1
|
Kornilov D, Bukhdruker S, Tsybrov F, Chizhov I, Golubev V, Kuzmichev P, Vlasov A, Uverskiy V, Gordeliy V. Production of eukaryotic heliorhodopsins for structural analysis utilizing the LEXSY expression system. Int J Biol Macromol 2024:137324. [PMID: 39515726 DOI: 10.1016/j.ijbiomac.2024.137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Heliorhodopsins (HeRs) constitute a novel and distinct group of microbial rhodopsins, characterized by the inverted position of C- and N- termini relative to conventional Type I rhodopsins. The production of HeRs for structural and functional investigations has proven challenging, as evidenced by the structural elucidation of only two proteins and the functional characterization of a few others to date. Notably, no eukaryotic HeRs have been reported thus far. In this study, we report the first expression of three eukaryotic HeRs in the LEXSY expression system: from marine and freshwater algae and a free-living marine unicellular eukaryote. We spectroscopically characterized these HeRs, demonstrating that they were expressed in the functional states. Finally, we report their successful crystallization, thus paving the way for their further structural and functional studies.
Collapse
Affiliation(s)
- Daniil Kornilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Vitaliy Golubev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir Uverskiy
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Valentin Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, F-38027 Grenoble, France.
| |
Collapse
|
2
|
Zhou X, Khan M, Xin Y, Chan K, Roujeinikova A. Biochemical characterization of paralyzed flagellum proteins A (PflA) and B (PflB) from Helicobacter pylori flagellar motor. Biosci Rep 2024; 44:BSR20240692. [PMID: 39105472 PMCID: PMC11392913 DOI: 10.1042/bsr20240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024] Open
Abstract
Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Muhammad F. Khan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Yue Xin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Kar L. Chan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
3
|
Kermani AA. Applications of fluorescent protein tagging in structural studies of membrane proteins. FEBS J 2024; 291:2719-2732. [PMID: 37470714 DOI: 10.1111/febs.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Generating active, pure, and monodisperse protein remains a major bottleneck for structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM). The current methodology heavily relies on overexpressing the recombinant protein fused with a histidine tag in conventional expression systems and evaluating the quality and stability of purified protein using size exclusion chromatography (SEC). This requires a large amount of protein and can be highly laborious and time consuming. Therefore, this approach is not suitable for high-throughput screening and low-expressing macromolecules, particularly eukaryotic membrane proteins. Using fluorescent proteins fused to the target protein (applicable to both soluble and membrane proteins) enables rapid and efficient screening of expression level and monodispersity of tens of unpurified constructs using fluorescence-based size exclusion chromatography (FSEC). Moreover, FSEC proves valuable for screening multiple detergents to identify the most stabilizing agent in the case of membrane proteins. Additionally, FSEC can facilitate nanodisc reconstitution by determining the optimal ratio of membrane scaffold protein (MSP), lipids, and target protein. The distinct advantages offered by FSEC indicate that fluorescent proteins can serve as a viable alternative to commonly used affinity tags for both characterization and purification purposes. In this review, I will summarize the advantages of this technique using examples from my own work. It should be noted that this article is not intended to provide an exhaustive review of all available literature, but rather to offer representative examples of FSEC applications.
Collapse
Affiliation(s)
- Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Robeson L, Casanova‐Morales N, Burgos‐Bravo F, Alfaro‐Valdés HM, Lesch R, Ramírez‐Álvarez C, Valdivia‐Delgado M, Vega M, Matute RA, Schekman R, Wilson CAM. Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers. Protein Sci 2024; 33:e4996. [PMID: 38747383 PMCID: PMC11094780 DOI: 10.1002/pro.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.
Collapse
Affiliation(s)
- Luka Robeson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Nathalie Casanova‐Morales
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- California Institute for Quantitative Biosciences, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hilda M. Alfaro‐Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Robert Lesch
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Carolina Ramírez‐Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Mauricio Valdivia‐Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Marcela Vega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
5
|
Wangamnuayporn S, Kinoshita M, Kawai T, Matsumori N. Gold nanoparticle-powered screening of membrane protein-specific lipids from complex lipid mixtures. Anal Biochem 2024; 687:115447. [PMID: 38141800 DOI: 10.1016/j.ab.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Membrane proteins (MPs) are affected by binding of specific lipids. We previously developed a methodology for systematically analyzing MP-lipid interactions leveraging surface plasmon resonance (SPR). In this method, the gold sensor chip surface was modified with a self-assembled monolayer (SAM), which allowed for a larger amount of MP-immobilization. However, the laborious lipid purification step remained a bottleneck. To address this issue, a new strategy has been developed utilizing gold nanoparticles (AuNPs) instead of the gold sensor chip. AuNPs were coated with SAM, on which MP was covalently anchored. The MP-immobilized AuNPs were mixed with a lipid mixture, and the recovered lipids were quantified by LC-MS. Bacteriorhodopsin (bR) was used as an MP to demonstrate this concept. We optimized immobilization conditions and confirmed the efficient immobilization of bR by dynamic light scattering and electron micrographs. Washing conditions for pulldown experiments were optimized to efficiently remove non-specific lipids. A new binding index was introduced to qualitatively reproduce the known affinity of lipids for bR. Consequently, the low-abundant and least-studied lipid S-TeGD was identified as a candidate for bR-specific lipids. This technique can skip the laborious lipid purification process, accelerating the screening of MP-specific lipids from complex lipid mixtures.
