1
|
Janowski G, Wójcik M, Frącz W, Bąk Ł, Ryzińska G. Assessment of the Effect of Multiple Processing of PHBV-Ground Buckwheat Hull Biocomposite on Its Functional and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6136. [PMID: 39769736 PMCID: PMC11677353 DOI: 10.3390/ma17246136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The influence of the addition of ground buckwheat hulls on the properties of biocomposite on the basis of 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) is presented here. The changes in the material after repeated reprocessing-up to five recycling cycles-are written in the paper. Analysis of the shrinkage, water adsorption, selected mechanical properties, tensile impact strength, hardness and the microstructure of the surface layer was performed. The results show that the application of the buckwheat hulls into the biopolymer decreases the material shrinkage. It improves the material dimensional stability, as well as increases the water adsorption in the wake of the hydrophobic properties of the filler. The addition of the natural filler also leads to an increase in composite stiffness. The decrease in the tensile impact strength and the elongation at break is also noted. The reprocessing of the biocomposite initially led to a decrease in its mechanical properties, but the results stabilized after further processing cycles. This indicates the improvement of the microstructure homogeneity. The microscopic analysis shows that buckwheat hull particles were better embedded in the matrix after recycling. The increase in hardness was also noted. The PHBV-ground buckwheat hull biocomposite is characterized by stable mechanical properties and by recycling resistance, which makes it a promising material in terms of the sustainable development.
Collapse
Affiliation(s)
- Grzegorz Janowski
- Department of Materials Forming and Processing, Rzeszow University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland; (W.F.); (Ł.B.); (G.R.)
| | - Marta Wójcik
- Department of Materials Forming and Processing, Rzeszow University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland; (W.F.); (Ł.B.); (G.R.)
| | | | | | | |
Collapse
|
2
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Crusot M, Gardon T, Richmond T, Jezequel R, Barbier E, Gaertner-Mazouni N. Chemical toxicity of leachates from synthetic and natural-based spat collectors on the embryo-larval development of the pearl oyster, Pinctada margaritifera. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135647. [PMID: 39217928 DOI: 10.1016/j.jhazmat.2024.135647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In French Polynesia, the pearl farming industry relies entirely on collecting natural spat using a shade-mesh collector, which is reported to contribute to both plastic pollution and the release of toxic chemicals. With the aim of identifying more environment-friendly collectors, this study investigates the chemical toxicity of shade-mesh (SM) and alternative materials, including reusable plates (P), a newly developed biomaterial (BioM) and Coconut coir geotextile (Coco), on the embryo-larval development of Pinctada margaritifera. Embryos were exposed during 48 h to four concentrations (0, 0.1, 10 and 100 g L-1) of leachates produced from materials. Chemical screening of raw materials and leachates was performed to assess potential relationships with the toxicity observed on D-larvae development. Compared to the other tested materials, results demonstrated lower levels of chemical pollutants in BioM and no toxic effects of its leachates at 10 g L-1. No toxicity was observed at the lowest tested concentration (0.1 g L-1). These findings offer valuable insights for promoting safer spat collector alternatives such as BioM and contribute to the sustainable development of pearl farming.
Collapse
Affiliation(s)
- M Crusot
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia.
| | - T Gardon
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia; Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - T Richmond
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - R Jezequel
- CEDRE, 715 Rue Alain Colas, 29218 Brest, France
| | - E Barbier
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia
| | | |
Collapse
|
4
|
Mutmainna I, Gareso PL, Suryani S, Tahir D. Microplastics from petroleum-based plastics and their effects: A systematic literature review and science mapping of global bioplastics production. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1892-1911. [PMID: 38980276 DOI: 10.1002/ieam.4976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
The use of bioplastics is a new strategy for reducing microplastic (MP) waste caused by petroleum-based plastics. This problem has received increased attention worldwide, leading to the development of large-scale bioplastic plants. The large amount of MPs in aquatic and terrestrial environments and the atmosphere has raised global concern. This article delves into the profound environmental impact of the increasing use of petroleum-based plastics, which contribute significantly to plastic waste and, as a consequence, to the increase in MPs. We conducted a comprehensive analysis to identify countries that are at the forefront of efforts to produce bioplastics to reduce MP pollution. In this article, we explain the development, degradation processes, and research trends of bioplastics derived from biological materials such as starch, chitin, chitosan, and polylactic acid (PLA). The findings pinpoint the top 10 countries demonstrating a strong commitment to reducing MP pollution through bioplastics. These nations included the United States, China, Spain, Canada, Italy, India, the United Kingdom, Malaysia, Belgium, and the Netherlands. This study underscores the technical and economic obstacles to large-scale bioplastic production. Integr Environ Assess Manag 2024;20:1892-1911. © 2024 SETAC.
