1
|
Sergeevichev DS, Dorovskikh SI, Vikulova ES, Chepeleva EV, Vasiliyeva MB, Koretskaya TP, Fedorenko AD, Nasimov DA, Guselnikova TY, Popovetsky PS, Morozova NB, Basova TV. Vapor-Phase-Deposited Ag/Ir and Ag/Au Film Heterostructures for Implant Materials: Cytotoxic, Antibacterial and Histological Studies. Int J Mol Sci 2024; 25:1100. [PMID: 38256173 PMCID: PMC10816904 DOI: 10.3390/ijms25021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag+ release rates, which led to rapid (2-4 h) inhibition of P. aeruginosa growth. In the case of Ag/Au type heterostructures, the inhibition of the growth of P. aeruginosa and S. aureus occurred more slowly (from 6 h), and the antibacterial activity appeared to be due to the contribution of two agents (Ag+ and Au+ ions). It was found, according to the in vitro cytotoxicity study, that heterostructures did not exhibit toxic effects (cell viability > 95-98%). An in vivo biocompatibility assessment based on the results of a morphohistological study showed that after implantation for a period of 30 days, the samples were characterized by the presence of a thin fibrous capsule without volume thickening and signs of inflammation.
Collapse
Affiliation(s)
- David S. Sergeevichev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Elena V. Chepeleva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Maria B. Vasiliyeva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
- V. Zelman’s Institute of Medicine and Psychology, Novosibirsk State University, 2, Pirogov St., Novosibirsk 630090, Russia
| | - Tatiana P. Koretskaya
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Anastasiya D. Fedorenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., Novosibirsk 630090, Russia;
| | - Tatiana Y. Guselnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Pavel S. Popovetsky
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| |
Collapse
|
2
|
Makhaev VD, Petrova LA. Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates. Molecules 2023; 28:molecules28083496. [PMID: 37110730 PMCID: PMC10145686 DOI: 10.3390/molecules28083496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A new mechanically stimulated solid-state reaction of PtCl4 with sodium β-diketonates has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent heating of the resulting mixture. The reactions occur under much milder conditions (at about 170 °C) compared to similar reactions of PtCl2 or K2PtCl6 (at about 240 °C). Excess diketonate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis methods. The difference in the course of the interaction of PtCl4 with Na(hfac) or Na(tfac) indicates the dependence of the reaction on the ligand properties. The probable reaction mechanisms were discussed. This method of synthesis of platinum (II) β-diketonates makes it possible to substantially reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents, and waste generation compared to conventional solution-based methods.
Collapse
Affiliation(s)
- Victor D Makhaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Larisa A Petrova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| |
Collapse
|
3
|
Kochelakov DV, Vikulova ES, Kuratieva NV, Sukhikh AS, Gromilov SA. STUDY OF POTASSIUM, RUBIDIUM HEXAFLUOROACETYLACETONATES AND BY-PRODUCTS OF THEIR SYNTHESIS AND CRYSTALLIZATION. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Boysen N, Wree JL, Zanders D, Rogalla D, Öhl D, Schuhmann W, Devi A. High-Performance Iridium Thin Films for Water Splitting by CVD Using New Ir(I) Precursors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52149-52162. [PMID: 36351209 DOI: 10.1021/acsami.2c13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin films of iridium can be utilized in a wide range of applications and are particularly interesting for catalytic transformations. For the scalable deposition of functional Ir thin films, metalorganic chemical vapor deposition (MOCVD) is the method of choice, for which organometallic precursors that embody a high volatility and thermal stability need to be specifically tailored. Herein, we report the synthesis, analysis, and evaluation of new volatile Ir(I)-1,5-cyclooctadiene complexes bearing all-nitrogen coordinating guanidinate (N,N'-diisopropyl-2-dimethylamido-guanidinate (DPDMG)), amidinate (N,N'-diisopropyl-amidinate (DPAMD)), and formamidinate (N,N'-diisopropyl-formamidinate (DPfAMD)) ligands. The amidinate-based Ir complex [Ir(COD)(DPAMD)] together with O2 was implemented in MOCVD experiments resulting in highly crystalline, dense, and conductive Ir films on a variety of substrate materials. The Ir deposits achieved outstanding electrochemical performance with overpotentials in the range of 50 mV at -10 mA·cm-2 for catalytic hydrogen evolution reaction (HER) in acidic solution. The ability to deposit Ir layers via MOCVD exhibiting promising functional properties is a significant step toward large-scale applications.
