1
|
Alves AC, Martins SMDSB, Belo JVT, Lemos MVC, Lima CEDMC, da Silva CD, Zagmignan A, Nascimento da Silva LC. Global Trends and Scientific Impact of Topical Probiotics in Dermatological Treatment and Skincare. Microorganisms 2024; 12:2010. [PMID: 39458319 PMCID: PMC11510400 DOI: 10.3390/microorganisms12102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The skin plays a crucial role in maintaining homeostasis and protecting against external aggressors. Recent research has highlighted the potential of probiotics and postbiotics in dermatological treatments and skincare. These beneficial microorganisms interact with the skin microbiota, modulate the immune response, and enhance the skin barrier, offering a promising therapeutic avenue for various skin conditions, such as acne, dermatitis, eczema, and psoriasis. This bibliometric study aims to analyze the global trends and scientific impact of topical probiotics in dermatology. By reviewing 106 articles published between 2013 and 2023, the study categorizes the applications of probiotics in wound healing, inflammatory skin diseases, and general skincare. The findings indicate a significant increase in publications from 2021 onwards, attributed to the heightened focus on medical research during the COVID-19 pandemic. This study also identifies the most productive countries, institutions, and authors in this field, highlighting the importance of international collaborations. The results underscore the efficacy of probiotic-based topical formulations in improving skin health, reducing inflammation, and enhancing wound healing. This comprehensive analysis supports the development of new therapeutic strategies based on topical probiotics and encourages high-quality research in this promising area.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luís Cláudio Nascimento da Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luis 65075-120, MA, Brazil; (A.C.A.); (S.M.d.S.B.M.J.); (J.V.T.B.); (M.V.C.L.); (C.E.d.M.C.L.); (C.D.d.S.); (A.Z.)
| |
Collapse
|
2
|
Asharaf S, Chakraborty K, Paulose SK, Dhara S, Chakraborty RD, Varghese C. Photoprotective sulfated mannogalactan from heterotrophic Bacillus velezensis blocks UV-A mediated matrix metalloproteinase expression and nuclear DNA damage in human dermal fibroblast. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113022. [PMID: 39288553 DOI: 10.1016/j.jphotobiol.2024.113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Prolonged exposure of human dermal fibroblasts (HDF) to ultraviolet (UV) radiation triggers the production of reactive oxygen species by upregulating the expression of matrix metalloproteinases (MMPs), causing type-I collagen degradation and photoaging. A sulfated (1 → 3)/(1 → 4) mannogalactan exopolysaccharide (BVP-2) characterized as [→3)-α-Galp-{(1 → 4)-α-6-O-SO3-Manp}-(1 → 3)-α-6-O-SO3-Galp-(1→] was isolated from seaweed-associated heterotrophic bacterium Bacillus velezensis MTCC13097. Whole genome analysis of B. velezensis MTCC13097 (Accession number JAKYLL000000000) revealed saccharine biosynthetic gene clusters for exopolysaccharide production. BVP-2 administered cells showed noteworthy reduction in mitochondrial superoxide (∼85 %, p < 0.05) and ROS production (62 %) than those exhibited by UV-A irradiated HDF cells. Oxidative imbalance in HDF cells (after UV-A exposure) was recovered with BVP-2 treatment by significantly downregulating nitric oxide (NO) production (98.6 μM/mL, 1.9-fold) and DNA damage (⁓67 %) in comparison with UV-A induced cells (191.8 μM/mL and 98.7 %, respectively). UV-irradiated HDF cells showed a ∼30-50 % downregulation in the expression of MMPs (1, 2, and 9) following treatment with BVP-2. Considerable amount of sulfation (18 %) along with (1 → 3)/(1 → 4) glycosidic linkages in BVP-2 could be pivotal factors for down-regulation of the intracellular MMP-1, which was further supported by molecular docking and structure-activity studies. The (1 → 3)/(1 → 4)-linked bacterial exopolysaccharide (BVP-2) might be used as prospective natural lead to attenuate and mitigate UV-A-induced photoaging.
