1
|
Sunde E, Harris A, Olsen OK, Pallesen S. Moral decision-making at night and the impact of night work with blue-enriched white light or warm white light: a counterbalanced crossover study. Ann Med 2024; 56:2331054. [PMID: 38635448 PMCID: PMC11028009 DOI: 10.1080/07853890.2024.2331054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/24/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Cognitive function, including moral decision-making abilities, can be impaired by sleep loss. Blue-enriched light interventions have been shown to ameliorate cognitive impairment during night work. This study investigated whether the quality of moral decision-making during simulated night work differed for night work in blue-enriched white light, compared to warm white light. METHODS Using a counterbalanced crossover design, three consecutive night shifts were performed in blue-enriched white light (7000 K) and warm white light (2500 K) provided by ceiling-mounted LED luminaires (photopic illuminance: ∼200 lx). At 03:30 h on the second shift (i.e. twice) and at daytime (rested), the Defining Issues Test-2, assessing the activation of cognitive schemas depicting different levels of cognitive moral development, was administered. Data from 30 (10 males, average age 23.3 ± 2.9 years) participants were analysed using linear mixed-effects models. RESULTS Activation of the post-conventional schema (P-score), that is, the most mature moral level, was significantly lower for night work in warm white light (EMM; estimated marginal mean = 44.3, 95% CI = 38.9-49.6; pholm=.007), but not blue-enriched white light (EMM = 47.5, 95% CI = 42.2-52.8), compared to daytime (EMM = 51.2, 95% CI = 45.9-56.5). Also, the P-score was reduced for night work overall (EMM = 45.9, 95% CI = 41.1-50.8; p=.008), that is, irrespective of light condition, compared to daytime. Neither activation of the maintaining norms schema (MN-score), that is, moderately developed moral level, nor activation of the personal interest schema (i.e. the lowest moral level) differed significantly between light conditions. The MN-score was however increased for night work overall (EMM = 26.8, 95% CI = 23.1-30.5; p=.033) compared to daytime (EMM = 23.1, 95% CI = 18.9-27.2). CONCLUSION The results indicate that moral decisions during simulated night work in warm white light, but not blue-enriched white light, become less mature and principle-oriented, and more rule-based compared to daytime, hence blue-enriched white light may function as a moderator. Further studies are needed, and the findings should be tentatively considered.Trial registration: ClinicalTrials.gov (ID: NCT03203538) Registered: 26/06/2017; https://clinicaltrials.gov/study/NCT03203538.
Collapse
Affiliation(s)
- Erlend Sunde
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Anette Harris
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Olav Kjellevold Olsen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- Department of Leadership and Organizational Behaviour, BI Norwegian Business School, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Höhn C, Hahn MA, Gruber G, Pletzer B, Cajochen C, Hoedlmoser K. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun 2024; 6:fcae173. [PMID: 38846535 PMCID: PMC11154150 DOI: 10.1093/braincomms/fcae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Exposure to short-wavelength light before bedtime is known to disrupt nocturnal melatonin secretion and can impair subsequent sleep. However, while it has been demonstrated that older adults are less affected by short-wavelength light, there is limited research exploring differences between adolescents and young adults. Furthermore, it remains unclear whether the effects of evening short-wavelength light on sleep architecture extend to sleep-related processes, such as declarative memory consolidation. Here, we recorded polysomnography from 33 male adolescents (15.42 ± 0.97 years) and 35 male young adults (21.51 ± 2.06 years) in a within-subject design during three different nights to investigate the impact of reading for 90 min either on a smartphone with or without a blue-light filter or from a printed book. We measured subjective sleepiness, melatonin secretion, sleep physiology and sleep-dependent memory consolidation. While subjective sleepiness remained unaffected, we observed a significant melatonin attenuation effect in both age groups immediately after reading on the smartphone without a blue-light filter. Interestingly, adolescents fully recovered from the melatonin attenuation in the following 50 min before bedtime, whereas adults still, at bedtime, exhibited significantly reduced melatonin levels. Sleep-dependent memory consolidation and the coupling between sleep spindles and slow oscillations were not affected by short-wavelength light in both age groups. Nevertheless, adults showed a reduction in N3 sleep during the first night quarter. In summary, avoiding smartphone use in the last hour before bedtime is advisable for adolescents and young adults to prevent sleep disturbances. Our research empirically supports general sleep hygiene advice and can inform future recommendations regarding the use of smartphones and other screen-based devices before bedtime.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Georg Gruber
- The Siesta Group Schlafanalyse GmbH, 1210 Vienna, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland
- Research Cluster Molecular and Cognitive Neuroscience (MCN), University of Basel, 4055 Basel, Switzerland