Collapse
Affiliation(s)
- Nils Boysen
- Inorganic Materials Chemistry (IMC), Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan-Lucas Wree
- Inorganic Materials Chemistry (IMC), Ruhr University Bochum, 44801 Bochum, Germany
| | - David Zanders
- Inorganic Materials Chemistry (IMC), Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Denis Öhl
- Analytical Chemistry─Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry─Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Anjana Devi
- Inorganic Materials Chemistry (IMC), Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
5
|
Dorovskikh SI, Vikulova ES, Sergeevichev DS, Guselnikova TY, Zheravin AA, Nasimov DA, Vasilieva MB, Chepeleva EV, Saprykin AI, Basova TV, Morozova NB. Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals. Biomedicines 2022; 10:biomedicines10092230. [PMID: 36140329 PMCID: PMC9496383 DOI: 10.3390/biomedicines10092230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1−2.5 mm thick CFR-PEEK samples. The coated and pristine CCM and CFR-PEEK samples were further surface-modified with Au and Ag nanoparticles (NPs) through MOCVD and physical vapor deposition (PVD) processes, respectively. The composition and microstructural features, the NPs sizes, and surface concentrations were determined. In vitro biological studies included tests for cytotoxicity and antibacterial properties. A series of samples were selected for subcutaneous implantation in rats (up to 3 months) and histological studies. The bimetallic PtIr-based heterostructures showed no cytotoxicity in vitro, but were less biocompatible due to a dense two-layered fibrous capsule. AuNP heterostructures on CFR-PEEK promoted cell proliferation in vitro and exhibited a strong inhibition of bacterial growth (p < 0.05) and high in vitro biocompatibility, especially Au/Ir structures. AgNP heterostructures showed a more pronounced antibacterial effect, while their in vivo biocompatibility was better than that of the pristine CFR-PEEK, but worse than that of AuNP heterostructures.
Collapse
Affiliation(s)
- Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - David S. Sergeevichev
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Tatiana Ya. Guselnikova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander A. Zheravin
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maria B. Vasilieva
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, 1, Pirogov Str., 630090 Novosibirsk, Russia
| | - Elena V. Chepeleva
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Anatoly I. Saprykin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-3833309556
| |
Collapse
|
6
|
Dorovskikh SI, Karakovskaya KI, Vikulova ES, Korolkov IV, Koretskaya TP, Maximovskiy EA, Morozova NB. DEPOSITION OF PtxIr(1–x) FILM STRUCTURES BY MOCVD FROM A COMBINATION OF PRECURSORS Me3Pt(acac)Py AND Ir(CO)2(acac). J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Dorovskikh SI, Tryakhov DE, Klyamer DD, Sukhikh AS, Mirzaeva IV, Morozova NB, Basova TV. The Theoretical and Experimental Investigation of the Fluorinated Palladium β-Diketonate Derivatives: Structure and Physicochemical Properties. Molecules 2022; 27:molecules27072207. [PMID: 35408606 PMCID: PMC9000314 DOI: 10.3390/molecules27072207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with β-diketone [tfa−1,1,1-trifluoro-2,4-pentanedionato (1); pfpa−5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba−5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and β-iminoketone [i-tfa−1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa−5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70–80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd β-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd β-iminoketonates. The molecules 2–6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1–2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4–6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd β-iminoketonates and Pd β-diketonates were minimized with the elongation of the fluorine chain in the ligands.
Collapse
Affiliation(s)
- Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
- Chemistry Department, Materials Science Faculty, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-383-330-9556
| | - Denis E. Tryakhov
- Chemistry Department, Materials Science Faculty, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia;
| | - Darya D. Klyamer
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
| | - Alexander S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
- Chemistry Department, Materials Science Faculty, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia;
| | - Irina V. Mirzaeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
- Chemistry Department, Materials Science Faculty, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia;
| | - Natalia B. Morozova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.D.K.); (A.S.S.); (I.V.M.); (N.B.M.); (T.V.B.)
