1
|
Ahmed HR, Hama Aziz KH, Agha NNM, Mustafa FS, Hinder SJ. Iron-loaded carbon black prepared via chemical vapor deposition as an efficient peroxydisulfate activator for the removal of rhodamine B from water. RSC Adv 2023; 13:26252-26266. [PMID: 37670993 PMCID: PMC10475974 DOI: 10.1039/d3ra04566h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
The excessive use of organic pollutants like organic dyes, which enter the water environment, has led to a significant environmental problem. Finding an efficient method to degrade these pollutants is urgent due to their detrimental effects on aquatic organisms and human health. Carbon-based catalysts are emerging as highly promising and efficient alternatives to metal catalysts in Fenton-like systems. They serve as persulfate activators, effectively eliminating recalcitrant organic pollutants from wastewater. In this study, iron-loaded carbon black (Fe-CB) was synthesized from tire waste using chemical vapor deposition (CVD). Fe-CB exhibited high efficiency as an activator of peroxydisulfate (PDS), facilitating the effective degradation and mineralization of rhodamine B (RhB) in water. A batch experiment and series characterization were conducted to study the morphology, composition, stability, and catalytic activity of Fe-CB in a Fenton-like system. The results showed that, at circumneutral pH, the degradation and mineralization efficiency of 20 mg L-1 RhB reached 92% and 48% respectively within 60 minutes. Fe-CB exhibited excellent reusability and low metal leaching over five cycles while maintaining almost the same efficiency. The degradation kinetics of RhB was found to follow a pseudo-first-order model. Scavenging tests revealed that the dominant role was played by sulfate (SO4-˙) and superoxide (O2-˙) radicals, whereas hydroxyl radicals (OH˙) and singlet oxygen (1O2) played a minor role in the degradation process. This study elucidates the detailed mechanism of PDS activation by Fe-CB, resulting in the generation of reactive oxygen species. It highlights the effectiveness of Fe-CB/PDS in a Fenton-like system for the treatment of water polluted with organic dye contaminants. The research provides valuable insights into the potential application of carbon black derived from tire waste for environmental remediation.
Collapse
Affiliation(s)
- Harez R Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development Sulaimaniyah Iraq
| | - Nian N M Agha
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Steven John Hinder
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
2
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
3
|
Mahboob I, Shafique S, Shafiq I, Akhter P, Belousov AS, Show PL, Park YK, Hussain M. Mesoporous LaVO 4/MCM-48 nanocomposite with visible-light-driven photocatalytic degradation of phenol in wastewater. ENVIRONMENTAL RESEARCH 2023; 218:114983. [PMID: 36462696 DOI: 10.1016/j.envres.2022.114983] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.
Collapse
Affiliation(s)
- Iqra Mahboob
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan; Refinery Division, Pak-Arab Refinery Limited "Company" (PARCO), Corporate Headquarters, Korangi Creek Road, Karachi, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Artem S Belousov
- Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih, 43500, Malaysia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan.
| |
Collapse
|
4
|
Pan Y, Gao SH, Ge C, Gao Q, Huang S, Kang Y, Luo G, Zhang Z, Fan L, Zhu Y, Wang AJ. Removing microplastics from aquatic environments: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100222. [PMID: 36483746 PMCID: PMC9722483 DOI: 10.1016/j.ese.2022.100222] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/13/2023]
Abstract
As one of the typical emerging contaminants, microplastics exist widely in the environment because of their small size and recalcitrance, which has caused various ecological problems. This paper summarizes current adsorption and removal technologies of microplastics in typical aquatic environments, including natural freshwater, marine, drinking water treatment plants (DWTPs), and wastewater treatment plants (WWTPs), and includes abiotic and biotic degradation technologies as one of the removal technologies. Recently, numerous studies have shown that enrichment technologies have been widely used to remove microplastics in natural freshwater environments, DWTPs, and WWTPs. Efficient removal of microplastics via WWTPs is critical to reduce the release to the natural environment as a key connection point to prevent the transfer of microplastics from society to natural water systems. Photocatalytic technology has outstanding pre-degradation effects on microplastics, and the isolated microbial strains or enriched communities can degrade up to 50% or more of pre-processed microplastics. Thus, more research focusing on microplastic degradation could be carried out by combining physical and chemical pretreatment with subsequent microbial biodegradation. In addition, the current recovery technologies of microplastics are introduced in this review. This is incredibly challenging because of the small size and dispersibility of microplastics, and the related technologies still need further development. This paper will provide theoretical support and advice for preventing and controlling the ecological risks mediated by microplastics in the aquatic environment and share recommendations for future research on the removal and recovery of microplastics in various aquatic environments, including natural aquatic environments, DWTPs, and WWTPs.
