physical Education, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Ke Zou
- School of Physical Education, Huaibei Normal University, Anhui, China
| |
Collapse
|
23
|
Rambout X, Cho H, Blanc R, Lyu Q, Miano JM, Chakkalakal JV, Nelson GM, Yalamanchili HK, Adelman K, Maquat LE. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol Cell 2023; 83:186-202.e11. [PMID: 36669479 PMCID: PMC9951270 DOI: 10.1016/j.molcel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Roméo Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qing Lyu
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph M Miano
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
24
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Wu MF, Zhang GD, Liu TT, Shen JH, Cheng JL, Shen J, Yang TY, Huang C, Zhang L. Hif-2α regulates lipid metabolism in alcoholic fatty liver disease through mitophagy. Cell Biosci 2022; 12:198. [PMID: 36476627 PMCID: PMC9730692 DOI: 10.1186/s13578-022-00889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Disordered lipid metabolism plays an essential role in both the initiation and progression of alcoholic fatty liver disease (AFLD), and fatty acid β-oxidation is increasingly considered as a crucial factor for controlling lipid metabolism. Hif-2α is a member of the Hif family of nuclear receptors, which take part in regulating hepatic fatty acid β-oxidation. However, its functional role in AFLD and the underlying mechanisms remain unclear. RESULTS Hif-2α was upregulated in EtOH-fed mice and EtOH-treated AML-12 cells. Inhibition or silencing of Hif-2α led to increased fatty acid β-oxidation and BNIP3-dependent mitophagy. Downregulation of Hif-2α activates the PPAR-α/PGC-1α signaling pathway, which is involved in hepatic fatty acid β-oxidation, by mediating BNIP3-dependent mitophagy, ultimately delaying the progression of AFLD. CONCLUSIONS Hif-2α induces liver steatosis, which promotes the progression of AFLD. Here, we have described a novel Hif-2α-BNIP3-dependent mitophagy regulatory pathway interconnected with EtOH-induced lipid accumulation, which could be a potential therapeutic target for the prevention and treatment of AFLD.
Collapse
Affiliation(s)
- Mei-fei Wu
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.16821.3c0000 0004 0368 8293Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201400 China
| | - Guo-dong Zhang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Tong-tong Liu
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jun-hao Shen
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jie-ling Cheng
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jie Shen
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Tian-yu Yang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Cheng Huang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Lei Zhang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
26
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Wu H, Lu C, Li X, Xu X, Wu S. Insufficient sleep disrupts glucose metabolism during pregnancy by inhibiting PGC-1α. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1241. [PMID: 36544637 PMCID: PMC9761155 DOI: 10.21037/atm-22-5551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Background Gestational diabetes mellitus (GDM) impacted about 17 million pregnancies globally and predisposes both the mother and her offspring to metabolic disorders. Insufficient sleep has been shown to be associated with GDM. This study aimed to explore the molecular link between sleep and GDM. Methods The sleep of pregnant mice was disturbed with motion a rod and the mice received either dimethyl sulfoxide (DMSO) or ZLN005. Insulin resistance was assessed by intraperitoneal glucose tolerance test (GTT). Adenosine triphosphate (ATP), reactive oxygen species (ROS), and cytokines were measured with respective commercial kits. Gene expression was analyzed with quantitative polymerase chain reaction (qPCR), western blot, and/or immunohistochemistry (IHC). Results Sleep disturbance increased blood glucose level and insulin resistance, increased ROS and inflammatory cytokines, and reduced ATP level in pregnant mice. The expression levels of PGC-1α and downstream metabolic genes and antioxidant genes in pregnant mouse muscle were inhibited by sleep disturbance. ZLN005 promoted expression of PGC-1α and its target genes, increased muscle ATP level, decreased muscle ROS, and reduced blood glucose level and insulin resistance in sleep disturbed pregnant mice, indicating that PGC-1α played a critical role in sleep insufficiency caused GDM and might be a target for intervention. Conclusions PGC-1 was a key player in the sleep disorder GDM and might be a target for treatment.