Collapse
Affiliation(s)
- Supakorn Wangamnuayporn
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
van Vliet AR, Jefferies HBJ, Faull PA, Chadwick J, Ibrahim F, Skehel MJ, Tooze SA. Exploring the ATG9A interactome uncovers interaction with VPS13A. J Cell Sci 2024; 137:jcs261081. [PMID: 38294121 PMCID: PMC10911177 DOI: 10.1242/jcs.261081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
ATG9A, a transmembrane protein of the core autophagy pathway, cycles between the Golgi, endosomes and a vesicular compartment. ATG9A was recently shown to act as a lipid scramblase, and this function is thought to require its interaction with another core autophagy protein, ATG2A, which acts as a lipid transfer protein. Together, ATG9A and ATG2A are proposed to function to expand the growing autophagosome. However, ATG9A is implicated in other pathways including membrane repair and lipid droplet homeostasis. To elucidate other ATG9A interactors within the autophagy pathway, or interactors beyond autophagy, we performed an interactome analysis through mass spectrometry. This analysis revealed a host of proteins involved in lipid synthesis and trafficking, including ACSL3, VPS13A and VPS13C. Furthermore, we show that ATG9A directly interacts with VPS13A and forms a complex that is distinct from the ATG9A-ATG2A complex.
Collapse
Affiliation(s)
| | | | - Peter A. Faull
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Fairouz Ibrahim
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark J. Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
7
|
Mégret-Cavalier M, Pozza A, Cece Q, Bonneté F, Broutin I, Phan G. Starting with an Integral Membrane Protein Project for Structural Biology: Production, Purification, Detergent Quantification, and Buffer Optimization-Case Study of the Exporter CntI from Pseudomonas aeruginosa. Methods Mol Biol 2024; 2715:415-430. [PMID: 37930543 DOI: 10.1007/978-1-0716-3445-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Production, extraction, purification, and stabilization of integral membrane proteins are key steps for successful structural biology studies, in particular for X-ray crystallography or single particle microscopy. Here, we present the purification protocol of CntI from Pseudomonas aeruginosa, a new metallophore exporter of the Drug Metabolite Transporter (DMT) family involved in pseudopaline secretion. Subsequent to CntI purification, we optimized the buffer pH, salts, and additives by differential scanning fluorimetry (DSF), also known as Thermofluor Assay (TFA) or fluorescent thermal stability assay (FTSA), with the use of dye 1-AnilinoNaphthalene-8-Sulfonic acid (ANS), a fluorescent molecule compatible with detergents. After the buffer optimization, the purified CntI was analyzed by Size Exclusion Chromatography coupled with Multi-Angle Laser Light Scattering (SEC-MALLS), UV absorbance, and Refractive Index detectors, in order to determine the absolute molar mass of the protein-detergent complex, the detergent amount bound to the protein and the amount of protein-free detergent micelles. Altogether, these biophysical techniques give preliminary and mandatory information about the suitability of the purified membrane protein for further biophysical or structural investigations.
Collapse
Affiliation(s)
- Maxime Mégret-Cavalier
- Université Paris Cité, CNRS, UMR 8038, Laboratoire CiTCoM (Cibles Thérapeutiques et Conception de Médicaments), Faculté de Pharmacie de Paris, Paris, France
| | - Alexandre Pozza
- Université Paris Cité, CNRS, UMR 7099, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, Paris, France
| | - Quentin Cece
- Université Paris Cité, CNRS, UMR 8038, Laboratoire CiTCoM (Cibles Thérapeutiques et Conception de Médicaments), Faculté de Pharmacie de Paris, Paris, France
| | - Françoise Bonneté
- Université Paris Cité, CNRS, UMR 7099, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, Paris, France
| | - Isabelle Broutin
- Université Paris Cité, CNRS, UMR 8038, Laboratoire CiTCoM (Cibles Thérapeutiques et Conception de Médicaments), Faculté de Pharmacie de Paris, Paris, France.
| | - Gilles Phan
- Université Paris Cité, CNRS, UMR 8038, Laboratoire CiTCoM (Cibles Thérapeutiques et Conception de Médicaments), Faculté de Pharmacie de Paris, Paris, France.
| |
Collapse
|
8
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Levesque I, Juliano BR, Parson KF, Ruotolo BT. A Critical Evaluation of Detergent Exchange Methodologies for Membrane Protein Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2662-2671. [PMID: 37956121 DOI: 10.1021/jasms.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane proteins (MPs) play many critical roles in cellular physiology and constitute the majority of current pharmaceutical targets. However, MPs are comparatively understudied relative to soluble proteins due to the challenges associated with their solubilization in membrane mimetics. Native mass spectrometry (nMS) has emerged as a useful technique to probe the structures of MPs. Typically, nMS studies using MPs have employed detergent micelles to solubilize the MP. Oftentimes, the detergent micelle that the MP was purified in will be exchanged into another detergent prior to analysis by nMS. While methodologies for performing detergent exchange have been extensively described in prior reports, the effectiveness of these protocols remains understudied. Here, we present a critical analysis of detergent exchange efficacy using several model transmembrane proteins and a variety of commonly used detergents, evaluating the completeness of the exchange using a battery of existing protocols. Our data include results for octyl glucoside (OG), octaethylene glycol monododecyl ether (C12E8), and tetraethylene glycol monooctyl ether (C8E4), and these data demonstrate that existing protocols are insufficient and yield incomplete exchange for the proteins under the conditions probed here. In some cases, our data indicate that up to 99% of the measured detergent corresponds to the original pre-exchange detergent rather than the desired post-exchange detergent. We conclude by discussing the need for new detergent exchange methodologies alongside improved exchange yield expectations for studying the potential influence of detergents on MP structures.
Collapse
Affiliation(s)
- Iliana Levesque
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Ghani L, Kim S, Ehsan M, Lan B, Poulsen IH, Dev C, Katsube S, Byrne B, Guan L, Loland CJ, Liu X, Im W, Chae PS. Melamine-cored glucosides for membrane protein solubilization and stabilization: importance of water-mediated intermolecular hydrogen bonding in detergent performance. Chem Sci 2023; 14:13014-13024. [PMID: 38023530 PMCID: PMC10664503 DOI: 10.1039/d3sc03543c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.