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Zhong Z, Tan X, An X, Li J, Cai J, Jiang Y, Taufique SKT, Li B, Shi Q, Zhao M, Wang Y, Luo Q, Wang H. Administration of blue light in the morning and no blue-ray light in the evening improves the circadian functions of non-24-hour shift workers. Chronobiol Int 2024; 41:267-282. [PMID: 38267234 DOI: 10.1080/07420528.2024.2305218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
In modern 24-hour society, various round-the-clock services have entailed shift work, resulting in non-24-hour schedules. However, the extent of behavioral and physiological alterations by non-24-hour schedules remains unclear, and particularly, effective interventions to restore the circadian functions of non-24-hour shift workers are rarely explored. In this study, we investigate the effects of a simulated non-24-hour military shift work schedule on daily rhythms and sleep, and establish an intervention measure to restore the circadian functions of non-24-hour shift workers. The three stages of experiments were conducted. The stage-one experiment was to establish a comprehensive evaluation index of the circadian rhythms and sleep for all 60 participants by analyzing wristwatch-recorded physiological parameters and sleep. The stage-two experiment evaluated the effects of an intervention strategy on physiological rhythms and sleep. The stage-three experiment was to examine the participants' physiological and behavioral disturbances under the simulated non-24-hour military shift work schedule and their improvements by the optimal lighting apparatus. We found that wristwatch-recorded physiological parameters display robust rhythmicity, and the phases of systolic blood pressures and heart rates can be used as reliable estimators for the human body time. The simulated non-24-hour military shift work schedule significantly disrupts the daily rhythms of oxygen saturation levels, blood pressures, heart rates, and reduces sleep quality. Administration of blue light in the morning and no blue-ray light in the evening improves the amplitude and synchronization of daily rhythms of the non-24-hour participants. These findings demonstrate the harmful consequences of the non-24-hour shift work schedule and provide a non-invasive strategy to improve the well-being and work efficiency of the non-24-hour shift population.
Collapse
Affiliation(s)
- Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiaohui Tan
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xingna An
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jie Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jing Cai
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yunchun Jiang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - S K Tahajjul Taufique
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bo Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Quan Shi
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yali Wang
- Department of Neurology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qun Luo
- Naval Medical Center, PLA Naval Medical University, Shanghai, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Bessman SC, Harrison EM, Easterling AP, Snider MN, Preilipper SMM, Glickman GL. Hybrid effectiveness-implementation study of two novel spectrally engineered lighting interventions for shiftworkers on a high-security watchfloor. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad051. [PMID: 38084298 PMCID: PMC10710545 DOI: 10.1093/sleepadvances/zpad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Indexed: 06/26/2024]
Abstract
Shiftwork leads to myriad negative health and safety outcomes. Lighting countermeasures can benefit shiftworkers via physiological effects of light (e.g. alerting, circadian adjustment), and short-wavelength light is the most potent for eliciting those responses; however, limited work indicates it may not be required for alerting. We developed similar-appearing light boxes (correlated color temperature: 3000-3375 K; photopic illuminance: 260-296 lux), enriched (SW+, melanopic EDI: 294 lux) or attenuated (SW-, melanopic EDI: 103 lux) in short-wavelength energy, and implemented them on a high-security watchfloor. Efficacy and feasibility of these two novel lighting interventions were assessed in personnel working 12-hour night shifts (n = 47) in this within-participants, crossover study. For each intervention condition, light boxes were arranged across the front of the watchfloor and illuminated the entire shift; blue-blocking glasses were worn post-shift and before sleep; and sleep masks were used while sleeping. Comparisons between baseline and intervention conditions included alertness, sleep, mood, quality of life (QOL), and implementation measures. On-shift alertness (Karolinska Sleepiness Scale) increased in SW- compared to baseline, while changes in SW+ were more limited. Under SW+, both mood and sleep improved. Psychomotor vigilance task performance did not vary by condition; however, perceived performance and QOL were higher, and reported caffeine consumption and sleep onset latency were lower, under SW-. For both interventions, satisfaction and comfort were high, and fewer symptoms and negative feelings were reported. The addition of spectrally engineered lights to this unique work environment improved sleep, alertness, and mood without compromising visual comfort and satisfaction. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.