Collapse
Affiliation(s)
- Hao Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Cong Lu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
28
|
Congenital adiponectin deficiency mitigates high-fat-diet-induced obesity in gonadally intact male and female, but not in ovariectomized mice. Sci Rep 2022; 12:16668. [PMID: 36198723 PMCID: PMC9534911 DOI: 10.1038/s41598-022-21228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological literature indicates that women are less susceptible to type II diabetes (T2D) than males. The general consensus is that estrogen is protective, whereas its deficiency in post-menopause is associated with adiposity and impaired insulin sensitivity. However, epidemiological data suggests that males are more prone to developing T2D, and at a lower BMI, compared to females during post-menopausal years; suggesting that another factor, other than estrogen, protects females. We proposed to determine if adiponectin (APN) serves as this protective factor. An initial experiment was performed in which gonadally intact male and female mice were fed either a purified low-fat diet (LFD) or high-fat diet (HFD) (40% kcals from fat) for 16 weeks. An additional group of HFD ovariectomy (OVX) mice were included to assess estrogen deficiency’s impact on obesity. Body composition, adipose tissue inflammation, ectopic lipid accumulation as well as glucose metabolism and insulin resistance were assessed. In corroboration with previous data, estrogen deficiency (OVX) exacerbated HFD-induced obesity in female mice. However, despite a higher body fat percentage and a similar degree of hepatic and skeletal muscle lipid accumulation, female OVX HFD-fed mice exhibited enhanced insulin sensitivity relative to HFD-fed males. Therefore, a subsequent HFD experiment was performed utilizing male and female (both gonadally intact and OVX) APN deficient mice (APN−/−) and wildtype littermates to determine if APN is the factor which protects OVX females from the similar degree of metabolic dysfunction as males in the setting of obesity. Indirect calorimetry was used to determine observed phenotype differences. APN deficiency limited adiposity and mitigated HFD-induced insulin resistance and adipose tissue inflammation in gonadally intact male and female, but not in OVX mice. Using indirect calorimetry, we uncovered that slight, but non-statistically significant differences in food intake and energy expenditure leading to a net difference in energy balance likely explain the reduced body weight exhibited by male APN-deficient mice. In conclusion, congenital APN deficiency is protective against obesity development in gonadally intact mice, however, in the setting of estrogen deficiency (OVX) this is not true. These findings suggest that gonadal status dictates the protective effects of congenital APN deficiency in the setting of HFD-induced obesity.
Collapse
|
29
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
30
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
31
|
Ngadiarti I, Nurkolis F, Handoko MN, Perdana F, Permatasari HK, Taslim NA, Mayulu N, Wewengkang DS, Noor SL, Batubara SC, Tanner MJ, Sabrina N. Anti-aging potential of cookies from sea grapes in mice fed on cholesterol- and fat-enriched diet: in vitro with in vivo study. Heliyon 2022; 8:e09348. [PMID: 35521505 PMCID: PMC9065618 DOI: 10.1016/j.heliyon.2022.e09348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
This study determines the effect of cookies made from sea grapes (Caulerpa racemosa) on PGC-1α, total cholesterol, and blood glucose levels on mice fed with a Cholesterol- and Fat-Enriched Diet (CFED). The antioxidant activity, tyrosinase inhibition, α-glucosidase, and α-amylase inhibition is also analyzed in order to assess the in vitro anti-aging potential of sea grapes cookies. Forty male Mus muscullus albino mice weighing 20 g–30 g were used and randomly distributed into four groups of ten animals each. Group A served as a normal control (given a standard dry pellet diet), Group B was given CFED only, and mice in Groups C and D were given CFED with 100 mg and 200 mg/20 g body weight of sea grapes cookies, respectively for 4 weeks. In vitro study shows that the percentage of inhibition activity of antioxidant, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 45.65 ± 1.50, 8.95 ± 0.06, 21.31 ± 0.98, 77.12 ± 4.67 and 70.94 ± 0.98, respectively. This study found that group D had better activity in lowering blood glucose than group C (p < 0.0001). In addition, although there was not found significant difference between groups C and D in blood cholesterol reduction and PGC-1α (p = 0.1482), both groups experienced the same effect in total cholesterol reduction and PGC-1α in mice (significantly, p < 0001). Thus, we conclude that sea grapes cookies are proven to improve PGC-1α, total cholesterol, and blood glucose levels in mice fed with CFED. Hence, sea grapes cookies is a potential anti-aging novel-functional food.