Collapse
Affiliation(s)
- Lubna Ghani
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study Seoul 024-55 South Korea
| | - Muhammad Ehsan
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| | - Baoliang Lan
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Ida H Poulsen
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Chandra Dev
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Xiangyu Liu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering Lehigh University Bethlehem PA 18015 USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| |
Collapse
|
11
|
Lal M, Wachtel E, Pati S, Namboothiri INN, Patchornik G. His 1-tagged DM or DDM detergent micelles are reversibly conjugated by nickel ions. Sci Rep 2023; 13:17138. [PMID: 37816812 PMCID: PMC10564902 DOI: 10.1038/s41598-023-44236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Specific conjugation of decyl β-D-maltoside (DM) or dodecyl β-D-maltoside (DDM) detergent micelles is accomplished between pH 7.0-8.5 in the presence of an amphiphilic analog of the amino acid histidine, bound to a 10-carbon hydrocarbon chain (His1-C10) and Ni2+ ions. Following addition of 10-15 wt% PEG-6000 as precipitant, phase separation in the form of oil-rich globules (30-600 µm) is observed by light microscopy. Other divalent cations: Zn2+, Fe2+, Cu2+ lead to dark precipitates rather than colorless globules; while Mg2+, Ca2+ do not promote any phase separation at all. Even in the absence of precipitant, dynamic light scattering (DLS) measurements demonstrate that DM micelles (hydrodynamic size ~ 6 nm) or DDM micelles (8 nm) self-associate into larger particles (9 nm and 411 nm for DM; 10 nm and 982 nm for DDM) in the presence of His1-C10 and nickel ions. Micellar conjugation is partially reversible in the presence of water soluble 50 mM EDTA, histidine or imidazole chelators. Cryo-transmission electron microscopy (cryo-TEM) imaging revealed the formation of non-uniformly dense detergent aggregates for both DM and DDM micelles in the presence of precipitant. The possible utility of such His1-tagged DM or DDM micelles for promoting crystallization of integral membrane proteins is discussed.
Collapse
Affiliation(s)
- Mitra Lal
- Department of Chemical Sciences, Ariel University, 70400, Ariel, Israel
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute, 761001, Rehovot, Israel
| | - Soumyaranjan Pati
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Irishi N N Namboothiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, 70400, Ariel, Israel.
| |
Collapse
|
12
|
Vénien-Bryan C, Fernandes CAH. Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis. Int J Mol Sci 2023; 24:14785. [PMID: 37834233 PMCID: PMC10573263 DOI: 10.3390/ijms241914785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.
Collapse
Affiliation(s)
| | - Carlos A. H. Fernandes
- Unité Mixte de Recherche (UMR) 7590, Centre National de la Recherche Scientifique (CNRS), Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
13
|
Caritá AC, Cavalcanti RRM, Oliveira MSS, Riske KA. Solubilization of biomimetic lipid mixtures by some commonly used non-ionic detergents. Chem Phys Lipids 2023; 255:105327. [PMID: 37442532 DOI: 10.1016/j.chemphyslip.2023.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Detergents are amphiphilic molecules often used to solubilize biological membranes and separate their components. Here we investigate the solubilization of lipid vesicles by the commonly used non-ionic detergents polyoxyethylene (20) oleyl ether (Brij 98), n-octyl-β-D-glucoside (OG), and n-dodecyl β-D maltoside (DDM) and compare the results with the standard detergent Triton X-100 (TX-100). The vesicles were composed of palmitoyl oleoyl phosphatidylcholine (POPC) or of a biomimetic ternary mixture of POPC, egg sphingomyelin (SM) and cholesterol (2:1:2 molar ratio). To follow the solubilization profile of large unilamellar vesicles (LUVs), 90° light scattering measurements were done along the titration of LUVs with the detergents. Then, giant unilamellar vesicles (GUVs) were observed with optical microscopy during exposure to the detergents, to allow direct visualization of the solubilization process. Isothermal titration calorimetry (ITC) was used to assess the binding constant of the detergents in POPC bilayers. The results show that the incorporation of TX-100, Brij 98 and, to a lesser extent, OG in the pure POPC liposomes leads to an increase in the vesicle area, which indicates their ability to redistribute between the two leaflets of the membrane in a short scale of time. On the other hand, DDM incorporates mainly in the external leaflet causing an increase in vesicle curvature/tension leading ultimately to vesicle burst. Only TX-100 and OG were able to completely solubilize the POPC vesicles, whereas the biomimetic ternary mixture was partially insoluble in all detergents tested. TX-100 and OG were able to incorporate in the bilayer of the ternary mixture and induce macroscopic phase separation of liquid-ordered (Lo) and liquid-disordered (Ld) domains, with selective solubilization of the latter. Combination of ITC data with turbidity results showed that TX-100 and OG can be incorporated up to almost 0.3 detergent/lipid, significantly more than Brij 98 and DDM. This fact seems to be directly related to their higher capacity to solubilize POPC membranes and their ability to induce macroscopic phase separation in the biomimetic lipid mixture.
Collapse
Affiliation(s)
- Amanda C Caritá
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil
| | | | | | - Karin A Riske
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil.
| |
Collapse
|
14
|
Dirnberger B, Korona D, Popovic R, Deery MJ, Barber H, Russell S, Lilley KS. Enrichment of Membrane Proteins for Downstream Analysis Using Styrene Maleic Acid Lipid Particles (SMALPs) Extraction. Bio Protoc 2023; 13:e4728. [PMID: 37575399 PMCID: PMC10415199 DOI: 10.21769/bioprotoc.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Integral membrane proteins are an important class of cellular proteins. These take part in key cellular processes such as signaling transducing receptors to transporters, many operating within the plasma membrane. More than half of the FDA-approved protein-targeting drugs operate via interaction with proteins that contain at least one membrane-spanning region, yet the characterization and study of their native interactions with therapeutic agents remains a significant challenge. This challenge is due in part to such proteins often being present in small quantities within a cell. Effective solubilization of membrane proteins is also problematic, with the detergents typically employed in solubilizing membranes leading to a loss of functional activity and key interacting partners. In recent years, alternative methods to extract membrane proteins within their native lipid environment have been investigated, with the aim of producing functional nanodiscs, maintaining protein-protein and protein-lipid interactions. A promising approach involves extracting membrane proteins in the form of styrene maleic acid lipid particles (SMALPs) that allow the retention of their native conformation. This extraction method offers many advantages for further protein analysis and allows the study of the protein interactions with other molecules, such as drugs. Here, we describe a protocol for efficient SMALP extraction of functionally active membrane protein complexes within nanodiscs. We showcase the method on the isolation of a low copy number plasma membrane receptor complex, the nicotinic acetylcholine receptor (nAChR), from adult Drosophila melanogaster heads. We demonstrate that these nanodiscs can be used to study native receptor-ligand interactions. This protocol can be applied across many biological scenarios to extract the native conformations of low copy number integral membrane proteins.