Collapse
Affiliation(s)
- Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Chang Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sijing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yongming Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Hama Aziz KH. Heterogeneous catalytic activation of peroxydisulfate toward degradation of pharmaceuticals diclofenac and ibuprofen using scrap printed circuit board. RSC Adv 2022; 13:115-128. [PMID: 36605634 PMCID: PMC9764427 DOI: 10.1039/d2ra07263g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Pharmaceutical residues have been identified as a priority contaminant due to their toxicity to organisms and the ecosystem as representative refractory organic compounds in water. Therefore, using efficient treatment methods to remove them from wastewater has become a crucial topic of research. Advanced oxidation processes (AOPs) based on the sulfate radical have gained increased attention in recent years due to their superior performance and adaptability in the decomposition of refractory organic contaminants. In this work, scrap printed circuit boards (PCBs) were used to prepare a low-cost and efficient heterogeneous peroxydisulfate (PDS) catalytic activator via thermal treatment with an air combustion non-carbonized catalyst (NCC) and pyrolysis with a nitrogen carbonized catalyst (CC) for the removal of diclofenac (DCF) and ibuprofen (IBF) from water at circumneutral pH. The synthesized catalysts were characterized by several analytical techniques. The effects of various experimental parameters on the removal efficiency were examined. Under optimum conditions, the degradation efficiency reached 76% and 71% with NCC and 63% and 57.5% with CC within 60 min for DCF and IBP, respectively. The mineralization efficiency as measured by TOC removal reached up to 65% after 60 min treatment. The degradation kinetics for both catalysts followed the pseudo-first-order model. Results from quenching tests showed that the reactive oxidizing species (ROS), including 1O2 > SO4˙- > ˙OH, were generated mainly in the NCC/PDS and CC/PDS systems. Overall, the prepared catalysts were found to be effective and reusable for PDS activation for the removal of pharmaceutical pollutants from water. This study provided a promising, robust and efficient heterogeneous catalytic PDS activation based on the strategy of "waste-treats-waste" for the removal of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development Sulaimani Iraq
| |
Collapse
|
6
|
Fabrication of a Plasmonic Heterojunction for Degradation of Oxytetracycline Hydrochloride and Removal of Cr(VI) from Water. Catalysts 2022. [DOI: 10.3390/catal12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel Ag/Ag2CO3/BiVO4 plasmonic photocatalyst was successfully prepared by depositing Ag nanoparticles on the surface of Ag2CO3/BiVO4 through the photoreduction reaction. Due to the existence of this novel heterojunction photocatalyst structure, not only can it prevent the photogenerated charge recombination, but the unique properties of Ag also have a great advantage in the absorption of light. The Ag/Ag2CO3/BiVO4 photocatalyst showed good catalytic performance in the degradation of oxytetracycline hydrochloride (OTH) and removal of Cr6+, and the degradation rate of OTH reached 98.0% after 150 min of illumination. The successful preparation of Ag/Ag2CO3/BiVO4 was confirmed by a series of characterization methods, and the importance of •OH and h+ radicals in the degradation of OTH was demonstrated. In addition, the photocatalytic mechanism of Ag/Ag2CO3/BiVO4 photocatalyst was systematically studied in terms of degradation of OTH and reduction of Cr6+. This study is of great importance for the development of novel plasmonic heterojunction photocatalysts and to meet future environmental requirements.