Collapse
Affiliation(s)
- Iskari Ngadiarti
- Nutrition and Dietetics, Health Polytechnic of Jakarta II, Jakarta, 12120, Indonesia
- Corresponding author.
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, 55281, Indonesia
| | | | - Fachruddin Perdana
- Nutrition Department, Faculty of Medicince, University of Sultan Ageng Tirtayasa, Serang, 42118, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nelly Mayulu
- Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Defny Silvia Wewengkang
- Pharmacy Department, Faculty of Mathematics and Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Sutamara Lasurdi Noor
- Clinical and Public Health Nutrition Programme, University College London, London, WC1E 6BT, United Kingdom
| | | | | | - Nindy Sabrina
- Nutrition Department, Sahid University of Jakarta, South Jakarta, 12870, Indonesia
| |
Collapse
|
32
|
Zheng K, Chen S, Hu X. Peroxisome Proliferator Activated Receptor Gamma Coactivator-1 Alpha: A Double-Edged Sword in Prostate Cancer. Curr Cancer Drug Targets 2022; 22:541-559. [PMID: 35362394 DOI: 10.2174/1568009622666220330194149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α/PPARGC1A) is a pivotal transcriptional coactivator involved in the regulation of mitochondrial metabolism, including biogenesis and oxidative metabolism. PGC-1α is finely regulated by AMP-activated protein kinases (AMPKs), the role of which in tumors remains controversial to date. In recent years, a growing amount of research on PGC-1α and tumor metabolism has emphasized its importance in a variety of tumors, including prostate cancer (PCA). Compelling evidence has shown that PGC-1α may play dual roles in promoting and inhibiting tumor development under certain conditions. Therefore, a better understanding of the critical role of PGC-1α in PCA pathogenesis will provide new insights into targeting PGC-1α for the treatment of this disease. In this review, we highlight the procancer and anticancer effects of PGC-1α in PCA and aim to provide a theoretical basis for targeting AMPK/PGC-1α to inhibit the development of PCA. In addition, our recent findings provide a candidate drug target and theoretical basis for targeting PGC-1α to regulate lipid metabolism in PCA.
Collapse
Affiliation(s)
- Kun Zheng
- Department of urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| | - Suzhen Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People\'s Hospital, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| |
Collapse
|
33
|
Kong S, Cai B, Nie Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics 2022; 297:621-633. [PMID: 35290519 DOI: 10.1007/s00438-022-01878-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/27/2022] [Indexed: 12/30/2022]
Abstract
The discovery and interpretation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein in mitochondrial biogenesis, skeletal muscle and adipose tissue development has broad research prospects, so it is important to review the related studies of PGC-1α in detail and comprehensively. PGC-1α is a protein composed of 798 amino acids (aa) with a molecular weight of about 91 kDa. PGC-1α is involved in the operation of the respiratory chain by combining with deacetylase and phosphorylase to bind some nuclear receptors. In addition, PGC-1α affects skeletal muscle and adipose metabolism by regulating mitochondrial oxidative phosphorylation. Recently, new data suggest that regulating mitochondrial metabolism in adipose tissue may be an effective adjunct to the treatment of obesity. In addition, dietary resveratrol, which has an effective anti-obesity effect, has been shown to promote mitochondrial biosynthesis by activating AMPK/PGC-1α axis, as well as to regenerate muscle damaged by obesity. In this review, we combined previous studies to explore the latest studies, showing that PGC-1α can regulate mitochondrial biogenesis and is regulated by AMPK and SIRT1. Furthermore, PGC-1α is a favored protein, which not only regulates muscle fiber type, inhibits muscle atrophy, but also participates in browning of white adipose tissue (WAT) and regulates body heat production. So, we concluded that PGC-1α is a key gene in mitochondrial biogenesis and plays an important role in the regulation and regulation of mitochondrial biogenesis along with other genes involved in the process. Meanwhile, PGC-1α acts as a core metabolic regulator in adipose tissue and skeletal muscle. This review comprehensively summarizes a large number of research findings. First, the role of PGC-1α in mitochondrial biogenesis was clarified, and then the key role of PGC-1α in the development of skeletal muscle and adipose tissue was reevaluated. Furthermore, the role of PGC-1α in some human diseases was discussed. Finally, the role of PGC-1α as a major gene in poultry was pointed out, and the future research direction was proposed.