Collapse
Affiliation(s)
| | | | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
5
|
González-Arancibia F, Mamani M, Valdés C, Contreras-Matté C, Pérez E, Aguilera J, Rojas V, Ramirez-Malule H, Andler R. Biopolymers as Sustainable and Active Packaging Materials: Fundamentals and Mechanisms of Antifungal Activities. Biomolecules 2024; 14:1224. [PMID: 39456157 PMCID: PMC11506644 DOI: 10.3390/biom14101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Developing bio-based and biodegradable materials has become important to meet current market demands, government regulations, and environmental concerns. The packaging industry, particularly for food and beverages, is known to be the world's largest consumer of plastics. Therefore, the demand for sustainable alternatives in this area is needed to meet the industry's requirements. This review presents the most commonly used bio-based and biodegradable packaging materials, bio-polyesters, and polysaccharide-based polymers. At the same time, a major problem in food packaging is presented: fungal growth and, consequently, food spoilage. Different types of antifungal compounds, both natural and synthetic, are explained in terms of structure and mechanism of action. The main uses of these antifungal compounds and their degree of effectiveness are detailed. State-of-the-art studies have shown a clear trend of increasing studies on incorporating antifungals in biodegradable materials since 2000. The bibliometric networks showed studies on active packaging, biodegradable polymers, films, antimicrobial and antifungal activities, essential oils, starch and polysaccharides, nanocomposites, and nanoparticles. The combination of the development of bio-based and biodegradable materials with the ability to control fungal growth promotes both sustainability and the innovative enhancement of the packaging sector.
Collapse
Affiliation(s)
- Fernanda González-Arancibia
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Maribel Mamani
- Laboratorio de Bioprocesos, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Caterina Contreras-Matté
- Programa de Doctorado en Psicología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
| | - Eric Pérez
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Javier Aguilera
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Victoria Rojas
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
6
|
Negrete-Bolagay D, Guerrero VH. Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers (Basel) 2024; 16:2561. [PMID: 39339026 PMCID: PMC11434805 DOI: 10.3390/polym16182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics.
Collapse
Affiliation(s)
| | - Víctor H. Guerrero
- Department of Materials, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| |
Collapse
|
7
|
Tang NFR, Armynah B, Tahir D. Structural and optical properties of alginate-based antibacterial dressing with calcium phosphate and zinc oxide for biodegradable wound painting applications. Int J Biol Macromol 2024; 276:133996. [PMID: 39032876 DOI: 10.1016/j.ijbiomac.2024.133996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The skin is the outermost part of the body. Although susceptible to damage, the skin is in direct contact with the external environment. Wound dressing is a clinical method that plays a vital role in wound healing. Herein, we developed an antibacterial wound dressing using alginate as the basic material. The dressing was prepared using the solvent casting method, which was used to analyze the effects of adding CaP and ZnO on its structural, optical, and antibacterial properties. Adding CaP exhibited strong but stiff mechanical properties, unlike the CaP/ZnO, which possessed high strength and elasticity. The optical properties of sample S2 did not have a considerable impact. By contrast, the addition of ZnO to sample S3 notably increases the wavelength and absorption value. The diameter of the inhibition zone for S. aureus bacteria exhibited a successive increase in its antibacterial properties, and sample S3 exhibited the highest value. Thus, sample S3 is the most promising wound dressing concerning speeding up the wound healing process because it possesses the most optimal mechanical, optical, and antibacterial properties. The main limitation to be addressed is that sample S3 cannot be easily digested in the environment.
