1
|
Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, Tissato V, Prabhu KS, Uddin S, Dakua SP. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother 2023; 163:114784. [PMID: 37121152 DOI: 10.1016/j.biopha.2023.114784] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600 Nepal
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tissato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
2
|
Gemmati D, Longo G, Gallo I, Silva JA, Secchiero P, Zauli G, Hanau S, Passaro A, Pellegatti P, Pizzicotti S, Serino ML, Singh AV, Tisato V. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet 2022; 13:1028081. [PMID: 36531241 PMCID: PMC9748098 DOI: 10.3389/fgene.2022.1028081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 08/26/2023] Open
Abstract
Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Stefania Hanau
- Department of Neuroscience & Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022; 30:1493-1501. [PMID: 35922738 PMCID: PMC9362167 DOI: 10.1007/s10787-022-01038-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW Australia
- AFNP Med, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AL Beheira, Damanhour, 22511 Egypt
| |
Collapse
|
4
|
Singh AV, Kayal A, Malik A, Maharjan RS, Dietrich P, Thissen A, Siewert K, Curato C, Pande K, Prahlad D, Kulkarni N, Laux P, Luch A. Interfacial Water in the SARS Spike Protein: Investigating the Interaction with Human ACE2 Receptor and In Vitro Uptake in A549 Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7976-7988. [PMID: 35736838 PMCID: PMC9260741 DOI: 10.1021/acs.langmuir.2c00671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Indexed: 05/09/2023]
Abstract
The severity of global pandemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has engaged the researchers and clinicians to find the key features triggering the viral infection to lung cells. By utilizing such crucial information, researchers and scientists try to combat the spread of the virus. Here, in this work, we performed in silico analysis of the protein-protein interactions between the receptor-binding domain (RBD) of the viral spike protein and the human angiotensin-converting enzyme 2 (hACE2) receptor to highlight the key alteration that happened from SARS-CoV to SARS-CoV-2. We analyzed and compared the molecular differences between spike proteins of the two viruses using various computational approaches such as binding affinity calculations, computational alanine, and molecular dynamics simulations. The binding affinity calculations showed that SARS-CoV-2 binds a little more firmly to the hACE2 receptor than SARS-CoV. The major finding obtained from molecular dynamics simulations was that the RBD-ACE2 interface is populated with water molecules and interacts strongly with both RBD and ACE2 interfacial residues during the simulation periods. The water-mediated hydrogen bond by the bridge water molecules is crucial for stabilizing the RBD and ACE2 domains. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) confirmed the presence of vapor and molecular water phases in the protein-protein interfacial domain, further validating the computationally predicted interfacial water molecules. In addition, we examined the role of interfacial water molecules in virus uptake by lung cell A549 by binding and maintaining the RBD/hACE2 complex at varying temperatures using nanourchins coated with spike proteins as pseudoviruses and fluorescence-activated cell sorting (FACS) as a quantitative approach. The structural and dynamical features presented here may serve as a guide for developing new drug molecules, vaccines, or antibodies to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | | | - Romi Singh Maharjan
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Paul Dietrich
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Andreas Thissen
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Katherina Siewert
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Caterina Curato
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | | | | | - Peter Laux
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
5