Collapse
Affiliation(s)
- Shaofen Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Bolin Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
34
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
35
|
Li D, Liu G, Wu Y. RORA alleviates LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription. Clin Exp Nephrol 2022; 26:512-521. [PMID: 35195816 PMCID: PMC9114077 DOI: 10.1007/s10157-022-02184-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the effect of RORA on LPS-induced renal epithelial cell apoptosis and the underlying mechanism. METHODS LPS-treated HK-2 cells were established as a cellular model of acute kidney injury. The expression of RORA or/and PGC-1α in LPS-induced HK-2 cells was altered by transfection. qRT-PCR and Western blotting were used to detect the expression changes of RORA and PGC-1α. ELISA was performed to detect the expression of IL-1β and IL-6 and the activity of caspase-3. Western blotting was applied for visualization of cleaved caspase-3. CCK-8 and flow cytometry were used to assess cell proliferation and apoptosis. Dual-luciferase reporter and ChIP-qPCR were utilized to verify the binding of RORA to PGC-1α promoter. RESULTS LPS treatment decreased the expression of RORA and PGC-1α and increased that of cleaved caspase-3 in HK-2 cells. Also, LPS treatment inhibited HK-2 cell proliferation and promoted HK-2 cell apoptosis and secretion of IL-1β and IL-6. Overexpression of RORA or PGC-1α eliminated the adverse effects of LPS treatment in HK-2 cells. RORA drove the transcription of PGC-1α by binding PGC-1α promoter. Knockdown of PGC-1α offset the reduction in HK-2 cell injury caused by overexpression of RORA. CONCLUSION RORA reduces LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription.
Collapse
Affiliation(s)
- Dayong Li
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Guanlan Liu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Yundou Wu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Ehrlich KC, Deng HW, Ehrlich M. Epigenetics of Mitochondria-Associated Genes in Striated Muscle. EPIGENOMES 2021; 6:1. [PMID: 35076500 PMCID: PMC8788487 DOI: 10.3390/epigenomes6010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Striated muscle has especially large energy demands. We identified 97 genes preferentially expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2, COX7A1, and COQ10A). Surprisingly, the 3' end of the 1.38 Mb PRKN (PARK2) gene (involved in mitophagy and linked to juvenile Parkinson's disease) displayed skeletal muscle/myoblast-specific enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin. We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A (PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and metabolism. The tissue specificity of this gene's four alternative promoters, including a muscle-associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs that give new insights into transcription control for this medically important set of genes.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
37
|
Liang W, Lan Y, Chen C, Song M, Xiao J, Huang Q, Cao Y, Ho CT, Lu M. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34657531 DOI: 10.1080/10408398.2021.1991883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal glucose homeostasis is linked to a variety of metabolic syndromes, such as insulin resistance, obesity, type-2 diabetes mellitus, hypertension and cardiovascular diseases. Maintenance of normal glucose homeostasis is important for the body to keep normal biological functions. As the major bioactive ingredient in chili peppers responsible for the pungent flavor, capsaicin has been reported to effectively improve glucose homeostasis with low cytotoxicity. In this review, the modulating effects of capsaicin on glucose homeostasis in cell models, animal models and human trials are summarized through both TRPV1 dependent and TRPV1 independent pathways. The relevant molecular mechanisms underlying its regulatory effects are also evaluated. Understanding the effects and mechanisms of capsaicin on glucose metabolism could provide theoretical evidence for its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Wanxia Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Transcriptome analysis to reveal the mechanism of the effect of Echinops latifolius polysaccharide B on palmitate-induced insulin-resistant. Biomed Pharmacother 2021; 143:112203. [PMID: 34563954 DOI: 10.1016/j.biopha.2021.112203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