Collapse
Affiliation(s)
| | - Bidayatul Armynah
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia
| | - Dahlang Tahir
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia.
| |
Collapse
|
8
|
Mogany T, Bhola V, Bux F. Algal-based bioplastics: global trends in applied research, technologies, and commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38022-38044. [PMID: 38787471 PMCID: PMC11189328 DOI: 10.1007/s11356-024-33644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The excessive global demand for plastic materials has resulted in severe plastic waste pollution. Conventional plastics derived from non-renewable fossil fuels are non-biodegradable, leading to significant environmental problems. Algal-based bioplastics represent a more viable, renewable, and sustainable alternative to conventional plastics. They have identical properties and characteristics as conventional plastics while being naturally biodegradable. The potential of the algal biomass value chain has already been well-established by researchers. Here, we review the novel insights on research, technology, and commercialization trends of algal-based bioplastics, encompassing macroalgae and green microalgae/cyanobacteria. Data showed that within the last decade, there has been substantial interest in utilizing microalgae for biopolymer production, with more focus on using cyanobacterial species compared to green algae. Moreover, most of the research conducted has largely focused on the production of PHA or its co-polymers. Since 2011, there have been a total of 55 patents published related to algal-based bioplastics production. To date, ~ 81 entities worldwide (commercial and private businesses) produce bioplastics from algae. Overall results of this study emphasized that even with the economic and social challenges, algae possess a substantial potential for the sustainable development of bioplastics while also addressing the UN's SDGs.
Collapse
Affiliation(s)
- Trisha Mogany
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Virthie Bhola
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
9
|
Adetunji AI, Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers (Basel) 2024; 16:1322. [PMID: 38794516 PMCID: PMC11124873 DOI: 10.3390/polym16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | | |
Collapse
|
10
|
Rezić I, Meštrović E. Challenges of Green Transition in Polymer Production: Applications in Zero Energy Innovations and Hydrogen Storage. Polymers (Basel) 2024; 16:1310. [PMID: 38794503 PMCID: PMC11124979 DOI: 10.3390/polym16101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The green transition in the sustainable production and processing of polymers poses multifaceted challenges that demand integral comprehensive solutions. Specific problems of presences of toxic trace elements are often missed and this prevents shifting towards eco-friendly alternatives. Therefore, substantial research and the development of novel approaches is needed to discover and implement innovative, sustainable production materials and methods. This paper is focused on the most vital problems of the green transition from the aspect of establishing universally accepted criteria for the characterization and classification of eco-friendly polymers, which is essential to ensuring transparency and trust among consumers. Additionally, the recycling infrastructure needs substantial improvement to manage the end-of-life stage of polymer products effectively. Moreover, the lack of standardized regulations and certifications for sustainable polymers adds to the complexity of this problem. In this paper we propose solutions from the aspect of standardization protocols for the characterization of polymers foreseen as materials that should be used in Zero Energy Innovations in Hydrogen Storage. The role model standards originate from eco-labeling procedures for materials that come into direct or prolonged contact with human skin, and that are monitored by different methods and testing procedures. In conclusion, the challenges of transitioning to green practices in polymer production and processing demands a concerted effort from experts in the field which need to emphasize the problems of the analysis of toxic ultra trace and trace impurities in samples that will be used in hydrogen storage, as trace impurities may cause terrific obstacles due to their decreasing the safety of materials. Overcoming these obstacles requires the development and application of current state-of-the-art methodologies for monitoring the quality of polymers during their recycling, processing, and using, as well as the development of other technological innovations, financial initiatives, and a collective commitment to fostering a sustainable and environmentally responsible future for the polymer industry and innovations in the field of zero energy applications.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Chatrath S, Alotaibi M, Barry CF. Performance of Recycled Polylactic Acid/Amorphous Polyhydroxyalkanoate Blends. Polymers (Basel) 2024; 16:1230. [PMID: 38732699 PMCID: PMC11085229 DOI: 10.3390/polym16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Blends of polylactic acid (PLA) with amorphous polyhydroxyalkanoate (aPHA) are less brittle than neat PLA, thus enabling their use as biodegradable packaging. This work investigated the impact of recycling on the properties of neat PLA and PLA/aPHA blends with 90 and 75 wt. % PLA. After the materials were subjected to five heat histories in a single-screw extruder, the mechanical, rheological, and thermal properties were measured. All recycled compounds with 100% PLA and 75% PLA had similar decomposition behavior, whereas the decomposition temperatures for the blends with 90% PLA decreased with each additional heat cycle. The glass transition and melting temperatures were not impacted by reprocessing, but the crystallinity increased with more heat cycles. The complex viscosity of the reprocessed PLA and PLA/aPHA blends was much lower than for the neat PLA and increasing the number of heat cycles produced smaller reductions in the complex viscosity of 100% PLA and the blend with 90% PLA; no change in complex viscosity was observed for blends with 75% PLA exposed to 2 to 5 heat cycles. The tensile properties were not affected by reprocessing, whereas the impact strength for the 75% PLA blend decreased with reprocessing. These properties suggest that users will be able to incorporate scrap into the neat resin for thermoformed packaging.