Collapse
Affiliation(s)
- Benedict Dirnberger
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Rebeka Popovic
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helen Barber
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Kaipa JM, Krasnoselska G, Owens RJ, van den Heuvel J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules 2023; 13:biom13050817. [PMID: 37238687 DOI: 10.3390/biom13050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane proteins are difficult biomolecules to express and purify. In this paper, we compare the small-scale production of six selected eukaryotic integral membrane proteins in insect and mammalian cell expression systems using different techniques for gene delivery. The target proteins were C terminally fused to the green fluorescent marker protein GFP to enable sensitive monitoring. We show that the choice of expression systems makes a considerable difference to the yield and quality of the six selected membrane proteins. Virus-free transient gene expression (TGE) in insect High Five cells combined with solubilization in dodecylmaltoside plus cholesteryl hemisuccinate generated the most homogeneous samples for all six targets. Further, the affinity purification of the solubilized proteins using the Twin-Strep® tag improved protein quality in terms of yield and homogeneity compared to His-tag purification. TGE in High Five insect cells offers a fast and economically attractive alternative to the established methods that require either baculovirus construction and the infection of the insect cells or relatively expensive transient gene expression in mammalian cells for the production of integral membrane proteins.
Collapse
Affiliation(s)
| | - Ganna Krasnoselska
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 18.5, 42, 2200 Copenhagen, Denmark
| | - Raymond J Owens
- Structural Biology Division, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Joop van den Heuvel
- Helmholtz Center for Infection Research, Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
17
|
Godoy-Hernandez A, Asseri AH, Purugganan AJ, Jiko C, de Ram C, Lill H, Pabst M, Mitsuoka K, Gerle C, Bald D, McMillan DGG. Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions. ACS CENTRAL SCIENCE 2023; 9:494-507. [PMID: 36968527 PMCID: PMC10037447 DOI: 10.1021/acscentsci.2c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
Collapse
Affiliation(s)
- Albert Godoy-Hernandez
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Amer H. Asseri
- Biochemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Aiden J. Purugganan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chimari Jiko
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Carol de Ram
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Holger Lill
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Kaoru Mitsuoka
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 565-0871, Japan
| | - Christoph Gerle
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Life
Science Research Infrastructure Group, RIKEN
SPring-8 Center, Kouto, Hyogo 679-5148, Japan
| | - Dirk Bald
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Duncan G. G. McMillan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo
City, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Principles to recover copper-conducting CTR proteins for the purpose of structural and functional studies. Protein Expr Purif 2023; 203:106213. [PMID: 36509382 DOI: 10.1016/j.pep.2022.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Transition metals such as copper and zinc are essential elements required for the survival of most organisms, from bacteria to humans. Yet, elevated levels of these elements are highly toxic. The Copper TRansporter protein family (CTRs) represents the only identified copper uptake proteins in eukaryotes and hence serves as key components for the maintenance of appropriate levels of the metal. Moreover, CTRs have been proposed to serve as an entry point into cells of certain cancer drugs and to constitute attractive drug-targets for novel antifungals. Nevertheless, the structure, function, and regulation of the CTRs remain elusive, limiting valuable information also for applied sciences. To this end, here we report procedures to isolate a range of CTR members using Saccharomyces cerevisiae as a production host, focusing on three homologs, human CTR1, human CTR2, and Candida albicans CTR. Using forms C-terminally-linked to a protease cleavage sequence, Green Fluorescent Protein (GFP), and a His-tag, assessment of the localization, quantification and purification was facilitated. Cellular accumulation of the proteins was investigated via live-cell imaging. Detergents compatible with acceptable solubilization yields were identified and fluorescence-detection size-exclusion-chromatography (F-SEC) revealed preferred membrane extraction conditions for the targets. For purification purposes, the solubilized CTR members were subjected to affinity chromatography and SEC, reaching near homogeneity. The quality and quantity of the CTRs studied will permit downstream efforts to uncover imperative biophysical aspects of these proteins, paving the way for subsequent drug-discovery studies.
Collapse
|
19
|
Beratto-Ramos A, Dagnino-Leone J, Martínez-Oyanedel J, Fernández M, Aranda M, Bórquez R. Optimization of detergents in solubilization and reconstitution of Aquaporin Z: A structural approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184101. [PMID: 36535340 DOI: 10.1016/j.bbamem.2022.184101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The exceptional capacities of aquaporins in terms of water permeation and selectivity have made them an interesting system for membrane applications. Despite the multiple attempts for immobilizing the aquaporins over a porous substrate, there is a lack of studies related to the purification and reconstitution steps, principally associated with the use of detergents in solubilization and destabilization steps. This study analyzed the effect of detergents in Aquaporin Z solubilization, considering the purity and structural homogeneity of the protein. METHODS The extraction process was optimized by the addition of detergent at the sonication step, which enabled the omission of the ultracentrifugation and resuspension steps. Two detergents, Triton X-100, and octyl-glucoside were also evaluated. Destabilization mediated by detergents was used as reconstitution method. Saturation and solubilization points were defined by detergent concentration and both, liposomes and proteoliposomes, were analyzed by size distribution and permeability assays. Detergent removal with Bio-beads was also analyzed. RESULTS Octyl glucoside ensures structural stability and homogeneity of Aquaporin Z. However, high concentrations of detergents induce the presence of defects in proteoliposomes. While saturated liposomes create homogeneous and functional structures, solubilized liposomes get affected by a reassembly process, creating vesicle defects with anomalous permeability profiles. CONCLUSIONS Detergent concentration affects the structural conformation of proteoliposomes in the reconstitution process. GENERAL SIGNIFICANCE Since the destabilization process is dependent on vesicle, detergent, and buffer composition, optimization of this process should be mandatory for further studies. All these considerations will allow achieving the potential of Aquaporins and any other integral membrane protein in their applications for industrial purposes.
