1
|
Morgan A, Shekhar N, Strnadová V, Pirník Z, Haasová E, Kopecký J, Pačesová A, Železná B, Kuneš J, Bardová K, Maletínská L. Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice. Biosci Rep 2024; 44:BSR20241103. [PMID: 39440369 PMCID: PMC11499387 DOI: 10.1042/bsr20241103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
Collapse
MESH Headings
- Animals
- Male
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Obesity/metabolism
- Obesity/genetics
- Female
- Mice, Knockout
- Mice
- Diet, High-Fat/adverse effects
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/deficiency
- Prediabetic State/metabolism
- Prediabetic State/genetics
- Energy Metabolism/genetics
- Insulin Resistance
- Mice, Inbred C57BL
- Sex Factors
- Adipose Tissue, White/metabolism
Collapse
Affiliation(s)
- Alena Morgan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Nivasini Shekhar
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Eliška Haasová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
2
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
3
|
Ojha RK, Dongre S, Singh P, Srivastava RK. Late maternal separation provides resilience to chronic variable stress-induced anxiety- and depressive-like behaviours in male but not female mice. World J Biol Psychiatry 2024; 25:393-407. [PMID: 39155532 DOI: 10.1080/15622975.2024.2390411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maternal separation can have long-lasting effects on an individual's susceptibility to stress later in life. Maternal separation during the postnatal period is a commonly used paradigm in rodents to investigate the effects of early life stress on neurobehavioural changes and stress responsiveness. However, maternal separation during stress hyporesponsive and responsive periods of postnatal development may differ in its effects on stress resilience. Therefore, we hypothesised that late maternal separation (LMS) from postnatal day 10 to 21 in mice may have different effect on resilience than early maternal separation during the first week of postnatal life. Our results suggested that male LMS mice are more resilient to chronic variable stress (CVS)-induced anxiety and depressive-like behaviour as confirmed by the open field, light-dark field, elevated plus maze, sucrose preference and tail suspension tests. In contrast, female LMS mice were equally resilient as non-LMS female mice. We found increased expression of NPY, NPY1R, NPY2R, NPFFR1, and NPFFR2 in the hypothalamus of male LMS mice whereas the opposite effect was observed in the hippocampus. LMS in male and female mice did not affect circulating corticosterone levels in response to psychological or physiological stressors. Thus, LMS renders male mice resilient to CVS-induced neurobehavioural disorders in adulthood.
Collapse
Affiliation(s)
- Rajesh Kumar Ojha
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Shweta Dongre
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Padmasana Singh
- Department of Zoology, University of Allahabad, Prayagraj, India
| | | |
Collapse
|
4
|
He YQ, Zhu JR, Sun WJ, Luo YY, Wu XF, Yang M, Chen DF. ZO-1 and IL-1RAP Phosphorylation: Potential Role in Mediated Brain-Gut Axis Dysregulation in Irritable Bowel Syndrome-like Stressed Mice. Int J Med Sci 2024; 21:1738-1755. [PMID: 39006851 PMCID: PMC11241095 DOI: 10.7150/ijms.95848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024] Open
Abstract
Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1β and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1β showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.
Collapse
Affiliation(s)
- Yu-Qin He
- Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jian-Ru Zhu
- Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Wen-Jing Sun
- Department of Gastroenterology and Hepatology, The Thirteenth People's Hospital of Chongqing, 400030, China
| | - Yuan-Yuan Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xiao-Feng Wu
- Department of Stem Cell and Regenerative Medicine, Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Min Yang
- Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dong-Feng Chen
- Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
5
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
6
|
Lin YT, Wu KH, Jhang JJ, Jhang JL, Yu Z, Tsai SC, Chen JC, Hsu PH, Li HY. Hypothalamic NPFFR2 attenuates central insulin signaling and its knockout diminishes metabolic dysfunction in mouse models of diabetes mellitus. Clin Nutr 2024; 43:603-619. [PMID: 38301284 DOI: 10.1016/j.clnu.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The hypothalamus is a crucial brain region that mediates the effects of insulin and leptin signals on peripheral metabolic functions. Previous research has shown that insulin signals in the hypothalamus act via multiple neuronal circuits and anabolic/catabolic pathways that converge on the vagus nerve and sympathetic fibers to coordinate energy metabolism in peripheral organs. Additionally, neuropeptide FF (NPFF) has been identified as a regulator of feeding behaviors and energy homeostasis in the hypothalamus, but the mechanisms underlying its involvement in metabolic control remain unclear. This study aims to explore the underlying mechanisms of NPFF in modulating metabolic disorders. METHODS In this study, we investigated the physiological role of NPFF in insulin-related energy homeostasis and metabolic health. First, we evaluated the effects of NPFF and its receptors on central insulin signaling using mouse hypothalamic cell lines and Npffr2-overexpressing mice. To further explore the effects of NPFFR2 on insulin-related metabolic disorders, such as diabetes mellitus, we used Npffr2-deleted mice in combination with the streptozotocin (STZ)-induced type 1 diabetes and high-fat diet/STZ-induced type 2 diabetic mouse models. The impacts of central NPFFR2 were demonstrated specifically through Npffr2 overexpression in the hypothalamic arcuate nucleus, which subsequently induced type 2 diabetes. RESULTS We found that stimulating NPFFR2 in the hypothalamus blocked hypothalamic insulin activity. Npffr2 deletion improved central and peripheral metabolic symptoms in both mouse models of diabetes mellitus, exerting effects on central and systemic insulin resistance, feeding behaviors, glucose and insulin intolerance, lipid metabolism, liver steatosis, and inflammation of white adipose tissues. The overexpression of ARC Npffr2 augmented the metabolic dysregulation in the mouse model of type 2 diabetes. CONCLUSIONS Our findings demonstrate that hypothalamic NPFFR2 negatively regulates insulin signaling in the central nervous system and plays an important role in maintaining systemic metabolic health, thereby providing valuable insights for potential clinical interventions targeting these health challenges.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition & TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, Taipei 110301, Taiwan.