Collapse
Affiliation(s)
| | | | - Carol Forance Barry
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01879, USA
| |
Collapse
|
12
|
de Souza F, Gupta RK. Bacteria for Bioplastics: Progress, Applications, and Challenges. ACS OMEGA 2024; 9:8666-8686. [PMID: 38434856 PMCID: PMC10905720 DOI: 10.1021/acsomega.3c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.
Collapse
Affiliation(s)
- Felipe
Martins de Souza
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
| | - Ram K. Gupta
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
- Department
of Chemistry, Pittsburgh State University, 1701 South Broadway Street, Pittsburgh, Kansas 66762, United States
| |
Collapse
|
13
|
Zhang Q, Huang J, Zhou N. Toughening Enhancement Mechanism and Performance Optimization of Castor-Oil-Based Polyurethane Cross-Linked Modified Polybutylene Adipate/Terephthalate Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6256. [PMID: 37763534 PMCID: PMC10532669 DOI: 10.3390/ma16186256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based polyester PBAT, aiming to introduce CO and TDI to improve the mechanical properties of composite materials. The results showed that when the total addition of CO and TDI was 15%, and the ratio of the hydroxyl group of CO to the isocyanate group of TDI was 1:1, the mechanical properties were the best. The tensile strength of the composite was 86.19% higher than that of pure PBAT, the elongation at break was 70.09% higher than that of PBAT, and the glass transition temperature was 7.82 °C higher than that of pure PBAT. Therefore, the composite modification of PBAT by CO and TDI can effectively improve the heat resistance and mechanical properties of PBAT-based composites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Na Zhou
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
14
|
Guru A, Rady A, Darwish NM, Malafaia G, Arokiyaraj S, Arockiaraj J. Synergetic effects of polyethylene microplastic and abamectin pesticides on the eyes of zebrafish larvae and adults through activation of apoptosis signaling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104215. [PMID: 37423395 DOI: 10.1016/j.etap.2023.104215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Although the toxicity of microplastics (MPs) and pesticides has recently been described, the possible effects of combining these pollutants are poorly understood. Thus, we evaluated the potential impact of exposure to polyethylene MP (PE-MP) and abamectin (ABM) (alone and combined) in zebrafish. After five days, the combined exposure to MP and ABM decreased the survival rate compared to exposures to individual pollutants. A significant increase in reactive oxygen species (ROS), lipid peroxidation, apoptosis, and impairment in antioxidant response was observed in zebrafish larvae. Morphological changes in the eyes of zebrafish significantly increased in the combined exposure group than in the individual exposure. Furthermore, the bax and p53 expression (specific apoptotic genes) was significantly upregulated after the combined exposure to PE-MP and ABM. So, the synergetic effect of MP and ABM cannot be ignored, and further research on other higher models is required to confirm its consequences.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Noura M Darwish
- Faculty of Science Ain Shams University, Biochemistry Department, Abbasaya, P.O. Box. 11566, Cairo, Egypt
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil. Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil. 16 Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists, ABJC, Brazil.