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Pakzad R, Malekifar P, Shateri Z, Zandi M, Akhavan Rezayat S, Soleymani M, Karimi MR, Ahmadi SE, Shahbahrami R, Pakzad I, Abdi F, Farahani A, Soltani S, Kesheh MM, Hosseini P. Worldwide prevalence of microbial agents' coinfection among COVID-19 patients: A comprehensive updated systematic review and meta-analysis. J Clin Lab Anal 2022; 36:e24151. [PMID: 34851526 PMCID: PMC8761407 DOI: 10.1002/jcla.24151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To provide information about pathogens' coinfection prevalence with SARS-CoV-2 could be a real help to save patients' lives. This study aims to evaluate the pathogens' coinfection prevalence among COVID-19 patients. METHOD In order to find all of the relevant articles, we used systematic search approach. Research-based databases including PubMed, Web of Science, Embase, and Scopus, without language restrictions, were searched to identify the relevant bacterial, fungal, and viral coinfections among COVID-19 cases from December 1, 2019, to August 23, 2021. In order to dig deeper, other scientific repositories such as Medrxiv were probed. RESULTS A total of 13,023 studies were found through systematic search. After thorough analysis, only 64 studies with 61,547 patients were included in the study. The most common causative agents of coinfection among COVID-19 patients were bacteria (pooled prevalence: 20.97%; 95% CI: 15.95-26.46; I2 : 99.9%) and less frequent were virus coinfections (pooled prevalence: 12.58%; 95% CI: 7.31-18.96; I2 : 98.7%). The pooled prevalence of fungal coinfections was also 12.60% (95% CI: 7.84-17.36; I2 : 98.3%). Meta-regression analysis showed that the age sample size and WHO geographic region did not influenced heterogeneity. CONCLUSION We identified a high prevalence of pathogenic microorganism coinfection among COVID-19 patients. Because of this rate of coinfection empirical use of antibacterial, antifungal, and antiviral treatment are advisable specifically at the early stage of COVID-19 infection. We also suggest running simultaneously diagnostic tests to identify other microbiological agents' coinfection with SARS-CoV-2.
Collapse
Affiliation(s)
- Reza Pakzad
- Department of EpidemiologyFaculty of HealthIlam University Medical SciencesIlamIran
| | - Pooneh Malekifar
- Department of EpidemiologySchool of Public HealthTehran University Medical SciencesTehranIran
| | - Zainab Shateri
- Student research committeeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Milad Zandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Sara Akhavan Rezayat
- Department of Management & Health EconomicsSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Maral Soleymani
- Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mohammad Reza Karimi
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood BankingSchool of Allied MedicineIran University of Medical SciencesTehranIran
| | - Ramin Shahbahrami
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Iraj Pakzad
- Department of MicrobiologySchool of MedicineIlam University Medical SciencesIlamIran
| | - Fatemeh Abdi
- Non‐communicable Disease Research CenterAlborz University of Medical SciencesKarajIran
| | - Abbas Farahani
- Infectious and Tropical Diseases Research CenterHormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Saber Soltani
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Mina Mobini Kesheh
- Department of VirologySchool of MedicineIran University of Medical ScienceTehranIran
| | - Parastoo Hosseini
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. COATINGS 2021. [DOI: 10.3390/coatings11111273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially be employed as research guides to identify novel antiviral agents. This review focuses on in-silico modeling of the potential therapeutic candidates against SARS CoVs, in addition to strategies for vaccine design. Here, we particularly focus on the recently published SARS CoV main protease (Mpro) active site, the RNA-dependent RNA polymerase (RdRp) of SARS CoV2, and the spike S-protein as potential targets for vaccine development. This review can offer future perspectives for further research and the development of COVID-19 therapies via the design of new drug candidates and multi-epitopic vaccines and through the repurposing of either approved drugs or drugs under clinical trial.