Collapse
|
7
|
Idrees S, Jamil LA, Omer KM. Silver-Loaded Carbon and Phosphorous Co-Doped Boron Nitride Quantum Dots (Ag@CP-BNQDs) for Efficient Organic Waste Removal: Theoretical and Experimental Investigations. ACS OMEGA 2022; 7:37620-37628. [PMID: 36312368 PMCID: PMC9609080 DOI: 10.1021/acsomega.2c04480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this paper, silver-loaded phosphorous and carbon co-doped boron nitride quantum dot (Ag@CP-BNQD) nanocomposites were synthesized using a co-precipitation method followed by a hydrothermal approach. The nanocomposites of Ag@CP-BNQDs were characterized by scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and ultraviolet-visible spectrophotometry. The as-prepared Ag@CP-BNQDs were used for photocatalytic degradation of 10 common organic pollutants, including dyes, pharmaceuticals, and pesticides in aqueous solution under visible light irradiation. The high-performance photocatalysis of Ag@CP-BNQDs proved that Ag@CP-BNQDs is plasmonic and the n-p junction photocatalyst. Theoretical calculations were done to measure the crystals and electronic structures of Ag@CP-BNQDs. Theoretical results showed that loading of Ag behaves as plasmonic sensitizers and co-catalysts and provides extra bands, which make electron movement easier between valance and conduction bands. The mechanism of the charge separation enhancement was postulated. Our findings might deepen our understanding of how sensitizer surface modification works in photodegradation applications.
Collapse
Affiliation(s)
- Shinwar
A. Idrees
- Department
of Chemistry, Faculty of Science, University
of Zakho, Kurdistan Region, Zakho 42002, Iraq
| | - Lazgin A. Jamil
- Department
of Chemistry, Faculty of Science, University
of Zakho, Kurdistan Region, Zakho 42002, Iraq
| | - Khalid M. Omer
- Dept.
of Chemistry, College of Science, University
of Sulaimani, Kurdistan Region, Slemani 46002, Iraq
| |
Collapse
|
8
|
Catalytic Degradation of Bisphenol A in Water by Poplar Wood Powder Waste Derived Biochar via Peroxymonosulfate Activation. Catalysts 2022. [DOI: 10.3390/catal12101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of biochar materials was prepared through pyrolyzing poplar wood powder waste under different pyrolyzing temperatures, which were afterwards characterized in detail. Then, the poplar powder biochar (PPB) was used to degrade bisphenol A (BPA) in water via activating peroxymonosulfate (PMS). The results indicate that the activation efficiency of the prepared PPB was correlated with its surface functional groups, which were regulated by its pyrolyzing temperature. Specifically, the biochar pyrolyzed at 600 °C (PPB-600) exhibited the optimal BPA removal activity, in which 0.5 g/L of PPB-600 could remove 0.02 mM of BPA within 120 min. From the results of scavenging tests, ESR analysis and probe pollutant degradation tests, it was inferred that the BPA was degraded by non-radical singlet oxygen in the PPB/PMS system. Since PPB consumed its surface oxygen functional groups and structural defects to activate PMS, the catalytic performance of PPB was gradually reduced after several cycles. This study can provide new insight for the design and preparation of metal-free biochar catalysts from waste wood precursor for the highly-efficient removal of refractory organic pollutants in water.
Collapse
|
9
|
Olive Mill Wastewater Remediation: From Conventional Approaches to Photocatalytic Processes by Easily Recoverable Materials. Catalysts 2022. [DOI: 10.3390/catal12080923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Olive oil production in Mediterranean countries represents a crucial market, especially for Spain, Italy, and Greece. However, although this sector plays a significant role in the European economy, it also leads to dramatic environmental consequences. Waste generated from olive oil production processes can be divided into solid waste and olive mill wastewaters (OMWW). These latter are characterized by high levels of organic compounds (i.e., polyphenols) that have been efficiently removed because of their hazardous environmental effects. Over the years, in this regard, several strategies have been primarily investigated, but all of them are characterized by advantages and weaknesses, which need to be overcome. Moreover, in recent years, each country has developed national legislation to regulate this type of waste, in line with the EU legislation. In this scenario, the present review provides an insight into the different methods used for treating olive mill wastewaters paying particular attention to the recent advances related to the development of more efficient photocatalytic approaches. In this regard, the most advanced photocatalysts should also be easily recoverable and considered valid alternatives to the currently used conventional systems. In this context, the optimization of innovative systems is today’s object of hard work by the research community due to the profound potential they can offer in real applications. This review provides an overview of OMWW treatment methods, highlighting advantages and disadvantages and discussing the still unresolved critical issues.