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Chengalpattu District, 603203 Tamil Nadu, India.
| |
Collapse
|
15
|
Ciano S, Di Mario M, Goscinny S, Van Hoeck E. Towards Less Plastic in Food Contact Materials: An In-Depth Overview of the Belgian Market. Foods 2023; 12:2737. [PMID: 37509829 PMCID: PMC10379060 DOI: 10.3390/foods12142737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The food contact materials (FCMs) industry is forced to develop substitute materials due to constant pressure from consumers and authorities to reduce fossil-based plastic. Several alternatives are available on the market. However, market share, trends, and consumer preferences are still unclear. Therefore, this study aims to provide an overview of the Belgian FCMs market, the available substitute materials, and their uses. The market analysis was performed with an integrated web-based approach. Fifty-two sources were investigated, covering e-shops selling materials intended to replace disposable plastic materials or being advertised as environmentally friendly and websites describing homemade FCMs. The first screening identified 10,523 articles. The following data cleaning process resulted in a homogeneous dataset containing 2688 unique entries, systematically categorised into fifteen material categories and seven utilisation classes. Paper and board was the most popular material category (i.e., 37% of the entries), followed by bagasse, accounting for 9% of the entries. Takeaway and food serving (44.4% and 22.8% of the entries) were the most common usage categories. The study pursued to provide insights into current trends and consumer preferences, highlighting priorities for safety assessment and future policy making.
Collapse
Affiliation(s)
- Salvatore Ciano
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Mélanie Di Mario
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Séverine Goscinny
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Els Van Hoeck
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| |
Collapse
|
16
|
Ali SS, Abdelkarim EA, Elsamahy T, Al-Tohamy R, Li F, Kornaros M, Zuorro A, Zhu D, Sun J. Bioplastic production in terms of life cycle assessment: A state-of-the-art review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100254. [PMID: 37020495 PMCID: PMC10068114 DOI: 10.1016/j.ese.2023.100254] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
The current transition to sustainability and the circular economy can be viewed as a socio-technical response to environmental impacts and the need to enhance the overall performance of the linear production and consumption paradigm. The concept of biowaste refineries as a feasible alternative to petroleum refineries has gained popularity. Biowaste has become an important raw material source for developing bioproducts and biofuels. Therefore, effective environmental biowaste management systems for the production of bioproducts and biofuels are crucial and can be employed as pillars of a circular economy. Bioplastics, typically plastics manufactured from bio-based polymers, stand to contribute to more sustainable commercial plastic life cycles as part of a circular economy in which virgin polymers are made from renewable or recycled raw materials. Various frameworks and strategies are utilized to model and illustrate additional patterns in fossil fuel and bioplastic feedstock prices for various governments' long-term policies. This review paper highlights the harmful impacts of fossil-based plastic on the environment and human health, as well as the mass need for eco-friendly alternatives such as biodegradable bioplastics. Utilizing new types of bioplastics derived from renewable resources (e.g., biowastes, agricultural wastes, or microalgae) and choosing the appropriate end-of-life option (e.g., anaerobic digestion) may be the right direction to ensure the sustainability of bioplastic production. Clear regulation and financial incentives are still required to scale from niche polymers to large-scale bioplastic market applications with a truly sustainable impact.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Esraa A. Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, 00184, Rome, Italy
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
17
|
Kong U, Mohammad Rawi NF, Tay GS. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers (Basel) 2023; 15:polym15102399. [PMID: 37242974 DOI: 10.3390/polym15102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Before 21st century, synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber. Owing to several issues, the trend has been diversified to utilise natural resources as reinforcements. There are several industries that have started to use reinforced bioplastic, and this article focuses on the advantages of using reinforced bioplastic in various industries and its limitations. Therefore, this article aims to study the trend of reinforced bioplastic applications and the potential applications of reinforced bioplastics in various industries.
Collapse
Affiliation(s)
- Uwei Kong
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
18
|
Lin R, Zhang J, Xu R, Yuan C, Guo L, Liu P, Fang Y, Cui B. Developments in molecular docking technologies for application of polysaccharide-based materials: A review. Crit Rev Food Sci Nutr 2023; 64:8540-8552. [PMID: 37077154 DOI: 10.1080/10408398.2023.2200833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
With the increasing pollution of the planet, the search for natural multifunctional alternatives to petroleum-based plastics has assumed to be a great important proposition. Polysaccharides, an inexhaustible natural resource with good biocompatibility as well as mechanical properties, are considered as an ideal alternative to petroleum-based materials. However, blind experimentation and development will inevitably lead to waste of raw materials and contamination of reagents. Therefore, researchers desire a technology which can assist in predicting and screening experimental materials at the higher level. Molecular docking simulations, an emerging computer technology that can effectively predict the structure of interactions between molecules and analyze the optimal conformation, are a common aid for materials and drug design. In this review, we describe the origins and development of molecular docking techniques, mainly performed an overview of various molecular docking software on their applications in the field of different polysaccharide materials.
