1
|
Lobel B, Baiocco D, Al-Sharabi M, Routh AF, Zhang Z, Cayre OJ. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40326-40355. [PMID: 39042830 PMCID: PMC11311140 DOI: 10.1021/acsami.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.
Collapse
Affiliation(s)
- Benjamin
T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| | - Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Pina-Vidal C, Berned-Samatán V, Piera E, Caballero MÁ, Téllez C. Mechanochemical Encapsulation of Caffeine in UiO-66 and UiO-66-NH 2 to Obtain Polymeric Composites by Extrusion with Recycled Polyamide 6 or Polylactic Acid Biopolymer. Polymers (Basel) 2024; 16:637. [PMID: 38475320 DOI: 10.3390/polym16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The development of capsules with additives that can be added to polymers during extrusion processing can lead to advances in the manufacturing of textile fabrics with improved and durable properties. In this work, caffeine (CAF), which has anti-cellulite properties, has been encapsulated by liquid-assisted milling in zirconium-based metal-organic frameworks (MOFs) with different textural properties and chemical functionalization: commercial UiO-66, UiO-66 synthesized without solvents, and UiO-66-NH2 synthesized in ethanol. The CAF@MOF capsules obtained through the grinding procedure have been added during the extrusion process to recycled polyamide 6 (PA6) and to a biopolymer based on polylactic acid (PLA) to obtain a load of approximately 2.5 wt% of caffeine. The materials have been characterized by various techniques (XRD, NMR, TGA, FTIR, nitrogen sorption, UV-vis, SEM, and TEM) that confirm the caffeine encapsulation, the preservation of caffeine during the extrusion process, and the good contact between the polymer and the MOF. Studies of the capsules and PA6 polymer+capsules composites have shown that release is slower when caffeine is encapsulated than when it is free, and the textural properties of UiO-66 influence the release more prominently than the NH2 group. However, an interaction is established between the biopolymer PLA and caffeine that delays the release of the additive.
Collapse
Affiliation(s)
- Cristina Pina-Vidal
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Víctor Berned-Samatán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Elena Piera
- Research and Development Department, Nurel S.A., Ctra. Barcelona km 329, 50016 Zaragoza, Spain
| | - Miguel Ángel Caballero
- Research and Development Department, Nurel S.A., Ctra. Barcelona km 329, 50016 Zaragoza, Spain
| | - Carlos Téllez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Application of Lavender-Oil Microcapsules to Functionalized PET Fibers. Polymers (Basel) 2023; 15:polym15040917. [PMID: 36850201 PMCID: PMC9964015 DOI: 10.3390/polym15040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surface treatments for textile substrates have received significant attention from researchers around the world. Ozone and plasma treatments trigger a series of surface alterations in textile substrates that can improve the anchoring of other molecules or particles on these substrates. This work aims to evaluate the effect of ozone and plasma treatments on the impregnation of polymeric microcapsules containing lavender oil in polyester fabrics (PES). Microcapsules with walls of chitosan and gum arabic were prepared by complex coacervation and impregnated in PES, plasma-treated PES, and ozone-treated PES by padding. The microcapsules were characterized for their size and morphology and the surface-treated PES was evaluated by FTIR, TGA, SEM, and lavender release. The microcapsules were spherical in shape, with smooth surfaces. The FTIR analyses of the textile substrates with microcapsules showed bands referring to the polymers of the microcapsules, but not to the lavender; this was most likely because the smooth surface of the outer wall did not retain the lavender. The mass loss and the degradation temperatures measured by TGA were similar for all the ozone-treated and plasma-treated polyester samples. In the SEM images, spherical microcapsules and the impregnation of the microcapsules of larger sizes were perceived. Through the lavender release, it was observed that the plasma and ozone treatments interfered both with the amount of lavender delivered and with the control of the delivery.
Collapse
|
4
|
Bai J, Guan H, Li Y, Jiang S. Synthesis of phase change microcapsules based dispersants for waterborne coatings and their effects on paint film properties. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2158852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jue Bai
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China
| | - Huiyua Guan
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, China
| | - Yu Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shuangshuang Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Altay Ö, Köprüalan Ö, İlter I, Koç M, Ertekin FK, Jafari SM. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit Rev Food Sci Nutr 2022; 64:1139-1157. [PMID: 36004620 DOI: 10.1080/10408398.2022.2113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Essential oils (EOs) have many beneficial qualities, including antimicrobial, antioxidant, antiviral, and antifungal activities, along with good aroma, which have played a significant role in pharmaceutical, textile, and food industries. However, their high volatility and sensibility to external factors, as well as susceptibility to deterioration caused by environmental and storage conditions, or even common processing, and consequently limited water solubility, makes it difficult to incorporate them into aqueous food matrices and limits their industrial application. Spray-drying encapsulation has been proposed as a solution and a challenging research field to retard oil oxidation, extend EO's shelf life, improve their physicochemical stability, achieve controlled release, suggest novel uses, and therefore boost their added value. The objective of this review is to discuss various used wall materials, infeed emulsion properties, the main formulation and process variables affecting the physicochemical properties and release characteristics of the EOs-loaded particles obtained by spray-drying, the stability of EOs during storage, and the applications of encapsulated EOs powders in foods and nutrition, pharmaceuticals, and textile industries. The current review also summarizes recent advances in spray drying approaches for improving encapsulation efficiency, flavor retention, controlled release, and applicability of encapsulated EOs, thereby expanding their use and functionalities.
Collapse
Affiliation(s)
- Özgül Altay
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Özgün Köprüalan
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Işıl İlter
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Mehmet Koç
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Figen Kaymak Ertekin
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Patterned Printing of Fragrant Microcapsules to Cotton Fabric. COATINGS 2022. [DOI: 10.3390/coatings12050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microcapsules with fragrance in the core were used to produce a scented textile. The wall of microcapsules was based on a melamine-formaldehyde polymer while an essential oil was in the core. They were applied to cotton fabric using screen printing in two ways: over the entire surface and by pattern. The properties of the differently printed samples were analyzed. The fragrance evaluation was performed, mechanical properties were studied, antibacterial activity against Staphylococcus aureus and Escherihia coli was evaluated, and resistance of the samples to soil microorganisms was determined. The amount of formaldehyde on the samples was measured. The results showed that all samples kept the fragrance even after 10 washes. The mechanical properties of the fully printed fabric were different from the properties of the patterned fabric. None of the prints of scented microcapsules provided antibacterial activity. All samples were biodegradable. Less formaldehyde was measured on patterned samples than on fully printed samples. The amount decreased after washing.
Collapse
|
7
|
Wongchompoo W, Buntem R. Microencapsulation of camphor using trimethylsilylcellulose. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|