1
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Enhanced Antioxidant and Neuroprotective Properties of Pterostilbene (Resveratrol Derivative) in Amorphous Solid Dispersions. Int J Mol Sci 2024; 25:2774. [PMID: 38474022 DOI: 10.3390/ijms25052774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 μg·mL-1, DPPH: IC50 = 163.43/173.96 μg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 μg·mL-1, FRAP: IC0.5 = 95.69/98.57 μg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
2
|
Bangash Y, Saleem A, Akhtar MF, Anwar F, Akhtar B, Sharif A, Khan MI, Khan A. Pterostilbene reduces the progression of atopic dermatitis via modulating inflammatory and oxidative stress biomarkers in mice. Inflammopharmacology 2023; 31:1289-1303. [PMID: 37069463 DOI: 10.1007/s10787-023-01214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic skin inflammatory disorders requiring continuous treatment and care. Pterostilbene (PTN) belongs to stilbene and is a polyphenolic compound of natural origin. It is similar to resveratrol and has analogous anti-inflammatory, anti-oxidant, and anti-carcinogenic characteristics. This study was intended to evaluate the effect of PTN against atopic dermatitis. The disease was induced by sensitization with 2,4-dinitrochlorobenzene (DNCB) in mice. The standard control group (SCG) received topical 0.1% tacrolimus (TC), whereas three other treatment groups received daily topical PTN at 0.2, 0.6, and 1% w/w for 28 days. Dermatitis scoring, ear thickness, and body weight of animals were weekly determined while other parameters were assessed at the termination of the experiment. PTN reduced the ear weight, skin thickness, and the weight and size of thymus glands and spleen in comparison with diseased animals. PTN also reduced the elevated immunoglobulin E (IgE) level and blood inflammatory cells in diseased mice. The histopathological findings showed a decreased epidermal thickness in PTN-treated groups. Moreover, treatment with PTN improved the amount of oxidative stress markers in the skin of the diseased mice. The expressions of IL-4, IL-6, TNF-α, and NF-κB in the skin of diseased mice were also reduced by PTN. This study concludes that PTN ameliorated the symptoms of atopic dermatitis through the reduction of inflammation, oxidative damage, and inflammatory cytokines in the skin of diseased animals. Therefore, PTN must be further investigated for the treatment of AD complications and other inflammatory skin disorders.
Collapse
Affiliation(s)
- Yasmin Bangash
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
3
|
Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples. SEPARATIONS 2023. [DOI: 10.3390/separations10030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The quantification of a natural bioactive compound, pterostilbene (PTT), in commercial capsule dosage form, solubility, and stability samples was carried out using a rapid and sensitive high-performance liquid chromatography (HPLC) approach. PTT was quantified on a Nucleodur (150 mm × 4.6 mm) RP C18 column with a particle size of 5 µm. Acetonitrile and water (90:10 v/v) made up the mobile phase, which was pumped at a flow speed of 1.0 mL/min. At a wavelength of 254 nm, PTT was detected. The developed HPLC approach was linear in 1–75 µg/g range, with a determination coefficient of 0.9995. The developed HPLC approach for PTT estimation was also rapid (Rt = 2.54 min), accurate (%recoveries = 98.10–101.93), precise (%CV = 0.59–1.25), and sensitive (LOD = 2.65 ng/g and LOQ = 7.95 ng/g). The applicability of developed HPLC approach was revealed by determining PTT in commercial capsule dosage form, solubility, and stability samples. The % assay of PTT in marketed capsules was determined to be 99.31%. The solubility of PTT in five different green solvents, including water, propylene glycol, ethanol, polyethylene glycol-400, and Carbitol was found to be 0.0180 mg/g, 1127 mg/g, 710.0 mg/g, 340.0 mg/g, and 571.0 mg/g, respectively. In addition, the precision and accuracy of stability samples were within the acceptable limit, hence PTT was found to be stable in solution. These results suggested that PTT in commercial products, solubility, and stability samples may be routinely determined using the established HPLC method.
Collapse
|
4
|
Effects of Structure on the Solubility of UV Filters. COSMETICS 2022. [DOI: 10.3390/cosmetics9030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, one of the most concerning topics in healthcare is the constant exposure to ultraviolet (UV) light being the cause of numerous skin diseases. This issue created a keen interest in sun-care cosmetics, and particularly in sunscreens, since it has been proven to significantly reduce human skin disorders. Usually, sunscreens are formulated as emulsions with organic UV-absorbers dissolved in the oil phase; thus, the solubility of these UV-filters in the emollients is crucial. In this work we expose the properties of different emollients, correlating the chemical structure with the ability to dissolve organic UV-filters.