Hepatic insulin resistance is a crucial pathological process in type 2 diabetes mellitus (T2DM) associated with visceral adiposity and metabolic disorders. Echinops latifolius polysaccharide B (ETPB), a polysaccharide extracted from Echinops latifolius Tausch, increases insulin sensitivity in the high-fat diet-fed and STZ induced SD rat model and even prevented hepatic metabolic disorders. However, the mechanism by which ETPB improves carbohydrate and lipid metabolisms in the liver with insulin resistance remains largely unknown. In the present work, an lnsulin resistance cell model (IR-HepG2) was established. Glucose consumption, glycogen content, triglycerides (TG), and free fatty acids (FFAs) levels were detected. The result revealed that the intervention of ETPB significantly increased glucose consumption and glycogen synthesis and reduced FFAs and TG production in IR-HepG2 cells. Further, we also employed RNA-seq to identify differentially expressed miRNAs (DEMs) and mRNAs (DEGs) with a fold change of ≥ 1.5 and p-value of <0.05. Finally, we identified 1028, 682, 382, 1614, 519 and 825 DEGs, and 71, 113, 94, 68, 52 and 38 DEMs in different comparisons, respectively. Based on a short time-series expression miner (STEM) analysis, six profiles were chosen for further analysis. Seventeen insulin resistance-associated dynamic DEGs were identified during ETPB stimulation. Based on these dynamic DEGs, the related miRNAs were acquired from DEMs, and an integrated miRNA-mRNA regulatory network was subsequently constructed. Besides, some DEGs and DEMs were validated using qPCR. This study provides transcriptomic evidence of the molecular mechanism involved in HepG2 insulin resistance, leading to the discovery of miRNA-based target therapies for ETPB.
Collapse
|
39
|
Liu T, Ma Q, Li W, Hu Y, Yang J, Yao Q. Ubiquilin 1 suppresses the cancer stem cell-like traits of non-small cell lung cancer cells by regulating reactive oxygen species homeostasis. Bioengineered 2021; 12:7143-7155. [PMID: 34546848 PMCID: PMC8806721 DOI: 10.1080/21655979.2021.1979353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer stem cell (CSC) has been confirmed to trigger tumor occurrence and progression and CSC can develop strategies to maintain a lower reactive oxygen species (ROS) level compared to cancer cells. However, the mechanisms contributing to ROS homeostasis in CSC are still lacking key elements. In the current study, we found that reductive redox states and ROS levels were suppressed in non-adherent spheres formed by non-small cell lung cancer (NSCLC) cells, which were confirmed to hold CSC-like traits. However, mitochondria DNA content and cellular oxygen consumption rate analyses revealed fewer numbers of mitochondria in NSCLC spheres. Further exploration attributed this result to decreased mitochondrial biogenesis, likely resulted from the accelerated degradation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Mechanistic studies indicated that Ubiquilin 1 (UBQLN1) increased PGC1α protein stability via reducing the ubiquitination of PGC1α protein. Moreover, UBQLN1 was lowly expressed in NSCLC spheres compared to that in parental NSCLC cells and UBQLN1 overexpression suppressed the CSC-like traits of NSCLC cells, which was characterized as the decrease of ALDH1 activity, sphere-formation ability, and CSC marker expression. Finally, clinical investigations further demonstrated that UBQLN1 level was positively correlated with patient’s survival of lung adenocarcinoma, but not squamous cell carcinoma of lung. Taken together, our results revealed a novel mechanism involving ROS homeostasis and mitochondrial biogenesis in non-small cell lung CSCs, which may provide novel potential targets and methods for NSCLC patients.