Collapse
Affiliation(s)
- Sara C Bessman
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Elizabeth M Harrison
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Alexandra P Easterling
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Michelle N Snider
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Sebastian M M Preilipper
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Gena L Glickman
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| |
Collapse
|
5
|
Cheshmeh Noor M, Revell V, Mehdizadeh Saradj F, Yazdanfar SA. The impact of wavelength on acute non-visual responses to light: A systematic review and meta-analysis. Brain Res 2023; 1816:148470. [PMID: 37364848 DOI: 10.1016/j.brainres.2023.148470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Light is detected in the eye by three classes of photoreceptors (rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs)) that are each optimized for a specific function and express a particular light-detecting photopigment. The significant role of short-wavelength light and ipRGCs in improving alertness has been well-established; however, few reviews have been undertaken to assess the other wavelengths' effects regarding timing and intensity. This study aims to evaluate the impact of different narrowband light wavelengths on subjective and objective alertness among the 36 studies included in this systematic review, 17 of which were meta-analyzed. Short-wavelength light (∼460-480 nm) significantly improves subjective alertness, cognitive function, and neurological brain activities at night, even for a sustained period (∼6h) (for λmax: 470/475 nm, 0.4 < |Hedges's g| < 0.6, p < 0.05), but except early morning, it almost does not show this effect during the day when melatonin level is lowest. Long-wavelength light (∼600-640 nm) has little effect at night, but significantly increases several measures of alertness at lower irradiance during the daytime (∼1h), particularly when there is homeostatic sleep drive (for λmax: ∼630 nm, 0.5 < |Hedges's g| < 0.8, p < 0.05). The results further suggest that melanopic illuminance may not always be sufficient to measure the alerting effect of light.
Collapse
Affiliation(s)
- Mahya Cheshmeh Noor
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran Iran.
| | - Victoria Revell
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey GU2 7XP, United Kingdom.
| | - Fatemeh Mehdizadeh Saradj
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran Iran.
| | - Seyed-Abbas Yazdanfar
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran Iran.
| |
Collapse
|
6
|
Bijnens S, Depoortere I. Controlled light exposure and intermittent fasting as treatment strategies for metabolic syndrome and gut microbiome dysregulation in night shift workers. Physiol Behav 2023; 263:114103. [PMID: 36731762 DOI: 10.1016/j.physbeh.2023.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The mammalian circadian clocks are entrained by environmental time cues, such as the light-dark cycle and the feeding-fasting cycle. In modern society, circadian misalignment is increasingly more common under the guise of shift work. Shift workers, accounting for roughly 20% of the workforce population, are more susceptible to metabolic disease. Exposure to artificial light at night and eating at inappropriate times of the day uncouples the central and peripheral circadian clocks. This internal circadian desynchrony is believed to be one of the culprits leading to metabolic disease. In this review, we discuss how alterations in the rhythm of gut microbiota and their metabolites during chronodisruption send conflicting signals to the host, which may ultimately contribute to disturbed metabolic processes. We propose two behavioral interventions to improve health in shift workers. Firstly, by carefully timing the moments of exposure to blue light, and hence shifting the melatonin peak, to improve sleep quality of daytime sleeping episodes. Secondly, by timing the daily time window of caloric intake to the biological morning, to properly align the feeding-fasting cycle with the light-dark cycle and to reduce the risk of metabolic disease. These interventions can be a first step in reducing the worldwide burden of health problems associated with shift work.