Collapse
|
10
|
One-Pot Synthesis of Pyrite Nanoplates Supported on Chitosan Hydrochar as Fenton Catalysts for Organics Removal from Water. Catalysts 2022. [DOI: 10.3390/catal12080858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Fenton reaction is a powerful method for removing refractory pollutants from water, yet it is restricted by shortcomings such as pH adjustments and generation of iron-containing sludge. In this study, a highly dispersed pyrite nanoplate supported on chitosan hydrochar was prepared through a simple one-pot hydrothermal method. The interactions between chitosan and Fe3+ suppressed the accumulation of FeS2 in the crystal growth period and led to the formation of pyrite nanoplates with many exposed (210) facets. Thus, it showed excellent Fenton-like activity and the removal efficiency of AR 73 reached 99.9% within 60 min. The catalyst could be used in a wide pH range of 3~10. Hydroxyl radicals are the main reactive oxygen species in this catalytic system. The self-reduction of generated Fe(III) species by sulfur via inner electron transfer promoted the Fe(II)/Fe(III) redox cycle, and the presence of graphene facilitated the adsorption of pollutants. This catalyst also showed good reuse performances as well as stability, which has promising prospects for practical use in wastewater treatment.
Collapse
|
11
|
Decolorization and Oxidation of Acid Blue 80 in Homogeneous and Heterogeneous Phases by Selected AOP Processes. Catalysts 2022. [DOI: 10.3390/catal12060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
This paper is a kinetic study that compares the rate of decolorization and subsequently the mineralization of Acid Blue 80 in model dyeworks wastewater, both in the homogeneous phase using the Fenton and photo-Fenton reactions, UV-C and UVC/H2O2 processes, and in the heterogeneous phase, where the proven commercial photocatalysts P25, P90, and AV01 based on TiO2 were used. The influence of pH of the environment was studied and in the case of the Fenton reaction, the influence of the concentration of catalyzing Fe2+ ions on the rate of decolorization of the model wastewater was also studied. The optimal molar ratio of H2O2/Fe2+ was 10:1. For describing the reaction kinetics, first-order speed constants were best-suited. In all applied processes, the dye chromophore degraded, which was accompanied by a quantitative decolorization of the model wastewater. Subsequently, the mineralization of colorless intermediate products was studied through a decrease in COD or, more precisely, TOC. The mineralization efficiency in the homogeneous phase ranged between 18.6 and 97.1% after 24 h. In the case of heterogeneous photocatalysis, it ranged between 79.6 and 97.3% after 24 h, with efficiency declining in the order P90 > P25 > AV01.
Collapse
|
12
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
13
|
Abstract
The viability of the Electro-Fenton (EF) process in the selective degradation of penicillin G (PenG) in complex solutions has been studied. The role of the anode material (boron-doped diamond (BDD) or mixed metal oxide (MMO)) and the cathode 3D support (foam or mesh), as well as the synergistic effect of UVC light irradiation (photoelectron-Fenton, PEF), have been evaluated. The results show that Pen G can be efficiently and selectively removed by EF, obtaining higher PenG removal rates when using the BDD anode (100%) than when using the MMO anode (75.5%). Additionally, mineralization is not favored under the experimental conditions tested (pH 3, 5 mA cm−2), since both aromatic and carboxylic acids accumulate in the reaction system as final products. In this regard, the EF-treated solution presents a high biological oxygen demand and a low percentage of Vibrio fischeri inhibition, which leads to high biodegradability and low toxicity of this final effluent. Furthermore, the combination with UVC radiation in the PEF process shows a clear synergistic effect on the degradation of penicillin G: 166.67% and 83.18% using MMO and BBD anodes, respectively. The specific energy required to attain the complete removal of PenG and high inhibition of the antibiotic effect is less than 0.05 Ah dm−3. This confirms that PEF can be efficiently used as a pretreatment of conventional wastewater treatment plants to decrease the chemical risk of complex solutions polluted with antibiotics.