Collapse
Affiliation(s)
- Ting Liu
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| | - Qianqian Ma
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| | - Wenjie Li
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| | - Yan Hu
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| | - Jun Yang
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| | - Qi Yao
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
40
|
Permatasari HK, Nurkolis F, Augusta PS, Mayulu N, Kuswari M, Taslim NA, Wewengkang DS, Batubara SC, Ben Gunawan W. Kombucha tea from seagrapes ( Caulerpa racemosa) potential as a functional anti-ageing food: in vitro and in vivo study. Heliyon 2021; 7:e07944. [PMID: 34541352 PMCID: PMC8436079 DOI: 10.1016/j.heliyon.2021.e07944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
This study wants to investigate the effects of kombucha tea based on seagrapes on blood glucose levels, total cholesterol, and PGC-1α in Swiss albino mice that were given cholesterol- and fat-enriched diets (CFED). Anti-glycation, tyrosinase inhibitory, and α-glucosidase inhibitory activity were also determined. Forty male swiss webster albino mice weighing between 20 g–30 g were used for this study. Animals were distributed in random into 4 groups of 10 animals each; group A served as normal control (received standard dry pellet diet), group B were fed on CFED for 4 weeks, and groups C and D were fed on CFED and were administered 150 and 300 mg/kg of kombucha tea from seagrapes (Caulerpa racemosa) (p.o.). In vitro study show that the activity of anti-glycation, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 62.79 ± 0.78, 9.05 ± 0.16, 27.14 ± 1.62, 90.42 ± 0.77, and 80.44 ± 1.00, respectively. Group C has a better activity in increasing PGC-1-alpha serum in mice than group D (p < 0.05). There were no meaningful differences between group C and D in blood cholesterol and blood glucose reduction (p = 0.222), both groups have the same effect in lowering total cholesterol and blood glucose in mice. In conclusion, kombucha tea from seagrapes has potential as an anti-ageing functional food.
Collapse
Affiliation(s)
- Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
| | | | - Nelly Mayulu
- Nutrition, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Mury Kuswari
- Nutrition, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia
| | | | | | - Siti Chairiyah Batubara
- Food Technology, Faculty of Food Technology and Health, Sahid University, Jakarta, Indonesia
| | | |
Collapse
|
41
|
Li Z, Lu S, Li X. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury. Cell Mol Life Sci 2021; 78:5731-5741. [PMID: 34185125 PMCID: PMC11073237 DOI: 10.1007/s00018-021-03892-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medicial Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shan Lu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaobing Li
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
42
|
Wang Y, Pan H, chen D, Guo D, Wang X. Targeting at cancer energy metabolism and lipid droplet formation as new treatment strategies for epigallocatechin-3-gallate (EGCG) in colorectal cancer cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Wang L, Yang M, Jin H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021; 24:613. [PMID: 34184087 PMCID: PMC8258462 DOI: 10.3892/mmr.2021.12252&set/a 980722837+876073627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The nuclear estrogen‑related receptor‑α (ERRα) is an orphan receptor that has been identified as a transcriptional factor. Peroxisome proliferator‑activated receptor‑γ (PPARγ) coactivator‑1‑α (PGC‑1α) and PPARγ coactivator‑1‑β (PGC‑1β) act as the co‑activators of ERRα. Our previous study reported that activated ERRα promoted the invasion and proliferation of gallbladder cancer cells by promoting PI3K/AKT phosphorylation. Therefore, the aim of the current study was to investigate whether PI3K/AKT phosphorylation could enhance ERRα activity in a positive feedback loop. LY294002 and insulin‑like growth factor I (IGF‑I) were used to inhibit and promote PI3K/AKT phosphorylation, respectively. A 3X ERE‑TATA luciferase reporter was used to measure ERRα activity. The present study found that LY294002 inhibited PI3K/AKT phosphorylation, decreased the proliferation and invasion of NOZ cells and suppressed the activity of ERRα. Conversely, IGF‑I induced PI3K/AKT phosphorylation, promoted the proliferation and invasion of NOZ cells and enhanced the activity of ERRα. The protein expression levels of PGC‑1α and PGC‑1β were elevated and reduced by IGF‑I and LY294002, respectively. Moreover, knockdown of PGC‑1α and PGC‑1β antagonized ERRα activation, which was enhanced by PI3K/AKT phosphorylation. Taken together, the present study demonstrated that PI3K/AKT phosphorylation triggered ERRα by upregulating the expression levels of PGC‑1α and PGC‑1β in NOZ cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mengmeng Yang