Collapse
Affiliation(s)
- Ruikang Lin
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jihui Zhang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ruoxuan Xu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Yuan
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Guo
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Pengfei Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
19
|
Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Berrabah I, Dehouche N, Kaci M, Bruzaud S, Delaite C, Deguines CH, Bououdina M. A bionanocomposite of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ZnO-nanoparticles intended for food packaging. Int J Biol Macromol 2023; 238:124162. [PMID: 36965560 DOI: 10.1016/j.ijbiomac.2023.124162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Films-based bionanocomposites have gained a great importance in food plastic packaging because they are eco-friendly materials and have the potential to improve food protection, while limiting the accumulation of synthetic plastics on the planet. In this paper, biofilms were prepared using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) reinforced with Zinc oxide nanoparticles (ZnO-NPs) to develop new bionanocomposite materials intended for food packaging. The samples were fabricated using first solvent casting method followed by melt compounding at various loading rates, i.e., 1.5, 3 and 6 wt%. The obtained results showed that the incorporation of ZnO-NPs to PHBHHx at 3 wt% leads to higher crystallinity, improved mechanical properties and antimicrobial activity, compared with neat polymer and other bionanocomposites. This was attributed to the finer and homogeneous nanofiller dispersion in the polymer matrix evidenced by scanning electron microscopy analysis. Whereas at 6 wt%, the bionanocomposite sample exhibited low mechanical properties due to the formation of ZnO-NPs aggregates. In view of the obtained results, the study highlights the potential of using the PHBHHx/ZnO-NPs bionanocomposite at 3 wt% in food packaging without any prior filler treatment.
Collapse
Affiliation(s)
- Ismail Berrabah
- Laboratoire des Matériaux Polymères Avancés (LMPA), Faculté de Technologie, Université de Bejaia, 06000, Algeria.
| | - Nadjet Dehouche
- Laboratoire des Matériaux Polymères Avancés (LMPA), Faculté de Technologie, Université de Bejaia, 06000, Algeria.
| | - Mustapha Kaci
- Laboratoire des Matériaux Polymères Avancés (LMPA), Faculté de Technologie, Université de Bejaia, 06000, Algeria.
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne-Sud, Rue Saint Maudé, Lorient 56100 Cedex, France.
| | - Christelle Delaite
- Université de Haute-Alsace, LPIM EA 4567, F-68100 Mulhouse, France; Université de Strasbourg, France.
| | - Charles Henry Deguines
- Université de Haute-Alsace, LPIM EA 4567, F-68100 Mulhouse, France; Université de Strasbourg, France.
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Bacillus flexus Isolated from Municipal Solid Waste Landfill Site. Polymers (Basel) 2023; 15:polym15061407. [PMID: 36987188 PMCID: PMC10057257 DOI: 10.3390/polym15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different stress conditions. PHBs can be selected as alternatives for the production of biodegradable plastics because of their fast degradation properties when exposed to natural environmental conditions. Hence, the present study was undertaken in order to isolate the potential PHB-producing bacteria isolated from the municipal solid waste landfill site soil samples collected from the Ha’il region of Saudi Arabia to assess the production of PHB using agro-residues as a carbon source and to evaluate the growth of PHB production. In order to screen the isolates for producing PHB, a dye-based procedure was initially employed. Based on the 16S rRNA analysis of the isolates, Bacillus flexus (B. flexus) accumulated the highest amount of PHB of all the isolates. By using a UV–Vis spectrophotometer and Fourier-transform infrared spectrophotometer (FT-IR), in which a sharp absorption band at 1721.93 cm−1 (C=O stretching of ester), 1273.23 cm−1 (–CH group), multiple bands between 1000 and 1300 cm−1 (stretching of the C–O bond), 2939.53 cm−1 (–CH3 stretching), 2880.39 cm−1 (–CH2 stretching) and 3510.02 cm−1 (terminal –OH group), the extracted polymer was characterized and confirmed its structure as PHB. The highest PHB production by B. flexus was obtained after 48 h of incubation (3.9 g/L) at pH 7.0 (3.7 g/L), 35 °C (3.5 g/L) with glucose (4.1 g/L) and peptone (3.4 g/L) as carbon and nitrogen sources, respectively. As a result of the use of various cheap agricultural wastes, such as rice bran, barley bran, wheat bran, orange peel and banana peel as carbon sources, the strain was found to be capable of accumulating PHB. Using response surface methodology (RSM) for optimization of PHB synthesis using a Box–Behnken design (BBD) proved to be highly effective in increasing the polymer yield of the synthesis. With the optimum conditions obtained from RSM, PHB content can be increased by approximately 1.3-fold when compared to an unoptimized medium, resulting in a significant reduction in production costs. Thus, isolate B. flexus is a highly promising candidate for the production of industrial-size quantities of PHB from agricultural wastes and is capable of removing the environmental concerns associated with synthetic plastics from the industrial production process. Moreover, the successful production of bioplastics using a microbial culture provides a promising avenue for the large-scale production of biodegradable and renewable plastics with potential applications in various industries, including packaging, agriculture and medicine.