Collapse
|
14
|
Removal of Chloroacetanilide Herbicides from Water Using Heterogeneous Photocatalysis with TiO2/UV-A. Catalysts 2022. [DOI: 10.3390/catal12060597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chloroacetanilide herbicides are widely used in the agricultural sector throughout the world. Because of their poor biodegradability, high water solubility, and long persistence, chloroacetanilide herbicides have a high potential to contaminate water, and conventional water treatment processes do not ensure sufficient removal. Therefore, heterogeneous photocatalysis using TiO2/UV-A was investigated for the degradation of alachlor, acetochlor, and metolachlor from water. Two commercially available TiO2 (P25 and AV-01) were used as photocatalysts. Different experimental setups were also tested. In addition, the toxicity of single herbicides and mixtures of their photocatalytic degradation products to the freshwater alga Chlorella kessleri was investigated via a growth inhibition test. The maximum removal efficiency for alachlor, acetochlor, and metolachlor was 97.5%, 93.1%, and 98.2%, respectively. No significant differences in the removal efficiency of chloroacetanilide herbicides were observed for the photocatalysts used. Although the concentrations of all herbicides during photocatalysis decreased, the toxicity of the resulting mixtures of degradation products increased or remained the same, indicating the formation of toxic degradation products.
Collapse
|
15
|
Fabrication of Nanoparticle/Polymer Composite Photocatalytic Membrane for Domestic Sewage In Situ Treatment. MATERIALS 2022; 15:ma15072466. [PMID: 35407799 PMCID: PMC8999259 DOI: 10.3390/ma15072466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Photocatalytic technology using semiconductor catalysts is a promising candidate for light-polluted water treatment. In the past decades, TiO2-related nanomaterials and photocatalytic devices have been applied for sewage ex-situ treatment. However, in situ photocatalytic technology using functional membranes is still needed for many large-scale outdoor scenarios. This work successfully fabricated a robust reusable photocatalytic membrane by firmly immobilizing TiO2 nanoparticles on polymer membranes, supported by various plastic substrates, through an industrial membrane blowing process. The as-fabricated photocatalytic membrane was fabricated by all low-cost and eco-friendly commercial materials and exhibited stable photocatalytic performance in domestic sewage in situ treatment in natural conditions. This work is expected to promote the photocatalytic membrane for practical application.