- Department of Malaria Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology (Jiangsu Institute of Parasitic Diseases), Wuxi, Jiangsu 214002, P.R. China
| | - Huihan Jin
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
44
|
Wang L, Yang M, Jin H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021; 24:613. [PMID: 34184087 PMCID: PMC8258462 DOI: 10.3892/mmr.2021.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The nuclear estrogen‑related receptor‑α (ERRα) is an orphan receptor that has been identified as a transcriptional factor. Peroxisome proliferator‑activated receptor‑γ (PPARγ) coactivator‑1‑α (PGC‑1α) and PPARγ coactivator‑1‑β (PGC‑1β) act as the co‑activators of ERRα. Our previous study reported that activated ERRα promoted the invasion and proliferation of gallbladder cancer cells by promoting PI3K/AKT phosphorylation. Therefore, the aim of the current study was to investigate whether PI3K/AKT phosphorylation could enhance ERRα activity in a positive feedback loop. LY294002 and insulin‑like growth factor I (IGF‑I) were used to inhibit and promote PI3K/AKT phosphorylation, respectively. A 3X ERE‑TATA luciferase reporter was used to measure ERRα activity. The present study found that LY294002 inhibited PI3K/AKT phosphorylation, decreased the proliferation and invasion of NOZ cells and suppressed the activity of ERRα. Conversely, IGF‑I induced PI3K/AKT phosphorylation, promoted the proliferation and invasion of NOZ cells and enhanced the activity of ERRα. The protein expression levels of PGC‑1α and PGC‑1β were elevated and reduced by IGF‑I and LY294002, respectively. Moreover, knockdown of PGC‑1α and PGC‑1β antagonized ERRα activation, which was enhanced by PI3K/AKT phosphorylation. Taken together, the present study demonstrated that PI3K/AKT phosphorylation triggered ERRα by upregulating the expression levels of PGC‑1α and PGC‑1β in NOZ cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mengmeng Yang
- Department of Malaria Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology (Jiangsu Institute of Parasitic Diseases), Wuxi, Jiangsu 214002, P.R. China
| | - Huihan Jin
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
45
|
PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021. [DOI: 10.3892/mmr.2021.12252
expr 848857195 + 844041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
46
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
47
|
Xue L, Zhang Y, Xu J, Lu W, Wang Q, Fu J, Liu Z. Anti-TWEAK Antibody Alleviates Renal Interstitial Fibrosis by Increasing PGC-1α Expression in Lupus Nephritis. J Inflamm Res 2021; 14:1173-1184. [PMID: 33814923 PMCID: PMC8009537 DOI: 10.2147/jir.s301356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Current studies on the mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis (LN) mainly focus on the inflammatory pathway. Herein, we aimed to determine whether TWEAK could promote the progression of renal interstitial fibrosis by regulating peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) expression and intervening in lipid metabolism in LN. Materials and Methods MRL/lpr mice, an animal model of lupus, were treated with the anti-TWEAK antibody or co-treated with adeno-associated virus-mediated PGC-1α short hairpin RNA (shRNA). In addition, human proximal tubular epithelial cells (HK2 cells) were treated with recombinant human TWEAK (rhTWEAK) or ammonium pyrrolidine dithiocarbamate (PDTC) in vitro. Results The renal contents of free fatty acids and triglycerides were higher in MRL/lpr mice than in MRL/MpJ mice; however, these contents were decreased by treatment with the anti-TWEAK antibody. Based on immunofluorescence staining, the expression of PGC-1α was markedly more in the renal tubules of MRL/MpJ mice than in the glomeruli. However, treatment with anti-TWEAK antibody increased the levels of PGC-1α and its downstream target genes, which were remarkably lower in MRL/lpr mice than in MRL/MpJ mice. Anti-TWEAK antibody effectively eased renal interstitial fibrosis, which manifested as a decrease in the deposition of collagen fibers and the inhibition of type I collagen and fibronectin expression. However, the therapeutic effects of the anti-TWEAK antibody were abolished by PGC-1α shRNA. Treatment with rhTWEAK decreased PGC-1α expression in both dose- and time-dependent manners in HK2 cells in vitro. PDTC, an inhibitor of IκBα phosphorylation, suppressed the decrease in the PGC-1α protein level induced by rhTWEAK treatment. Conclusion Our results suggest that TWEAK prevents renal tubular PGC-1α expression by promoting NF-κB activation, resulting in a deficiency in lipid metabolism and the progress of renal interstitial fibrosis. The upregulation of renal tubular PGC-1α expression to improve lipid metabolism is one of the mechanisms employed by the anti-TWEAK antibody to treat renal interstitial fibrosis.