Collapse
Affiliation(s)
| | | | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Marcos Fernández
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Mario Aranda
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Rodrigo Bórquez
- Department of Chemical Engineering, Universidad de Concepción, Chile.
| |
Collapse
|
20
|
Tang-Siegel GG. Human Serum Mediated Bacteriophage Life Cycle Switch in Aggregatibacter actinomycetemcomitans Is Linked to Pyruvate Dehydrogenase Complex. Life (Basel) 2023; 13:436. [PMID: 36836793 PMCID: PMC9959103 DOI: 10.3390/life13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antimicrobial resistance is rising as a major global public health threat and antibiotic resistance genes are widely spread among species, including human oral pathogens, e.g., Aggregatibacter actinomycetemcomitans. This Gram-negative, capnophilic, facultative anaerobe is well recognized as a causative agent leading to periodontal diseases, as well as seriously systemic infections including endocarditis. A. actinomycetemcomitans has also evolved mechanisms against complement-mediated phagocytosis and resiliently survives in serum-rich in vivo environments, i.e., inflamed periodontal pockets and blood circulations. This bacterium, however, demonstrated increasing sensitivity to human serum, when being infected by a pseudolysogenic bacteriophage S1249, which switched to the lytic state as a response to human serum. Concomitantly, the pyruvate dehydrogenase complex (PDHc), which is composed of multiple copies of three enzymes (E1, E2, and E3) and oxidatively decarboxylates pyruvate to acetyl-CoA available for tricarboxylic acid (TCA) cycle, was found up-regulated 10-fold in the bacterial lysogen after human serum exposure. The data clearly indicated that certain human serum components induced phage virion replication and egress, resulting in bacterial lysis. Phage manipulation of bacterial ATP production through regulation of PDHc, a gatekeeper linking glycolysis to TCA cycle through aerobic respiration, suggests that a more efficient energy production and delivery system is required for phage progeny replication and release in this in vivo environment. Insights into bacteriophage regulation of bacterial fitness in a mimic in vivo condition will provide alternative strategies to control bacterial infection, in addition to antibiotics.
Collapse
Affiliation(s)
- Gaoyan Grace Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont and State Agricultural College, Burlington, VT 05405, USA
| |
Collapse
|
21
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
22
|
Gobet A, Zampieri V, Magnard S, Pebay-Peyroula E, Falson P, Chaptal V. The non-Newtonian behavior of detergents during concentration is increased by macromolecules, in trans, and results in their over-concentration. Biochimie 2023; 205:53-60. [PMID: 36087644 DOI: 10.1016/j.biochi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Concentration of pure membrane proteins in detergent solution results in detergent concentration, albeit in unknown amounts. This phenomenon is observed in every lab working on membrane proteins, but has seldom been investigated. In this study, we explored the behavior of detergents mixed with membrane proteins during the step of sample concentration using centrifugal devices. We show that detergent over-concentrate with the presence of polymers, typically membrane or soluble proteins but also polysaccharides. The over-concentration of detergents depends on centrifugal force applied to the device. With the use of a specific dye, we observed the formation of a mesh on the concentrator device. Importantly, reducing the centrifugal speed allows to reduce the concentration of detergents when mixed to macromolecules, as tested with 3 different membrane proteins. All together, these results highlight the non-Newtonian behavior of detergents and provides a solid framework to investigators to improve drastically biochemical and structural studies of membrane proteins.
Collapse
Affiliation(s)
- Alexia Gobet
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University lyon1, 7 passage du vercors, 69007, Lyon, France
| | - Veronica Zampieri
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sandrine Magnard
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University lyon1, 7 passage du vercors, 69007, Lyon, France
| | | | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University lyon1, 7 passage du vercors, 69007, Lyon, France.
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University lyon1, 7 passage du vercors, 69007, Lyon, France.