Collapse
|
8
|
Şen Karaman D, Pamukçu A, Karakaplan MB, Kocaoglu O, Rosenholm JM. Recent Advances in the Use of Mesoporous Silica Nanoparticles for the Diagnosis of Bacterial Infections. Int J Nanomedicine 2021; 16:6575-6591. [PMID: 34602819 PMCID: PMC8478671 DOI: 10.2147/ijn.s273062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Public awareness of infectious diseases has increased in recent months, not only due to the current COVID-19 outbreak but also because of antimicrobial resistance (AMR) being declared a top-10 global health threat by the World Health Organization (WHO) in 2019. These global issues have spiked the realization that new and more efficient methods and approaches are urgently required to efficiently combat and overcome the failures in the diagnosis and therapy of infectious disease. This holds true not only for current diseases, but we should also have enough readiness to fight the unforeseen diseases so as to avoid future pandemics. A paradigm shift is needed, not only in infection treatment, but also diagnostic practices, to overcome the potential failures associated with early diagnosis stages, leading to unnecessary and inefficient treatments, while simultaneously promoting AMR. With the development of nanotechnology, nanomaterials fabricated as multifunctional nano-platforms for antibacterial therapeutics, diagnostics, or both (known as "theranostics") have attracted increasing attention. In the research field of nanomedicine, mesoporous silica nanoparticles (MSN) with a tailored structure, large surface area, high loading capacity, abundant chemical versatility, and acceptable biocompatibility, have shown great potential to integrate the desired functions for diagnosis of bacterial infections. The focus of this review is to present the advances in mesoporous materials in the form of nanoparticles (NPs) or composites that can easily and flexibly accommodate dual or multifunctional capabilities of separation, identification and tracking performed during the diagnosis of infectious diseases together with the inspiring NP designs in diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ayşenur Pamukçu
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, İzmir, Turkey
| | - M Baran Karakaplan
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Engineering, İzmir, Turkey
| | - Ozden Kocaoglu
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
9
|
Roudbary M, Kumar S, Kumar A, Černáková L, Nikoomanesh F, Rodrigues CF. Overview on the Prevalence of Fungal Infections, Immune Response, and Microbiome Role in COVID-19 Patients. J Fungi (Basel) 2021; 7:720. [PMID: 34575758 PMCID: PMC8466761 DOI: 10.3390/jof7090720] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with severe COVID-19, such as individuals in intensive care units (ICU), are exceptionally susceptible to bacterial and fungal infections. The most prevalent fungal infections are aspergillosis and candidemia. Nonetheless, other fungal species (for instance, Histoplasma spp., Rhizopus spp., Mucor spp., Cryptococcus spp.) have recently been increasingly linked to opportunistic fungal diseases in COVID-19 patients. These fungal co-infections are described with rising incidence, severe illness, and death that is associated with host immune response. Awareness of the high risks of the occurrence of fungal co-infections is crucial to downgrade any arrear in diagnosis and treatment to support the prevention of severe illness and death directly related to these infections. This review analyses the fungal infections, treatments, outcome, and immune response, considering the possible role of the microbiome in these patients. The search was performed in Medline (PubMed), using the words "fungal infections COVID-19", between 2020-2021.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sunil Kumar
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India;
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Fatemeh Nikoomanesh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Soltani S, Faramarzi S, Zandi M, Shahbahrami R, Jafarpour A, Akhavan Rezayat S, Pakzad I, Abdi F, Malekifar P, Pakzad R. Bacterial coinfection among coronavirus disease 2019 patient groups: an updated systematic review and meta-analysis. New Microbes New Infect 2021; 43:100910. [PMID: 34226847 PMCID: PMC8245302 DOI: 10.1016/j.nmni.2021.100910] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 raised the attention towards bacterial coinfection and its role in coronavirus disease 2019 (COVID-19) disease. This study aims to systematically review and identify the pooled prevalence of bacterial coinfection in the related articles. A comprehensive search was conducted in international databases, including MEDLINE, Scopus, Web of Science, and Embase, to identify the articles on the prevalence of bacterial coinfections in COIVD-19 patients from 1 December 2019 until 30 December 2020. All observational epidemiological studies that evaluated the prevalence of bacterial coinfections in patients with COVID-19 were included without any restriction. Forty-two studies including a total sample size of 54,695 were included in the analysis. The pooled estimate for the prevalence of bacterial coinfections was 20.97% (95% CI: 15.95-26.46), and the pooled prevalence of bacterial coinfections was 5.20% (95% CI: 2.39-8.91) for respiratory subtype and 4.79% (95% CI: 0.11-14.61) for the gastrointestinal subtype. The pooled prevalence for Eastern Mediterranean Regional Office and South-East Asia Regional Office was 100% (95% CI: 82.35-100.00) and 2.61% (95% CI: 1.74-3.62). This rate of coinfection poses a great danger towards patients, especially those in critical condition. Although there are multiple complications and adverse effects related to extensive use of antibiotics to treat patients with COVID-19, it seems there is no other option except applying them, and it needs to be done carefully.