Collapse
Affiliation(s)
- Sumayya Asharaf
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India; Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Kajal Chakraborty
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India.
| | - Silpa Kunnappilly Paulose
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka, India
| | - Shubhajit Dhara
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka, India
| | - Rekha Devi Chakraborty
- Shellfish Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India
| | - Chesvin Varghese
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India
| |
Collapse
|
3
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
4
|
Santos SS, de Souza MB, Lauria PSS, Juiz PJL, Villarreal CF, Viana MDM. Technological Trends Involving Probiotics in the Treatment of Diabetic Neuropathy: A Patent Review (2009-2022). Curr Diabetes Rev 2024; 20:e220523217168. [PMID: 37221688 DOI: 10.2174/1573399820666230522121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Diabetic neuropathy (DN) causes neuropathic pain, and current treatments are unsatisfactory. Recently studies have demonstrated an assertive correlation between gut microbiota and pain modulation. OBJECTIVE Considering the emerging search for new therapies for the control of DN and the growing commercial interest in the probiotics market, this study aimed to provide patents on the use of probiotics in the control of DN. METHODS This is a patent prospection performed in the Espacenet Patent database, using the association of keywords and IPC related to probiotics in medical preparations and foods, from 2009 to December 2022. RESULTS Results have shown that in 2020, there was a boom in patent filing in the area. Asian countries accounted for more than 50% of all 48 inventions (n = 48), with Japan as the only applicant in 2021. Products being developed in recent years point to effects that may represent an advancement in DN treatment, such as reduced concentration of pro-inflammatory mediators, metabolites and neurotransmitters release, and hypoglycemic potential. All effects were more related to the Lactobacillus and Bifidobacterium genera, associated with more than one property mentioned. CONCLUSION The mechanisms attributed to the microorganisms suggest the therapeutic potential of probiotics in the non-pharmacological treatment of pain. New applications for probiotics have resulted from great research interest by academia, but also reflect commercial interests despite the paucity of clinical trials. Thus, the present work supports the evolution of research to explore the benefits of probiotics and their clinical use in DN.
Collapse
Affiliation(s)
- Sthefane Silva Santos
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariana Bastos de Souza
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Cristiane Flora Villarreal
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Max Denisson Maurício Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
5
|
Zhang Y, Jiang Y, Zhao J, Mo Q, Wang C, Wang D, Li M. Weizmannia coagulans Extracellular Proteins Reduce Skin Acne by Inhibiting Pathogenic Bacteria and Regulating TLR2/TRAF6-Mediated NF-κB and MAPKs Signaling Pathways. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10175-2. [PMID: 37870674 DOI: 10.1007/s12602-023-10175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
As a probiotic, Weizmannia coagulans (W. coagulans) is often used in food and medicine to regulate intestinal flora and exert anti-inflammatory effects. In this study, the anti-acne efficacy and mechanism of extracellular proteins (YTCY-EPs) from W. coagulans YTCY strain are analyzed. The main components of YTCY-EPs, extracted and separated from the fermentation broth, are peptides ranging from 1.51 to 11.44 kDa, accounting for about 80%. Among the peptides identified by LC/MS-MS, YTCY_A-F possess the properties of antimicrobial peptides, while YTCY_1-4 possess antioxidative properties. These peptides have a strong effect on Cutibacterium acnes (C. acnes) and significantly inhibit Staphylococcus aureus. The inhibition rate of biofilm adhesion of YT-EPs to C. acnes reached 50% under the MIC. It was found that YTCY-EPs possess strong antioxidant and anti-inflammatory properties. It can effectively reduce active oxygen nearly 3 times and can reduce the downstream TLR2/NF-κB and MAPKs/AP-1 pathways by regulating the nuclear translocation of NF-κB and AP-1 in vitro. The transcriptional expression of inflammatory cytokines, inflammatory chemokines, and matrix metalloproteinase genes is also regulated, thereby slowing the recruitment of inflammatory cells and the development of inflammation, and increasing keratinocyte mobility. In addition, the expression levels of inflammatory factors and matrix metalloproteinases in the rabbit ears with acne problems that were tested with YTCY-EPs were significantly reduced, and it was obviously observed that the rabbit ear inflammation, acne, and keratinization problems were repaired. The results of this study prove that YTCY-EPs can be used as a potential anti-acne raw material in cosmetics.