| |
Collapse
|
23
|
Brown KA, Gugger MK, Roberts DS, Moreno D, Chae PS, Ge Y, Jin S. Synthesis, Self-Assembly Properties, and Degradation Characterization of a Nonionic Photocleavable Azo-Sulfide Surfactant Family. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1465-1473. [PMID: 36638323 PMCID: PMC10164600 DOI: 10.1021/acs.langmuir.2c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis and characterization of a new family of maltose-derived nonionic surfactants that contain a photocleavable azo-sulfide linker (mAzo). The self-assembly properties of these surfactants were investigated using surface tension measurements to determine the critical micelle concentration (CMC), dynamic light scattering (DLS) to reveal the hydrodynamic radius of their self-assemblies, and transmission electron microscopy (TEM) to elucidate the micelle morphology. Ultraviolet-visible (UV-visible) spectroscopy confirmed the rapid photodegradation of these surfactants, but surface tension measurements of the surfactant solutions before and after degradation showed unusual degradation products. The photodegradation process was further studied using online liquid chromatography coupled with mass spectrometry (LC-MS),which revealed that these surfactants can form another photo-stable surfactant post-degradation. Finally, traditionally challenging proteins from heart tissue were solubilized using the mAzo surfactants to demonstrate their potential in biological applications.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan K. Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David Moreno
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
24
|
Zhu C, Liang X, Chen X, Liang M, Zheng J, Wan B, Luo S. Characterizing the Specific Recognition of Xanthurenic Acid by GEP1 and GEP1-GCα Interactions in cGMP Signaling Pathway in Gametogenesis of Malaria Parasites. Int J Mol Sci 2023; 24:ijms24032561. [PMID: 36768882 PMCID: PMC9916804 DOI: 10.3390/ijms24032561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Gametogenesis is an essential step for malaria parasite transmission and is activated in mosquito by signals including temperature drop, pH change, and mosquito-derived xanthurenic acid (XA). Recently, a membrane protein gametogenesis essential protein 1 (GEP1) was found to be responsible for sensing these signals and interacting with a giant guanylate cyclase α (GCα) to activate the cGMP-PKG-Ca2+ signaling pathway for malaria parasite gametogenesis. However, the molecular mechanisms for this process remain unclear. In this study, we used AlphaFold2 to predict the structure of GEP1 and found that it consists of a conserved N-terminal helical domain and a transmembrane domain that adopts a structure similar to that of cationic amino acid transporters. Molecular docking results showed that XA binds to GEP1 via a pocket similar to the ligand binding sites of known amino acid transporters. In addition, truncations of this N-terminal sequence significantly enhanced the expression, solubility, and stability of GEP1. In addition, we found that GEP1 interacts with GCα via its C-terminal region, which is interrupted by mutations of a few conserved residues. These findings provide further insights into the molecular mechanism for the XA recognition by GEP1 and the activation of the gametogenesis of malaria parasites through GEP1-GCα interaction.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xiaoge Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xu Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Miaomiao Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jianting Zheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shukun Luo
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
25
|
Batista-Silva J, Gomes D, Barroca-Ferreira J, Gallardo E, Sousa Â, Passarinha LA. Specific Six-Transmembrane Epithelial Antigen of the Prostate 1 Capture with Gellan Gum Microspheres: Design, Optimization and Integration. Int J Mol Sci 2023; 24:ijms24031949. [PMID: 36768273 PMCID: PMC9916199 DOI: 10.3390/ijms24031949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
This work demonstrates the potential of calcium- and nickel-crosslinked Gellan Gum (GG) microspheres to capture the Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) directly from complex Komagataella pastoris mini-bioreactor lysates in a batch method. Calcium-crosslinked microspheres were applied in an ionic exchange strategy, by manipulation of pH and ionic strength, whereas nickel-crosslinked microspheres were applied in an affinity strategy, mirroring a standard immobilized metal affinity chromatography. Both formulations presented small diameters, with appreciable crosslinker content, but calcium-crosslinked microspheres were far smoother. The most promising results were obtained for the ionic strategy, wherein calcium-crosslinked GG microspheres were able to completely bind 0.1% (v/v) DM solubilized STEAP1 in lysate samples (~7 mg/mL). The target protein was eluted in a complexed state at pH 11 with 500 mM NaCl in 10 mM Tris buffer, in a single step with minimal losses. Coupling the batch clarified sample with a co-immunoprecipitation polishing step yields a sample of monomeric STEAP1 with a high degree of purity. For the first time, we demonstrate the potential of a gellan batch method to function as a clarification and primary capture method towards STEAP1, a membrane protein, simplifying and reducing the costs of standard purification workflows.
Collapse
Affiliation(s)
- João Batista-Silva
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Diana Gomes
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eugénia Gallardo
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia–UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia–UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-069
| |
Collapse
|
26
|
Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem 2023; 95:10.1021/acs.analchem.2c03916. [PMID: 36608324 PMCID: PMC10323036 DOI: 10.1021/acs.analchem.2c03916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonionic surfactants are often used as general reagents for cell lysis enabling protein extraction, stabilization, and purification under nondenaturing conditions for downstream analysis in structural biology. However, the presence of surfactants in the sample matrix often has a deleterious effect on electrospray ionization (ESI)-mass spectrometry (MS) analysis of proteins and complexes. Here, we report a nonionic, cleavable surfactant, n-decyl-disulfide-β-D-maltoside (DSSM), for top-down proteomics. DSSM was designed to mimic the properties of one of the most common surfactants used in structural biology, n-dodecyl-β-D-maltoside (DDM), but contains a disulfide bond that allows for facile cleavage and surfactant removal before or during MS analysis. We have shown that DSSM is compatible with direct electrospray ionization (ESI)-MS analysis and reversed-phase liquid chromatography (RPLC)-MS analysis of proteins and protein complexes. We have demonstrated that DSSM can facilitate top-down proteomic characterization of membrane proteins such as a model ion channel protein and a G protein-coupled receptor as well as endogenous proteins from cell lysates for the determination of sequence variations and posttranslational modifications (PTMs). Conceivably, DSSM could serve as a general replacement for DDM in proteomic experiments and structural biology studies.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Morgan K. Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David Moreno
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
27
|
Improving the Transduction Efficiency and Antitumor Effect of Conditionally Replicative Adenovirus by Application of 6-cyclohexyl Methyl-β-D-maltoside. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020528. [PMID: 36677587 PMCID: PMC9862058 DOI: 10.3390/molecules28020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
As a tumor-targeting oncolytic adenovirus (Ad), conditionally replicating adenovirus (CRAd) can access the cell interior by binding to coxsackievirus-Ad receptors (CARs) and specifically replicate and destroy cancer cells without lethal effects on normal cells. The transduction efficiency of CRAd is highly dependent on the number of CARs on the cell membrane. However, not all tumor cells highly express CARs; therefore, improving the transduction efficiency of CRAd is beneficial for improving its antitumor effect. In this study, 6-cyclohexyl methyl-β-D-maltoside (6-β-D), as maltoside transfection agent, showed several advantages, including high transfection efficiency, low toxicity, and potential for intensive use and easy operation. With pretreatment of cancer cells with low concentration of 6-β-D (≤5 μg/mL), the transduction efficiency of "model" Ad (eGFP-Ad) was improved 18-fold compared to eGFP-Ad alone. 6-β-D improved the antitumor effect of CRAd while being safe for normal cells, in which treatment with 6-β-D helped the lethal effects of CRAd at a multiplicity-of-infection ratio of 10 (MOI 10) achieve the oncolytic outcomes of MOI 50. This means that if CRAd is combined with 6-β-D, the amount of CRAd used in clinical practice could be greatly reduced without diminishing its curative effect or exposing patients to the potential side effects of high-titer CRAd. Finally, the underlying mechanism of antitumor effect of CRAd + 6-β-D was primarily investigated, and we found that 6-β-D increased the virus's replication in cancer cells at the early stage of infection and activated the apoptosis signaling pathway at the late stage of the cell cycle. This research will provide an effective technical reference for further improving Ad-mediated cancer gene therapy in clinical practice.