| | - Kuan-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Jie-Jhu Jhang
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Jie-Lan Jhang
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Zachary Yu
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Sze-Chi Tsai
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition & TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology & Healthy Aging Research Center, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, 5 Fuxing Street, Taoyuan 33305, Taiwan
| | - Po-Hung Hsu
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Hui-Yun Li
- Department of Natural Sciences, Oregon Institute of Technology, 3201 Campus Drive, Klamath Falls, OR 97601, USA
| |
Collapse
|
7
|
Karnošová A, Strnadová V, Železná B, Kuneš J, Kašpárek P, Maletínská L. NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose. Clin Sci (Lond) 2023; 137:847-862. [PMID: 37191311 PMCID: PMC10240834 DOI: 10.1042/cs20220880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
A previous study on neuropeptide FF receptor 2 (NPFFR2)-deficient mice has demonstrated that NPFFR2 is involved in the control of energy balance and thermogenesis. Here, we report on the metabolic impact of NPFFR2 deficiency in male and female mice that were fed either a standard diet (STD) or a high-fat diet (HFD) and each experimental group consisted of ten individuals. Both male and female NPFFR2 knockout (KO) mice exhibited severe glucose intolerance that was exacerbated by a HFD diet. In addition, reduced insulin pathway signaling proteins in NPFFR2 KO mice fed a HFD resulted in the development of hypothalamic insulin resistance. HFD feeding did not cause liver steatosis in NPFFR2 KO mice of either sex, but NPFFR2 KO male mice fed a HFD had lower body weights, white adipose tissues, and liver and lower plasma leptin levels compared with their wild-type (WT) controls. Lower liver weight in NPFFR2 KO male mice compensated for HFD-induced metabolic stress by increased liver PPARα and plasma FGF21 hepatokine, which supported fatty acid β-oxidation in the liver and white adipose tissue. Conversely, NPFFR2 deletion in female mice attenuated the expression of Adra3β and Pparγ, which inhibited lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Alena Karnošová
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Veronika Strnadová
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Blanka Železná
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
- Experimental hypertension, Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Petr Kašpárek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Lenka Maletínská
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| |
Collapse
|
8
|
Jiang H, Wang L, Zhu J, Ping Z. NPFFR2 gene compound heterozygous variants associated with preeclampsia identified by whole-exome sequencing. Gene 2023; 854:147108. [PMID: 36535464 DOI: 10.1016/j.gene.2022.147108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Preeclampsia (PE) is an idiopathic disorder of pregnancy. The exact cause of PE remains unknown. Emerging evidence indicates that the cause of PE is linked to genetic factors. Therefore, the aim of this study was to identify the susceptibility genes for PE. METHODS Nine families with severe PE were recruited. The whole-exome sequencing (WES) was performed on each family, and Sanger sequencing was used to identify the potential pathogenic genetic variants. RESULTS After a rigorous bioinformatics analysis, compound heterozygous variants in the NPFFR2 gene, NM_004885.2: c.601A > G, p.Met201Val and c.995C > T, p.Ala332Val were found in the No.4 pedigree. Bioinformatics analysis showed that these sites were highly conserved among several species and were predicted to be pathogenic variants according to multiple online mutational function prediction software packages. Due to the compound heterozygous variants of NPFFR2, more bonds are generated between mutant amino acids and spatial adjacent amino acids, which may lead to more stable active conformation of protein and not easy to be degraded. CONCLUSIONS We demonstrated for the first time that compound heterozygous variants of the NPFFR2 gene might be potentially associated with severe PE, the results of this study provide clinicians and researchers with a better understanding of the molecular mechanisms underlying severe PE in pregnant women.