Collapse
Affiliation(s)
- Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Yanbing Jiang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingsha Zhao
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiuting Mo
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
6
|
Duarte M, Carvalho MJ, de Carvalho NM, Azevedo-Silva J, Mendes A, Ribeiro IP, Fernandes JC, Oliveira ALS, Oliveira C, Pintado M, Amaro A, Madureira AR. Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors 2023; 49:1038-1060. [PMID: 37317790 DOI: 10.1002/biof.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.
Collapse
Affiliation(s)
- Marco Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria João Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - João Azevedo-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Adélia Mendes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Inês Pinto Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - João Carlos Fernandes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana L S Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Amaro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
7
|
Jung Y, Cui HS, Joo SY, Lee EK, Seo CH, Cho YS. Sex differences in the skin microbiome of burn scars. Wound Repair Regen 2023; 31:547-558. [PMID: 37129034 DOI: 10.1111/wrr.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Sex differences are observed in various spectrums of skin diseases, and there are differences in wound healing rate. Herein, sex differences were identified for the newly healed skin microbiome of burn patients. Fifty-two skin samples (26 normal skin, 26 burn scars) were collected from 26 burn patients (12 male, 14 female) and microbiota analysis was performed. The correlation between skin microbiota and biomechanical properties of burn scars was also investigated. There were no significant differences in clinical characteristics between male and female patients. Considering the biomechanical properties of burn scars and normal skin around it performed before sample collection, the mean erythema level of men's normal skin was significantly higher than that of women, whereas the mean levels of melanin, transepidermal water loss and skin hydration showed no significant sex differences. The erythrocyte sedimentation rate was significantly higher in females than that in males. Alpha diversity showed no significant differences between normal skin and burn scars in the male group. However, the scar was significantly higher than that of normal skin in the female group. Microbial network analysis revealed that the male group had more complex microbial network than the female group. Additionally, in the male group, the edge density and clustering coefficient were higher in burn scars when compared to normal skin, than the female group. There were sex differences in the results of microbiome of normal skin and burn scars. Some of the altered microbiota have been correlated with the biomechanical properties of burn scars. In conclusion, sex difference in the burn scar microbiome was confirmed. These results suggest that burn treatment strategies should vary with sex.
Collapse
Affiliation(s)
- Yeongyun Jung
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hui Song Cui
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Lee
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Majeed M, Nagabhushanam K, Paulose S, Rajalakshmi HR, Mundkur L. A Randomized Double-Blind, Placebo-Controlled Study to Evaluate the Anti-Skin-Aging Effect of LactoSporin – The Extracellular Metabolite from Bacillus coagulans (Weizmannia coagulans) MTCC 5856 in Healthy Female Volunteers. Clin Cosmet Investig Dermatol 2023; 16:769-782. [PMID: 37016604 PMCID: PMC10066892 DOI: 10.2147/ccid.s403418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Purpose There has been a growing interest in the use of probiotics and their products for skin care, over the last decade. LactoSporin is the extracellular metabolite of a spore-forming probiotic Bacillus coagulans (Weizmannia coagulans) MTCC 5856, with antimicrobial and skin protecting activity. Patients and Methods The anti-skin-aging potential of LactoSporin was evaluated in a randomized, double-blinded, placebo-controlled study in healthy female participants (70 screened and 56 randomized). The participants applied either LactoSporin or matched placebo formulation (N=28 in each group) for 10 weeks, and the effects were assessed by dermatological, and non-invasive instrument-based evaluation using Antera, Cutometer, Corneometer, and Tewameter. All the 56 participants completed the study and were included for the analysis. Results The regular use of LactoSporin cream for 10 weeks showed a significant reduction in visibility of wrinkles around crow's feet, nasolabial folds, frown lines, and facial fine lines compared to baseline and placebo by dermatological and Antera assessments. LactoSporin showed improvement in skin elasticity and hydration by dermatological assessments, but the effect was not significantly different from placebo when assessed by Cutometer, Corneometer, and Tewameter. No adverse events or skin irritation was observed in any participants during the study. Conclusion These results suggest that LactoSporin could be a safe natural ingredient to reduce wrinkles and fine lines in cosmetic formulations.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