Collapse
|
28
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Butler TJ, Smith SM. Strategies for the Purification of Membrane Proteins. Methods Mol Biol 2023; 2699:477-491. [PMID: 37647009 DOI: 10.1007/978-1-0716-3362-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Membrane proteins account for approximately 30% of the coding regions of all sequenced genomes, and they play crucial roles in many fundamental cell processes. However, there are relatively few membrane proteins with known three-dimensional structures. This is likely due to technical challenges associated with membrane protein extraction, solubilization, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, with the latter's extraction requiring phospholipid bilayer disruption using detergents or organic solvents. In this chapter, important considerations for membrane protein purification are addressed, with a focus on the initial stages of membrane protein solubilization, where problems are most frequently encountered. Protocols are outlined for the extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and sample clean-up and concentration.
Collapse
Affiliation(s)
- Thomas J Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Luo W, Yang M, Zhao Y, Wang H, Yang X, Zhang W, Zhao F, Zhao S, Tao H. Transition-Linker Containing Detergents for Membrane Protein Studies. Chemistry 2022; 28:e202202242. [PMID: 36053145 DOI: 10.1002/chem.202202242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
It is a pressing need, but still challenging to explore the structure and function of membrane proteins (MPs). One of the main obstacles is the limited availability of matched detergents for the handling of specific MPs. We describe herein the design of new detergents by incorporation of a transition linker between the hydrophilic head and the hydrophobic tail. This design allows a gradual change of hydrophobicity between the outside and inside of micelles, in contrast to the abrupt switch in conventional detergents. Notably, many of these detergents assembled into micelles in while retaining low critical micelle concentrations. Meanwhile, thermal stabilizing evaluation identified superior detergents for representative MPs, including G protein-coupled receptors and a transporter protein. Among them, further improved the NMR study of MPs. We anticipate these that results will encourage future detergent expansion through new remodeling on the traditional detergent scaffold.
Collapse
Affiliation(s)
- Weiling Luo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China.,iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Huixia Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Wei Zhang
- College of Chemistry and Materials Science, Hebei Normal University, 050024, Shijiazhuang, P. R. China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| |
Collapse
|
31
|
Sarkar K, Joedicke L, Westwood M, Burnley R, Wright M, McMillan D, Byrne B. Modulation of PTH1R signaling by an extracellular binding antibody. VITAMINS AND HORMONES 2022; 120:109-132. [PMID: 35953107 DOI: 10.1016/bs.vh.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone receptor 1 (PTH1R) is a class B G-protein coupled receptor with key roles in bone development. The receptor signals through both the Gs and Gq G-proteins as well as through β-arrestin in a G-protein independent manner. Current treatments for bone disorders, such as osteoporosis, target the PTH1R but are suboptimal in their efficacy. Monoclonal antibodies represent a major growth area in therapeutics as a result of their superior specificity and long serum half-life. Here, we discovered antibodies against the extracellular domain (ECD) of PTH1R from a phage display library. One of these antibodies, ECD-ScFvhFc, binds PTH1R with high affinity and although it has little or no effect on G-protein dependent receptor signaling, it does reduce PTH1R mediated β-arrestin signaling. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) demonstrated that the ECD-ScFvhFc binding site overlapped partially with that of the cognate ligand, PTH. The results of this study demonstrate the suitability of PTH1R as a target for therapeutic antibody development.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Life Sciences, Imperial College, London, United Kingdom; UCB Pharma, Slough, United Kingdom
| | | | | | | | | | | | - Bernadette Byrne
- Department of Life Sciences, Imperial College, London, United Kingdom.
| |
Collapse
|
32
|
Youn T, Yoon S, Byrne B, Chae PS. Foldable detergents for membrane protein stability. Chembiochem 2022; 23:e202200276. [PMID: 35715931 DOI: 10.1002/cbic.202200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Detergents are widely used for membrane protein structural study. Many recently developed detergents contain multiple tail and head groups, which are typically connected via a small and branched linker. Due to their inherent compact structures, with small inter-alkyl chain distances, these detergents form micelles with high alkyl chain density in the interiors, a feature favorably associated with membrane protein stability. A recent study on tandem triazine maltosides (TZM) revealed a distinct trend; despite possession of an apparently large inter-alkyl chain distance, the TZM-Es were highly effective at stabilizing membrane proteins. Thanks to the incorporation of a flexible spacer between the two triazine rings in the linker region, these detergents are prone to folding into a compact architecture in micellar environments instead of adopting an extended conformation. Detergent foldability represents a new concept of novel detergent design with significant potential for future detergent development.