Collapse
Affiliation(s)
- Huling Jiang
- Department of Prenatal Diagnosis Center, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China
| | - Luming Wang
- Department of Prenatal Diagnosis Center, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China
| | - Jianjun Zhu
- Department of Prenatal Diagnosis Center, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China.
| | - Zepeng Ping
- Department of Prenatal Diagnosis Center, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China.
| |
Collapse
|
9
|
Kurilova E, Sidorova M, Tuchina O. Single Prolonged Stress Decreases the Level of Adult Hippocampal Neurogenesis in C57BL/6, but Not in House Mice. Curr Issues Mol Biol 2023; 45:524-537. [PMID: 36661521 PMCID: PMC9857367 DOI: 10.3390/cimb45010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Many people experience traumatic events during their lives, but not all of them develop severe mental pathologies, characterized by high levels of anxiety that persists for more than a month after psychological trauma, such as posttraumatic stress disorder (PTSD). We used a single prolonged stress protocol in order to model PTSD in long-inbred C57BL/6 and wild-derived (house) female mice. The susceptibility of mice to single prolonged stress was assessed by behavior phenotyping in the Open Field and Elevated Plus Maze, the level of neuroinflammation in the hippocampus was estimated by real-time PCR to TNFα, IL-1β, IL-6, IL-10, Iba1 and GFAP, as well as immunohistochemical analysis of microglial morphology and mean fluorescence intensity for GFAP+ cells. The level of neurogenesis was analyzed by real-time PCR to Ki67, Sox2 and DCX as well as immunohistochemistry to Ki67. We showed that long-inbread C57BL/6 mice are more susceptible to a single prolonged stress protocol compared to wild-derived (house) mice. Stressed C57BL/6 mice demonstrated elevated expression levels of proinflammatory cytokines TNFα, IL-1β, and IL-6 in the hippocampus, while in house mice no differences in cytokine expression were detected. Expression levels of Iba1 in the hippocampus did not change significantly after single prolonged stress, however GFAP expression increased substantially in stressed C57BL/6 mice. The number of Iba+ cells in the dentate gyrus also did not change after stress, but the morphology of Iba+ microglia in C57BL/6 animals allowed us to suggest that it was activated; house mice also had significantly more microglia than C57BL/6 animals. We suppose that decreased microglia levels in the hippocampus of C57BL/6 compared to house mice might be one of the reasons for their sensitivity to a single prolonged stress. Single prolonged stress reduced the number of Ki67+ proliferating cells in the dentate gyrus of the hippocampus but only in C57BL/6 mice, not in house mice, with the majority of cells detected in the dorsal (septal) hippocampus in both. The increase in the expression level of DCX might be a compensatory reaction to stress; however, it does not necessarily mean that these immature neurons will be functionally integrated, and this issue needs to be investigated further.
Collapse
|
10
|
Shin Y, Jung W, Kim MY, Shin D, Kim GH, Kim CH, Park SH, Cho EH, Choi DW, Han CJ, Lee KH, Kim SB, Shin HJ. NPFFR2 Contributes to the Malignancy of Hepatocellular Carcinoma Development by Activating RhoA/YAP Signaling. Cancers (Basel) 2022; 14:cancers14235850. [PMID: 36497331 PMCID: PMC9737590 DOI: 10.3390/cancers14235850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a diverse family of cell surface receptors implicated in various physiological functions, making them common targets for approved drugs. Many GPCRs are abnormally activated in cancers and have emerged as therapeutic targets for cancer. Neuropeptide FF receptor 2 (NPFFR2) is a GPCR that helps regulate pain and modulates the opioid system; however, its function remains unknown in cancers. Here, we found that NPFFR2 is significantly up-regulated in liver cancer and its expression is related to poor prognosis. Silencing of NPFFR2 reduced the malignancy of liver cancer cells by decreasing cell survival, invasion, and migration, while its overexpression increased invasion, migration, and anchorage-independent cell growth. Moreover, we found that the malignant function of NPFFR2 depends on RhoA and YAP signaling. Inhibition of Rho kinase activity completely restored the phenotypes induced by NPFFR2, and RhoA/F-Actin/YAP signaling was controlled by NPFFR2. These findings demonstrate that NPFFR2 may be a potential target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuna Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Wonhee Jung
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Mi-Yeon Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Dongjo Shin
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of Radiation Biomedical, Research Korea Institute of Radiological and Medical Sciences, Seoul 1812, Republic of Korea
| | - Geun Hee Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chun Ho Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sun-Hoo Park
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eung-Ho Cho
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong Wook Choi
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Chul Ju Han
- Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kee Ho Lee
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Bum Kim
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.-B.K.); (H.J.S.)