- Sabinsa Corporation, East Windsor, NJ, 08520, USA
| | | | - Shaji Paulose
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
| | - H R Rajalakshmi
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
- Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bengaluru, Karnataka, 560 058, India, Fax +91 8068527706, Email
| |
Collapse
|
9
|
Hyseni E, Glavas Dodov M. Probiotics in dermatological and cosmetic products – application and efficiency. MAKEDONSKO FARMACEVTSKI BILTEN 2023. [DOI: 10.33320/maced.pharm.bull.2022.68.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The term “probiotics” has first been used in 1907 by Elie Metchnikoff. Since then, probiotics have been part of research not only in regards of digestive health, but also inflammatory diseases. Lately, there has been an increased interest of probiotic’s effects in skincare. The management of atopic dermatitis, acne, psoriasis, photo aging, skin cancer, intimate care, oral care, wound healing is getting harder each passing day, due to increased antibiotic resistance and other side effects of conventional therapy. Therefore, new ingredients have been investigated and probiotics have been proved to be effective in treating various skin conditions.
This review aims to evaluate the scientific evidence on topical and oral probiotics, and to evaluate the efficacy of cosmetic and dermatological products containing probiotics. Many studies have shown that skin and gut microbiome alterations have an important role in skin health. Although this is a new topic in dermatology and cosmetology, there have been some promising results in lots of research studies that the use of probiotics in cosmetic products may help improve the patient’s outcome. While oral probiotics have been shown to promote gut health, which influences the host immune system and helps treat different skin diseases, the mechanism of action of topical probiotics is not yet fully understood. Although the number of commercial probiotic cosmetic products released in the market is increasing and most of the studies have not shown any serious side effect of probiotics, further studies, in larger and heterogeneous groups are needed.
Collapse
Affiliation(s)
- Edita Hyseni
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| | - Marija Glavas Dodov
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| |
Collapse
|
10
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
12
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
13
|
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2020; 62:3345-3369. [PMID: 33356449 DOI: 10.1080/10408398.2020.1865260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive micro- and macro-molecules (postbiotics) derived from gut beneficial microbes are among natural chemical compounds with medical significance. Currently, a unique therapeutic strategy has been developed with an emphasis on the small molecular weight biomolecules that are made by the microbiome, which endow the host with several physiological health benefits. A large number of postbiotics have been characterized, which due to their unique pharmacokinetic properties in terms of controllable aspects of the dosage and various delivery routes, could be employed as promising medical tools since they exert both prevention and treatment strategies in the host. Nevertheless, there are still main challenges for the in vivo delivery of postbiotics. Currently, scientific literature confirms that targeted delivery systems based on nanoparticles, due to their appealing properties in terms of high biocompatibility, biodegradability, low toxicity, and significant capability to carry both hydrophobic and hydrophilic postbiotics, can be used as a novel and safe strategy for targeted delivery or/and release of postbiotics in various (oral, intradermal, and intravenous) in vivo models. The in vivo delivery of postbiotics are in their emerging phase and require massive investigation and randomized double-blind clinical trials if they are to be applied extensively as treatment strategies. This manuscript provides an overview of the various postbiotic metabolites derived from the gut beneficial microbes, their potential therapeutic activities, and recent progressions in the drug delivery field, as well as concisely giving an insight on the main in vivo delivery routes of postbiotics.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hajipour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|