Collapse
Affiliation(s)
- S. Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - S. Faramarzi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M. Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - R. Shahbahrami
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Jafarpour
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Gerash Amir-al-Momenin Medical and Educational Center, Gerash University of Medical Sciences, Gerash, Iran
| | - S. Akhavan Rezayat
- Department of Management & Health Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - I. Pakzad
- Medical Microbiology, Department of Microbiology, School of Medicine, Ilam University Medical Sciences, Ilam, Iran
| | - F. Abdi
- School of Nursing and Midwifery, Alborz University of Medical Sciences, Karaj, Iran
| | - P. Malekifar
- Epidemiology, Department of Epidemiology, School of Public Health, Tehran University Medical Sciences, Tehran, Iran
| | - R. Pakzad
- Epidemiology, Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University Medical Sciences, Ilam, Iran
| |
Collapse
|
11
|
Abstract
Existing medical masks have various disadvantages, such as the environmental damage caused by disposable masks, the discomfort and poor ventilation caused by prolonged mask wearing, and the lack of aesthetic design in mass-produced masks. Thus, this study used quality function deployment, the fuzzy analytic hierarchy process, and fuzzy comprehensive evaluation to research, develop, and design masks. The aforementioned methods were also used to determine the ranking of design requirements. The following priority ranking of design requirements from most to least important was obtained: reducing discomfort at the contact between the mask and the skin (0.265), avoiding foul odor inside the mask (0.187), convenient cleaning and portability (0.166), good airtightness (0.152), suitable aesthetic design for wearing in public and on social occasions (0.130), and reducing waste (0.100). Experts evaluated mask designs, and their opinions were subject to fuzzy analysis. Specifically, 50% of the experts evaluated the designs to be “good” or “very good”. Only 29% of the experts rated the design results as “average”. Thus, the innovative mask designed in this study can meet the needs of users, overcome the drawbacks of existing masks, and provide a feasible solution for the current COVID-19 pandemic.
Collapse
|
12
|
Mei D, Guo X, Wang Y, Huang X, Guo L, Zou P, Ge D, Wang X, Lee W, Sun T, Gao Z, Gao Y. PEGylated Graphene Oxide Carried OH-CATH30 to Accelerate the Healing of Infected Skin Wounds. Int J Nanomedicine 2021; 16:4769-4780. [PMID: 34285482 PMCID: PMC8286112 DOI: 10.2147/ijn.s304702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The treatment of Staphylococcus aureus (S. aureus)-infected wounds is difficult. It causes extreme pain to tens of thousands of patients and increases the cost of medical care. The antimicrobial peptide OH-CATH30 (OH30) has a good killing activity against S. aureus and can play a role in accelerating wound healing and immune regulation. Therefore, it shows great potential for wound healing. PURPOSE The aim of this study was to overcome the short half-life and easy enzymolysis of OH30 by using graphene oxide conjugated with polyethylene glycol to load OH30 (denoted as PGO-OH30), as well as to evaluate its effect on wounds infected by S. aureus. METHODS PGO-OH30 nanoparticles were prepared by π-π conjugation and characterized. Their cell cytotoxicity, cell migration, infectious full-thickness dermotomy models, and histopathology were evaluated. RESULTS Characterization and cytotoxicity experiments revealed that the PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability. Cell-migration experiments showed that PGO-OH30 could promote the migration of human immortalized keratinocytes (HaCaT) cells compared with the control group (P<0.05). In a mouse model of skin wound infection, PGO-OH30 accelerated skin-wound healing and reduced the amount of S. aureus in wounds compared with the control group (P<0.05). In particular, on day 7, the number of S. aureus was 100 times lower in the PGO-OH30 group than in the control group. CONCLUSION The PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability, indicating its good therapeutic effect on a skin wound-infection model.