Collapse
|
5
|
Roquete Amparo T, Cherem Peixoto Silva A, Brandão Seibert J, dos Santos da Silva D, Martins Rebello dos Santos V, Melo de Abreu Vieira P, Célio Brandão G, Henrique Bianco de Souza G, Aloise Maneira Corrêa Santos B. In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Biotechnological Advances in Pharmacognosy and In Vitro Manipulation of Pterocarpus marsupium Roxb. PLANTS 2022; 11:plants11030247. [PMID: 35161227 PMCID: PMC8839240 DOI: 10.3390/plants11030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Trees are vital resources for economic, environmental, and industrial growth, supporting human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and ecological services. Pterocarpus marsupium Roxb. (Fabaceae) is one of the most valuable multipurpose forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically bioactive compounds, especially from the stem bark and heartwood. However, propagation of the tree in natural conditions is difficult due to the low percentage of seed germination coupled with overexploitation of this species for its excellent multipurpose properties. This overexploitation has ultimately led to the inclusion of P. marsupium on the list of endangered plant species. However, recent developments in plant biotechnology may offer a solution to the overuse of such valuable species if such advances are accompanied by technology transfer in the developing world. Specifically, techniques in micropropagation, genetic manipulation, DNA barcoding, drug extraction, delivery, and targeting as well as standardization, are of substantial concern. To date, there are no comprehensive and detailed reviews of P. marsupium in terms of biotechnological research developments, specifically pharmacognosy, pharmacology, tissue culture, authentication of genuine species, and basic gene transfer studies. Thus, the present review attempts to present a comprehensive overview of the biotechnological studies centered on this species and some of the recent novel approaches for its genetic improvement.
Collapse
|
7
|
de Armas-Ricard M, Quinán-Cárdenas F, Sanhueza H, Pérez-Vidal R, Mayorga-Lobos C, Ramírez-Rodríguez O. Phytochemical Screening and Antioxidant Activity of Seven Native Species Growing in the Forests of Southern Chilean Patagonia. Molecules 2021; 26:6722. [PMID: 34771130 PMCID: PMC8587661 DOI: 10.3390/molecules26216722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
The genus Nothofagus is one of the most abundant in the subantarctic Patagonian forests. Five species inhabit these ecosystems, three evergreen (Nothofagus betuloides, Nothofagus dombeyi, and Nothofagus nitida) and two deciduous (Nothofagus pumilio and Nothofagus antarctica). This is the first report on the levels of secondary metabolites and the antioxidant capacity of Patagonian tree species growing in natural environments. The aim of this work was to carry out a phytochemical screening, to determine the antioxidant capacity, the sun protection factor, and the α-glucosidase and tyrosinase inhibitory activity of foliar extracts of the five previous species. Besides, Aristotelia chilensis and Berberis microphylla, two species of Patagonian shrubs growing in the same forests, were used as reference. N. dombeyi was the Nothofagus with the best antioxidant capacity. B. microphylla differed from all studied species. Moreover, the Nothofagus was split into two groups. N. betuloides and N. dombeyi are the most similar species to A. chilensis. The α-glucosidase was completely inhibited by all studied extracts. Furthermore, N. antarctica, N.pumilio, and N. nitida inhibited about 70% of the tyrosinase activity. All the results found in this study for the species of the genus Nothofagus support further research on their potential beneficial properties for human health.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Campus Patagonia, Universidad Austral de Chile, Camino a Coyhaique Alto Km. 4, Coyhaique 5950000, Chile
| | - Francisco Quinán-Cárdenas
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Harold Sanhueza
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| | - Rodrigo Pérez-Vidal
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| | - Cristina Mayorga-Lobos
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Oney Ramírez-Rodríguez
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| |
Collapse
|
8
|
Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form. Processes (Basel) 2021. [DOI: 10.3390/pr9081305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The greenness evaluation of literature analytical methods for pterostilbene (PT) analysis was not performed. Accordingly, the rapid, sensitive, and green/sustainable reversed-phase high-performance thin-layer chromatography (RP-HPTLC) method was developed and compared to the normal-phase (NP)-HPTLC (NP-HPTLC) for the estimation of PT with a classical univariate calibration. The RP quantification of PT was performed using green solvent systems; however, the NP analysis of PT was performed using routine solvent systems. The PT was detected at 302 nm for both of the methods. The greenness scores for the current analytical assays were evaluated by the analytical GREEnness (AGREE) metric approach. The classical univariate calibration for RP and NP methods indicated the linearity range as 10–1600 and 30–400 ng band−1, respectively. The RP method was more reliable for PT analysis compared to the NP method. The PT contents in commercial capsule dosage form were found to be 100.84% using the RP method; however, the PT contents in commercial capsule dosage form were determined as 92.59% using the NP method. The AGREE scores for RP and NP methods were 0.78 and 0.46, respectively. The sustainable RP-HPTLC assay was able to detect PT in the presence of its degradation products, and hence it can be considered as a selective and stability-indicating method. Accordingly, the RP-HPTLC method with univariate calibration has been considered as a superior method over the NP-HPTLC method for PT analysis.
Collapse
|