Collapse
Affiliation(s)
- Leixi Xue
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiajun Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wentian Lu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qing Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinxiang Fu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
48
|
Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021; 10:antiox10040510. [PMID: 33805928 PMCID: PMC8064392 DOI: 10.3390/antiox10040510] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
- Correspondence:
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 11, 10125 Turin, Italy;
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| |
Collapse
|
49
|
Chambers JM, Addiego A, Flores-Mireles AL, Wingert RA. Ppargc1a Controls Ciliated Cell Development by Regulating Prostaglandin Biosynthesis. Cell Rep 2020; 33:108370. [PMID: 33176142 PMCID: PMC7731726 DOI: 10.1016/j.celrep.2020.108370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cilia are microtubule-based organelles that function in a multitude of physiological contexts to perform chemosensing, mechanosensing, and fluid propulsion. The process of ciliogenesis is highly regulated, and disruptions result in disease states termed ciliopathies. Here, we report that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (ppargc1a) is essential for ciliogenesis in nodal, mono-, and multiciliated cells (MCCs) and for discernment of renal tubule ciliated cell fate during embryogenesis. ppargc1a performs these functions by affecting prostaglandin signaling, whereby cilia formation and renal MCC fate are restored with prostaglandin E2 (PGE2) treatment in ppargc1a-deficient animals. Genetic disruption of ppargc1a specifically reduces expression of the prostanoid biosynthesis gene prostaglandin-endoperoxide synthase 1 (ptgs1), and suboptimal knockdown of both genes shows this synergistic effect. Furthermore, ptgs1 overexpression rescues ciliogenesis and renal MCCs in ppargc1a-deficient embryos. These findings position Ppargc1a as a key genetic regulator of prostaglandin signaling during ciliated cell ontogeny.
Collapse
Affiliation(s)
- Joseph M Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amanda Addiego
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
50
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function as ligand-activated transcription factors. They exist in three isoforms: PPARα, PPARβ/δ, and PPARγ. For all PPARs, lipids are endogenous ligands, linking them directly to metabolism. PPARs form heterodimers with retinoic X receptors, and upon ligand binding, they modulate the gene expression of downstream target genes, depending on the presence of co-repressors or co-activators. This results in a complex, cell type-specific regulation of proliferation, differentiation, and cell survival. PPARs are linked to metabolic disorders and are interesting pharmaceutical targets. PPARα and PPARγ agonists are already in clinical use for the treatment of hyperlipidemia and type 2 diabetes, respectively. More recently, PPARβ/δ activation came into focus as an interesting novel approach for the treatment of metabolic syndrome and associated cardiovascular diseases; however, this has been limited due to the highly controversial function of PPARβ/δ in cancer. This Special Issue of Cells brings together the most recent advances in understanding the various aspects of the action of PPARs, and it provides new insights into our understanding of PPARs, implying also the latest therapeutic perspectives for the utility of PPAR modulation in different disease settings.
Collapse
|