| |
Collapse
|
8
|
Ermakova E, Kosinova M. Organosilicon compounds as single-source precursors for SiCN films production. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Ilyin IY, Mirzaeva IV, Sukhikh TS, Bonegardt DV, Basova TV. STUDY OF THE CORRELATION BETWEEN THE STRUCTURE OF THE [Ir(сod)Cp] COMPLEX AND ITS THERMAL PROPERTIES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Dorovskikh SI, Stabnikov PА, Zelenina LN, Sysoev SV, Morozova NB. Thermal Properties of Cobalt(II) β-Iminoketonates. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s107036322110008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Dorovskikh SI, Vikulova ES, Korolkov IV, Maksimovskiy EA, Kal’nyi DB, Morozova NB. MICROSTRUCTURE OF IRIDIUM ENRICHED PtxIr(1–x) FILMS PREPARED BY CHEMICAL VAPOR DEPOSITION. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621090146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zherikova KV, Makarenko AM, Karakovskaya KI, Zelenina LN, Sysoev SV, Vikulova ES, Morozova NB. Thermodynamic Study of Iridium(I) Complexes as a Basis for Chemical Gas-Phase Deposition Technology. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Dorovskikh SI, Vikulova ES, Chepeleva EV, Vasilieva MB, Nasimov DA, Maksimovskii EA, Tsygankova AR, Basova TV, Sergeevichev DS, Morozova NB. Noble Metals for Modern Implant Materials: MOCVD of Film Structures and Cytotoxical, Antibacterial, and Histological Studies. Biomedicines 2021; 9:biomedicines9080851. [PMID: 34440054 PMCID: PMC8389635 DOI: 10.3390/biomedicines9080851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
This work is aimed at developing the modification of the surface of medical implants with film materials based on noble metals in order to improve their biological characteristics. Gas-phase transportation methods were proposed to obtain such materials. To determine the effect of the material of the bottom layer of heterometallic structures, Ir, Pt, and PtIr coatings with a thickness of 1.4-1.5 μm were deposited by metal-organic chemical vapor deposition (MOCVD) on Ti6Al4V alloy discs. Two types of antibacterial components, namely, gold nanoparticles (AuNPs) and discontinuous Ag coatings, were deposited on the surface of these coatings. AuNPs (11-14 nm) were deposited by a pulsed MOCVD method, while Ag films (35-40 nm in thickness) were obtained by physical vapor deposition (PVD). The cytotoxic (24 h and 48 h, toward peripheral blood mononuclear cells (PBMCs)) and antibacterial (24 h) properties of monophase (Ag, Ir, Pt, and PtIr) and heterophase (Ag/Pt, Ag/Ir, Ag/PtIr, Au/Pt, Au/Ir, and Au/PtIr) film materials deposited on Ti-alloy samples were studied in vitro and compared with those of uncoated Ti-alloy samples. Studies of the cytokine production by PBMCs in response to incubation of the samples for 24 and 48 h and histological studies at 1 and 3 months after subcutaneous implantation in rats were also performed. Despite the comparable thickness of the fibrous capsule after 3 months, a faster completion of the active phase of encapsulation was observed for the coated implants compared to the Ti alloy analogs. For the Ag-containing samples, growth inhibition of S. epidermidis, S. aureus, Str. pyogenes, P. aeruginosa, and Ent. faecium was observed.
Collapse
Affiliation(s)
- Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
| | - Elena V. Chepeleva
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia; (E.V.C.); (M.B.V.); (D.S.S.)
| | - Maria B. Vasilieva
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia; (E.V.C.); (M.B.V.); (D.S.S.)
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 15 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Eugene A. Maksimovskii
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
| | - David S. Sergeevichev
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia; (E.V.C.); (M.B.V.); (D.S.S.)
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.I.D.); (E.S.V.); (E.A.M.); (A.R.T.); (T.V.B.)
- Correspondence: ; Tel.: +73-833-309-556
| |
Collapse
|
14
|
Vikulova ES, Karakovskaya KI, Ilyin IY, Kovaleva EA, Piryazev DA, Zelenina LN, Sysoev SV, Morozova NB, Zherikova KV. "Vitruvian" precursor for gas phase deposition: structural insights into iridium β-diketonate volatilities. Phys Chem Chem Phys 2021; 23:9889-9899. [PMID: 33908514 DOI: 10.1039/d1cp00464f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New data on the thermodynamic properties of the melting and sublimation of a series of volatile iridium(i) complexes [Ir(cod)(L)] with cyclooctadiene-1,5 (cod) and β-diketones (L = RC(O)CHC(O)R') have been obtained with differential scanning calorimetry and vapor pressure measurements. Combining experimental, empirical and theoretical methods, ways to estimate difference in heat capacities between gas and crystal phases have been suggested. An effect on the volatility in introducing the simplest alkyl, fluorinated alkyl and aryl terminal groups (R and R') into the chelate ligand has been explained in terms of a detailed crystal packing analysis supported by a quantum chemical calculation of crystal lattice energies. To reveal the influence of the coordination center, the thermal behavior of complexes was compared with that for the tris-chelates, [Ir(L)3]. The study broadens our understanding of relationships between the structure and thermal properties of volatile precursors, which is useful for further tuning effective compounds for metal-organic chemical vapor deposition purposes.
Collapse
Affiliation(s)
- Evgeniia S Vikulova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|