Collapse
Affiliation(s)
- Sofie Bijnens
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Wen P, Tan F, Wu M, Cai Q, Xu R, Zhang X, Wang Y, Li S, Lei M, Chen H, Khan MSA, Zou Q, Hu X. Proper use of light environments for mitigating the effects of COVID-19 and other prospective public health emergency lockdowns on sleep quality and fatigue in adolescents. Heliyon 2023; 9:e14627. [PMID: 37064435 PMCID: PMC10027303 DOI: 10.1016/j.heliyon.2023.e14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a public health emergency of international concern, and some countries still implement strict regional lockdowns. Further, the upcoming 2023 Asian Games and World University Games will implement a closed-loop management system. Quarantine can harm mental and physical health, to which adolescents are more vulnerable compared with adults. Previous studies indicated that light can affect our psychology and physiology, and adolescents were exposed to the artificial light environment in the evening during the lockdown. Thus, this study aimed to establish and assess appropriate residential light environments to mitigate the effects of lockdowns on sleep quality and fatigue in adolescents. The participants were 66 adolescents (12.15 ± 2.45 years of age) in a closed-loop management environment, who participated in a 28-day (7-day baseline, 21-day light intervention) randomized controlled trial of a light-emitting diode (LED) light intervention. The adolescents were exposed to different correlated color temperature (CCT) LED light environments (2000 K or 8000 K) for 1 h each evening. The results for self-reported daily sleep quality indicated that the low CCT LED light environment significantly improved sleep quality (p < 0.05), and the blood test results for serum urea and hemoglobin indicated that this environment also significantly reduced fatigue (p < 0.05) and moderately increased performance, compared to the high CCT LED light environment. These findings can serve as a springboard for further research that aims to develop interventions to reduce the effects of public health emergency lockdowns on mental and physical health in adolescents, and provide a reference for participants in the upcoming Asian Games and World University Games.
Collapse
Affiliation(s)
- Peijun Wen
- School of Physical Education, South China University of Technology, Guangzhou, 510641, China
| | - Fuyun Tan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Wu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Qijun Cai
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Ruiping Xu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Xiaowen Zhang
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, China
| | - Shukun Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Menglai Lei
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Huanqing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Saddique Akbar Khan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Menéndez-Velázquez A, García-Delgado AB, Morales D. Human-Centric Lighting: Rare-Earth-Free Photoluminescent Materials for Correlated Color Temperature Tunable White LEDs. Int J Mol Sci 2023; 24:3602. [PMID: 36835013 PMCID: PMC9962010 DOI: 10.3390/ijms24043602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Artificial lighting is ubiquitous in modern society, with detrimental effects on sleep and health. The reason for this is that light is responsible not only for vision but also for non-visual functions, such as the regulation of the circadian system. To avoid circadian disruption, artificial lighting should be dynamic, changing throughout the day in a manner comparable to natural light in terms of both light intensity and associated color temperature. This is one of the main goals of human-centric lighting. Regarding the type of materials, the majority of white light-emitting diodes (WLEDs) make use of rare-earth photoluminescent materials; therefore, WLED development is at serious risk due to the explosive growth in demand for these materials and a monopoly on sources of supply. Photoluminescent organic compounds are a considerable and promising alternative. In this article, we present several WLEDs that were manufactured using a blue LED chip as the excitation source and two photoluminescent organic dyes (Coumarin 6 and Nile Red) embedded in flexible layers, which function as spectral converters in a multilayer remote phosphor arrangement. The correlated color temperature (CCT) values range from 2975 K to 6261 K, while light quality is preserved with chromatic reproduction index (CRI) values superior to 80. Our findings illustrate for the first time the enormous potential of organic materials for supporting human-centric lighting.
Collapse
|
9
|
Influences of Spectral Power Distribution on Circadian Energy, Visual Comfort and Work Performance. SUSTAINABILITY 2021. [DOI: 10.3390/su13094852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.
Collapse
|