Collapse
|
22
|
Joseph TM, Kallingal A, Suresh AM, Mahapatra DK, Hasanin MS, Haponiuk J, Thomas S. 3D printing of polylactic acid: recent advances and opportunities. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2023; 125:1015-1035. [PMID: 36644783 PMCID: PMC9822698 DOI: 10.1007/s00170-022-10795-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/29/2022] [Indexed: 05/12/2023]
Abstract
Bio-based polymers are a class of polymers made by living organisms, a few of them known and commercialized yet. Due to poor mechanical strength and economic constraints, they have not yet seen the extensive application. Instead, they have been an appropriate candidate for biological applications. Growing consumer knowledge of the environmental effect of polymers generated from petrochemical sources and a worldwide transition away from plastics with a lifespan of hundreds of years has resulted in greater interest in such hitherto unattainable sectors. Bio-based polymers come in various forms, including direct or "drop-in" replacements for their petrochemical counterparts with nearly identical properties or completely novel polymers that were previously unavailable, such as polylactide. Few of these bio-based polymers offer significantly improved technical specifications than their alternatives. Polylactic acid (PLA) has been well known in the last decade as a biodegradable thermoplastic source for use in 3DP by the "fused deposition modeling" method. The PLA market is anticipated to accomplish 5.2 billion US dollars in 2020 for its industrial usage. Conversely, 3DP is one of the emerging technologies with immense economic potential in numerous sectors where PLA is one of the critical options as the polymer source due to its environmentally friendly nature, glossiness, multicolor appearance, and ease of printing. The chemical structure, manufacturing techniques, standard features, and current market situation of PLA were examined in this study. This review looks at the process of 3DP that uses PLA filaments in extrusion-based 3DP technologies in particular. Several recent articles describing 3D-printed PLA items have been highlighted.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Akshay Maniyeri Suresh
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, 440037 Maharashtra India
| | - Mohamed S. Hasanin
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Józef Haponiuk
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 India
| |
Collapse
|
23
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
24
|
Ali SS, Elsamahy T, Abdelkarim EA, Al-Tohamy R, Kornaros M, Ruiz HA, Zhao T, Li F, Sun J. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. BIORESOURCE TECHNOLOGY 2022; 363:127869. [PMID: 36064080 DOI: 10.1016/j.biortech.2022.127869] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Due to global urbanization, industrialization, and economic development, biowastes generation represents negative consequences on the environment and human health. The use of generated biowastes as a feedstock for biodegradable bioplastic production has opened a new avenue for environmental sustainability from the circular (bio)economy standpoint. Biodegradable bioplastic production can contribute to the sustainability pillars (environmental, economic, and social). Furthermore, bioenergy, biomass, and biopolymers production after recycling of biodegradable bioplastic can help to maintain the energy-environment balance. Several types of biodegradable bioplastic, such as starch-based, polyhydroxyalkanoates, polylactic acid, and polybutylene adipate terephthalate, can achieve this aim. In this review, an overview of the main biowastes valorization routes and the main biodegradable bioplastic types of production, application, and biodegradability are discussed to achieve the transition to the circular economy. Additionally, end-of-life scenarios (up-cycle and down-cycle) are reviewed to attain the maximum environmental, social, and economic benefit from biodegradable bioplastic products under biorefinery concept.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Phala K, Mapossa AB, Augustyn W, Combrinck S, Botha B. Development of EVA and LLDPE polymer-based carvone and spearmint essential oil release systems for citrus postharvest diseases applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC. Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera, were tested on sliced Hass avocados.