Collapse
|
16
|
Miranda MO, Cabral Cavalcanti WE, Barbosa FF, Antonio de Sousa J, Ivan da Silva F, Pergher SBC, Braga TP. Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals. RSC Adv 2021; 11:27720-27733. [PMID: 35480690 PMCID: PMC9037810 DOI: 10.1039/d1ra04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The present work studied ibuprofen degradation using titanium dioxide as a photocatalyst. Mechanistic aspects were presented and the preferred attack sites by the OH˙ radical on the ibuprofen molecule were detailed, based on experimental and simple theoretical-computational results. Although some previous studies show mechanistic proposals, some aspects still need to be investigated, such as the participation of 4-isobutylacetophenone in the ibuprofen degradation and the preferred regions of attack by OH˙ radicals. The photodegradation was satisfactory using 0.03 g of TiO2 and pH = 5.0, reaching 100% decontamination in 5 min. The zeta potential curve showed the regions of attraction and repulsion between TiO2 and ibuprofen, depending on the pH range and charge of the species, influencing the amount of by-products formed. Different by-products have been identified by GC-MS, such as 4-isobutylacetophenone. Ibuprofen conversion to 4-isobutylacetophenone takes place through decarboxylation reaction followed by oxidation. The proposed mechanism indicates that the degradation of ibuprofen undergoes a series of elementary reactions in solution and on the surface. Three different radicals (OH˙, O2−˙ and OOH˙) are produced in the reaction sequence and contribute strongly to the oxidation and mineralization of ibuprofen and by-products, but the hydroxyl radical has a greater oxidation capacity. The simple study using the DFT approach demonstrated that the OH˙ radical attacks preferentially in the region of the ibuprofen molecule with high electronic density, which is located close to the aromatic ring (C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond). The presence of the OH˙ radical was confirmed through a model reaction using salicylic acid as a probe molecule. The degradation of ibuprofen undergoes a series of elementary reactions, generating different radicals which attack preferentially in the region of the ibuprofen with high electron density.![]()
Collapse
Affiliation(s)
- Maicon Oliveira Miranda
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI) Rodovia PI 213 Zona Rural 64235-000 Cocal PI Brazil
| | - Wesley Eulálio Cabral Cavalcanti
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - Felipe Fernandes Barbosa
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - José Antonio de Sousa
- Universidade Federal do Piauí, UFPI, Campus Universitário Ministro Petrônio Portella Ininga 64049-550 Teresina PI Brazil
| | | | - Sibele B C Pergher
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - Tiago Pinheiro Braga
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| |
Collapse
|
17
|
Fidelis MZ, Abreu E, Josué TG, de Almeida LNB, Lenzi GG, Santos OAAD. Continuous process applied to degradation of triclosan and 2.8-dichlorodibenzene-p-dioxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23675-23683. [PMID: 32968905 DOI: 10.1007/s11356-020-10902-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study describes the use of a prototype for the continuous photocatalytic reaction process using Fe/Nb2O5-immobilized catalyst for triclosan and 2.8-dichlorodibenzene-p-dioxin (2.8-DCDD)'s degradation. The experiments were carried out with different parameters and matrices in a steady state. In addition, photolysis and photocatalytic tests were performed. The results indicated that the generation of 2.8-DCDD was observed in matrices with Cl-. The Fe/Nb2O5-immobilized catalysts were efficient in the degradation of triclosan and 2.8-dichlorodibenzene-p-dioxin. However, 2.8-DCDD formation was not observed in the ultra-pure water matrix, which indicated influence of ions. The photocatalysis was more efficient than the photolysis when comparing both matrices and radiation. Even with a radiation oscillation, the solar process showed positive results.
Collapse
Affiliation(s)
- Michel Zampieri Fidelis
- Departamento de Engenharia Química, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil.
| | - Eduardo Abreu
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil
| | - Tatiana Gulminie Josué
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil
| | | | - Giane Gonçalves Lenzi
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil
| | | |
Collapse
|
18
|
First Insights into Photocatalytic Degradation of HDPE and LDPE Microplastics by a Mesoporous N–TiO2 Coating: Effect of Size and Shape of Microplastics. COATINGS 2020. [DOI: 10.3390/coatings10070658] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microplastics (MPs), which are small plastic debris of ≤5 mm size, are polluting the oceans with negative consequences for their biota. In this work, visible-light photocatalysis of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) MPs in aqueous medium using a mesoporous N–TiO2 coating is proposed as an alternative for fighting MP pollution. Spherical primary HDPE MPs were extracted from commercially available facial scrubs, while film-shaped secondary LDPE MPs were obtained from a plastic bag. For each plastic, two different sizes were tested. Degradation was measured by mass-loss and carbonyl-index (CI) calculation. The results obtained reveal that the photocatalytic degradation of HDPE and LDPE MPs using an N–TiO2 coating was affected by the size and shape of the MPs. Smaller MPs led to higher degradation, while film-shaped MPs led to lower degradation that was related to a poorly illuminated and oxygenated reaction medium. These results set the basis for further investigation on the on the design of more effective photocatalytic-reaction systems for decreasing MP inputs to the environment.
Collapse
|