Collapse
Affiliation(s)
- Di Mei
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xiaolong Guo
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yirong Wang
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xiaofei Huang
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Li Guo
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Pengfei Zou
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Delong Ge
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xinxin Wang
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanism, Institute of Zoology, Kunming, Yunnan, 650233, People’s Republic of China
| | - Tongyi Sun
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| |
Collapse
|
13
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
14
|
Validating Anti-Infective Activity of Pleurotus Opuntiae via Standardization of Its Bioactive Mycoconstituents through Multimodal Biochemical Approach. COATINGS 2021. [DOI: 10.3390/coatings11040484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mushrooms produce a variety of bioactive compounds that are known to have anti-pathogenic properties with safer and effective therapeutic effects in human disease prognosis. The antibacterial activity of ethanol and methanol extracts of Pleurotus opuntiae were checked against pathogenic microorganisms viz. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis NCIM 2300, Proteus vulgaris NCIM 5266, Serratia marcescens NCIM 2078, Shigella flexeneri NCIM 5265, Moraxella sp. NCIM 2795, Staphylococcus aureus ATCC 25923 by agar well diffusion method at different concentrations of the extracts. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts was determined by INT (Iodonitrotetrazolium chloride) colorimetric assay. Extracts were standardized by thin layer chromatography (TLC) in different solvent systems. The Retention factors (Rf) of different compounds were calculated by high performance TLC (HPTLC) fingerprinting at UV 254, 366, and 540 nm before and after derivatization. The ethanol and methanol extracts of P. opuntiae showed bactericidal activity against all the test pathogens at MIC values of 15.6 to 52.08 mg/mL and 20.81 to 52.08 mg/mL respectively. Whereas the MBC values for ethanol and methanol extract of P. opuntiae against all pathogens were recorded as 26.03 to 62.5 mg/mL and 125 mg/mL respectively. Preliminary mycochemical screening of both the extracts revealed high contents of bioactive compounds. Amongst all the solvent systems used in TLC, the best result was given by chloroform + hexane (8:2) which eluted out 5 different compounds (spots). HPTLC results revealed spots with different Rf values for all the 24 compounds present. Thus, it can be inferred from the present investigation that the mycoconstituents could be an alternative medication regimen and could play a role in new drug discoveries against different infections. Further, the antimicrobial components of these mushrooms can be transformed to bioengineered antimicrobial coatings for surfaces, drug and other hybrid systems for public health implications in combating persistent infections.
Collapse
|
15
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
16
|
Emam M, Abdel-Haleem DR, Salem MM, Abdel-Hafez LJM, Latif RRA, Farag SM, Sobeh M, El Raey MA. Phytochemical Profiling of Lavandula coronopifolia Poir. Aerial Parts Extract and Its Larvicidal, Antibacterial, and Antibiofilm Activity Against Pseudomonas aeruginosa. Molecules 2021; 26:1710. [PMID: 33808553 PMCID: PMC8003439 DOI: 10.3390/molecules26061710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC-MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17-38% at different Minimum Inhibitory Concentrations (MICs) (0.5-0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.
Collapse
Affiliation(s)
- Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China;
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Doaa R. Abdel-Haleem
- Department of entomology, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt; (D.R.A.-H.); (S.M.F.)
| | - Maha M. Salem
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Lina Jamil M. Abdel-Hafez
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6th October City, Giza 12585, Egypt;
| | - Rasha R. Abdel Latif
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| | - Shaimaa Mahmoud Farag
- Department of entomology, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt; (D.R.A.-H.); (S.M.F.)
| | - Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, 43150 Ben-Guerir, Morocco
| | - Mohamed A. El Raey
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt; (M.M.S.); (R.R.A.L.)
| |
Collapse
|
17
|
Pandey AT, Pandey I, Hachenberger Y, Krause BC, Haidar R, Laux P, Luch A, Singh MP, Singh AV. Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|