The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile of halved Hass avocados.
A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the KorsmeyerPeppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films.
The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit
wrapping materials.
Collapse
|
27
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
28
|
Boey JY, Lee CK, Tay GS. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers (Basel) 2022; 14:polym14183737. [PMID: 36145883 PMCID: PMC9505779 DOI: 10.3390/polym14183737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/12/2023] Open
Abstract
The short life cycle and recalcitrant nature of petroleum-based plastics have been associated with plastic waste accumulation due to their composition rather than worldwide overproduction. The drive to replace single-use products has sparked a considerable amount of research work to discover sustainable options for petroleum-based plastics. Bioplastics open up a new horizon in plastics manufacturing operations and industrial sectors because of their low environmental impact, superior biodegradability, and contribution to sustainable goals. Their mechanical properties regarding tensile, flexural, hardness, and impact strength vary substantially. Various attempts have been made to augment their mechanical characteristics and capacities by incorporating reinforcement materials, such as inorganic and lignocellulosic fibres. This review summarizes the research on the properties of bioplastics modified by fibre reinforcement, with a focus on mechanical performance. The mechanical properties of reinforced bioplastics are significantly driven by parameters such as filler type, filler percentage, and aspect ratio. Fibre treatment aims to promote fibre–matrix adhesion by changing their physical, chemical, thermal, and mechanical properties. A general overview of how different filler treatments affect the mechanical properties of the composite is also presented. Lastly, the application of natural fibre-reinforced bioplastics in the automobile, construction, and packaging industries is discussed.
Collapse
Affiliation(s)
- Jet Yin Boey
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: ; Tel.: +60-4-6532201
| |
Collapse
|
29
|
Cho JY, Kim SH, Cho DH, Jung HJ, Chan Kim B, Bhatia SK, Gurav R, Lee J, Park SH, Park K, Joo HS, Yang YH. Simultaneous monitoring of each component on degradation of blended bioplastic using gas chromatography-mass spectrometry. Anal Biochem 2022; 655:114832. [DOI: 10.1016/j.ab.2022.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
|
30
|
Kandah MI. Production of Biodegradable Bioplastics filled with Jordanian Olive Tree Leaves. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Munther Issa Kandah
- Chemical Engineering Department Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 Jordan
| |
Collapse
|
31
|
Biodiesel and Bioplastic Production from Waste-Cooking-Oil Transesterification: An Environmentally Friendly Approach. ENERGIES 2022. [DOI: 10.3390/en15031073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alternative sources of fuel have been a concern in the last few decades. The growth of urbanization and industrialization will lead to the exhaustion of fossil fuels, attracting studies on alternative routes. The main aim of this study was to produce biodiesel from waste cooking oil (WCO) by methyl transesterification using sodium hydroxide as a catalyst. For this, the physicochemical parameters of biodiesel were studied in triplicate (density, acidity, saponification, viscosity, corrosiveness to copper, visual appearance, and cloud point). An analysis by thin layer chromatography and infrared spectrometry was also performed. The increase in yield (83.3%) was directly proportional to the increase in the catalyst (0.22 g of NaOH). The infrared absorption spectra of WCO and biodiesel showed the presence of common and singular bands of each material. Furthermore, a simple and low-cost mechanism was proposed for purifying glycerol. The spectra of glycerol versus purified glycerin showed that the glycerin produced was pure, being used in the formulation of bioplastic. The product was checked for biodegradation and photodegradation, with incredible soil-degradation times of 180 days and photodegradation of only 60 days. In this way, biodiesel production from WCO showed environmentally friendly proposals and applicability. As the next steps, it is necessary to test the biodiesel produced in combustion engines and improve the bioplastic production, including a spectroscopic characterization and extensive biodegradation testing.
Collapse
|