| | - Hyun Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: (S.-B.K.); (H.J.S.)
| |
Collapse
|
11
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
12
|
Liu X, Jian C, Li M, Wei F, Liu H, Qin X. Microbiome-metabolomics deciphers the effects of Cistanche deserticola polysaccharides on aged constipated rats. Food Funct 2022; 13:3993-4008. [PMID: 35315484 DOI: 10.1039/d2fo00008c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic constipation is an extremely common gastrointestinal disorder that severely affects the life quality of the elderly. As an edible food and therapeutic medicine, Cistanche deserticola (CD) has been widely used not only as food in daily life, but also as a medicine to treat constipation. As the main component in CD, polysaccharide shows great potentials in improving constipation in the elderly. In this study, 16S rRNA analysis and fecal metabolomics were applied to investigate the impacts of constipation in an aged rat model, as well as the regulatory effects and the underlying mechanisms of CD polysaccharide (CDPS). Firstly, a classic constipation model of aged rats was constructed. The behavioral indicators of the rats were analyzed, providing behavioral correlations at the macro level. Meanwhile, the levels of SOD, GSH-Px, MDA, and CAT in serum samples of the rats were assessed. Additionally, the changes of gut microbiota, fecal metabolites and corresponding metabolic pathways in the aged constipated rats were demonstrated. On top of this, inter-and inner-layer networks of "behavioral indicators - intestinal bacteria - metabolites" were constructed to visually demonstrate the relationships among differential indicators. We found that CDPS significantly regulated the abnormalities of the behavioral indexes, the microbial richness and diversity, and the metabolite profiles that were induced by constipation in the aged rats. From the intestinal microbiological point of view, CDPS significantly increased the prevalence of beneficial bacteria while reducing the potentially pathogenic bacterial population. In terms of metabolomics, a total of 16 metabolites were finally identified as potential biomarkers of constipation in the aged rats. The mechanisms of CDPS were mainly involved in metabolic energy and the synthesis of amino acids. The current findings not only deepen our understanding about constipation in the elderly from the perspectives of microbiome and metabolomics, but also lay a solid foundation for the applications of polysaccharides in constipation in the elderly, the discovery of new medicines for constipation, and improving the life quality of the elderly.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Fuxiao Wei
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Huanle Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| |
Collapse
|
13
|
Zhang L, Koller J, Ip CK, Gopalasingam G, Bajaj N, Lee NJ, Enriquez RF, Herzog H. Lack of neuropeptide FF signalling in mice leads to reduced repetitive behavior, altered drinking behavior, and fuel type selection. FASEB J 2021; 35:e21980. [PMID: 34694651 DOI: 10.1096/fj.202100703r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Although best known for their involvement in modulating nociception, Neuropeptide FF (NPFF) group peptides have been suggested to fulfil a variety of biological functions such as feeding, anxiety behaviors and thermogenesis. However, evidence supporting these functions of NPFF is mostly pharmacological, leaving the physiological relevance unaddressed. Here we examined the physiological impact of lack of NPFF signalling in both genders using a Npff-/- mouse model. NPFF expression in the mouse is restricted to the spinal cord and brainstem while its cognate receptor NPFFR2 has wider distribution throughout the brain. Both male and female Npff-/- mice showed reduced repetitive behaviors evidenced in the marble burying test and self-grooming test. A decrease in anxiety-related behaviors in the Npff-/- mice was also observe in the open field test and to a lesser degree in an elevated plus maze test. Moreover, both male and female Npff-/- mice exhibited increased water intake resulting from increases in drinking size, rather than number of drinking events. During a fasting-refeeding challenge, Npff-/- mice of both genders displayed alterations in reparatory exchange ratio that reflect a greater fuel type flexibility. Npff-/- mice were otherwise wild-type-like regarding body weight, body composition, feeding behaviors, locomotion or energy expenditure. Together, these findings reveal the important physiological roles of NPFF signalling in the regulation of anxiety-related and repetitive behaviors, fluid homeostasis and oxidative fuel selection, highlighting the therapeutical potential of the NPFF system in a number of behavioral and metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Nikita Bajaj
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Ronaldo F Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, University of NSW, Sydney, New South Wales, Australia.,Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|
15
|
Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF. Genes (Basel) 2021; 12:genes12050705. [PMID: 34065092 PMCID: PMC8151073 DOI: 10.3390/genes12050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.
Collapse
|