Collapse
Affiliation(s)
- Taeyeol Youn
- Hanyang University - ERICA Campus: Hanyang University - Ansan Campus, Bionano Engineering, KOREA, REPUBLIC OF
| | - Soyoung Yoon
- Hanyang University - ERICA Campus: Hanyang University - Ansan Campus, Bionano Engineering, KOREA, REPUBLIC OF
| | - Bernadette Byrne
- Imperial College London, Department of Life Sciences, UNITED KINGDOM
| | - Pil Seok Chae
- Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 15588, Ansan, KOREA, REPUBLIC OF
| |
Collapse
|
33
|
Tidemand FG, Blemmer S, Johansen NT, Arleth L, Pedersen MC. Non-ionic detergent assists formation of supercharged nanodiscs and insertion of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183884. [PMID: 35182589 DOI: 10.1016/j.bbamem.2022.183884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
Nanodiscs are used to stabilize membrane proteins in a lipid environment and enable investigations of the function and structure of these. Membrane proteins are often only available in small amounts, and thus the stability and ease of use of the nanodiscs are essential. We have recently explored circularizing and supercharging membrane scaffolding proteins (MSPs) for nanodisc formation and found increased temporal stability at elevated temperatures. In the present study, we investigate six different supercharged MSPs and their ability to form nanodiscs: three covalently circularized and the three non-circularized, linear versions. Using standard reconstitution protocols using cholate as the reconstitution detergent, we found that two of the linear constructs formed multiple lipid-protein species, whereas adding n-Dodecyl-B-D-maltoside (DDM) with the cholate in the reconstitution gave rise to single-species nanodisc formation for these MSPs. For all MSPs, the formed nanodiscs were analyzed by small-angle X-ray scattering (SAXS), which showed similar structures for each MSP, respectively, suggesting that the structures of the formed nanodiscs are independent of the initial DDM content, as long as cholate is present. Lastly, we incorporated the membrane protein proteorhodopsin into the supercharged nanodiscs and observed a considerable increase in incorporation yield with the addition of DDM. For the three circularized MSPs, a single major species appeared in the size exclusion chromatography (SEC) chromatogram, suggesting monodisperse nanodiscs with proteorhodopsin incorporated, which is in strong contrast to the samples without DDM showing almost no incorporation and high polydispersity.
Collapse
Affiliation(s)
- Frederik G Tidemand
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Sara Blemmer
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicolai T Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Martin Cramer Pedersen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
34
|
Brahma R, Raghuraman H. Cost-effective Purification of Membrane Proteins using a Dual-detergent Strategy. Curr Protoc 2022; 2:e452. [PMID: 35714356 PMCID: PMC7614515 DOI: 10.1002/cpz1.452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms of membrane protein function is critical for biomedical research and drug discovery as membrane proteins constitute ∼30% of the proteins encoded by the genomes of both lower and higher organisms and are targets for two-thirds of approved drugs worldwide. Significant progress has been made in engineering host expression systems for large-scale production of membrane proteins and in determining their three-dimensional high-resolution structures. Despite these efforts, the study of membrane proteins at the atomic level is challenging due to poor expression and extraction, low yields of functional protein, and the complexity and heterogeneity of source membranes. Structural and spectroscopic studies of any membrane protein require that the protein be extracted from its native membranes into a membrane-mimetic stable environment, which is often achieved by the use of detergents. Unfortunately, there is no magic detergent that can extract all membrane proteins and successful extraction often requires a thorough screen of detergents. Furthermore, membrane protein purification in general and the detergents used are very expensive, which puts a financial constraint on sophisticated membrane protein studies. To overcome this hurdle, a dual-detergent strategy has recently been developed and successfully applied to purify various classes of pure, stable, and functionally relevant membrane proteins in a cost-effective manner. This strategy uses an inexpensive detergent for solubilization of the desired protein from membranes and a second detergent during protein purification. In the Basic Protocol, we describe the dual-detergent strategy to significantly reduce the overall purification cost of a bacterial membrane protein using the magnesium ion channel MgtE as an example. Support Protocols are also provided for selecting a suitable E. coli strain for protein expression and the optimal detergent(s) for membrane protein solubilization. © 2022 Wiley Periodicals LLC. Basic Protocol: Expression, membrane solubilization, and cost-effective purification of MgtE Support Protocol 1: Selecting a suitable E. coli strain for optimal protein expression Support Protocol 2: Identification of suitable detergents for membrane protein solubilization.
Collapse
Affiliation(s)
- Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
35
|
Diwanji D, Trenker R, Jura N, Verba KA. Efficient expression, purification, and visualization by cryo-EM of unliganded near full-length HER3. Methods Enzymol 2022; 667:611-632. [PMID: 35525556 PMCID: PMC9288109 DOI: 10.1016/bs.mie.2022.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Biochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture. The reconstructions reveal previously unappreciated extracellular domain dynamics and glycosylation sites.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, United States
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
36
|
|
37
|
Virolainen MS, Søltoft CL, Pedersen PA, Ellgaard L. Production of an Active, Human Membrane Protein in Saccharomyces cerevisiae: Full-Length FICD. Int J Mol Sci 2022; 23:ijms23052458. [PMID: 35269596 PMCID: PMC8910494 DOI: 10.3390/ijms23052458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
The human Fic domain-containing protein (FICD) is a type II endoplasmic reticulum (ER) membrane protein that is important for the maintenance of ER proteostasis. Structural and in vitro biochemical characterisation of FICD AMPylase and deAMPylase activity have been restricted to the soluble ER-luminal domain produced in Escherichia coli. Information about potentially important features, such as structural motifs, modulator binding sites or other regulatory elements, is therefore missing for the approximately 100 N-terminal residues including the transmembrane region of FICD. Expressing and purifying the required quantity and quality of membrane proteins is demanding because of the low yields and poor stability often observed. Here, we produce full-length FICD by combining a Saccharomyces cerevisiae-based platform with green fluorescent protein (GFP) tagging to optimise the conditions for expression, solubilisation and purification. We subsequently employ these conditions to purify milligram quantities of His-tagged FICD per litre of culture, and show that the purified, detergent-solubilised membrane protein is an active deAMPylating enzyme. Our work provides a straightforward methodology for producing not only full-length FICD, but also other membrane proteins in S. cerevisiae for structural and biochemical characterisation.
Collapse
Affiliation(s)
- Minttu S. Virolainen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Cecilie L. Søltoft
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Per A. Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2200 Copenhagen, Denmark
- Correspondence: (P.A.P.); (L.E.)
| | - Lars Ellgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
- Correspondence: (P.A.P.); (L.E.)
| |
Collapse
|
38
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
39
|
Artemieva LE, Mineev KS, Arseniev AS, Goncharuk SA. Expression, purification and characterization of SORCS2 intracellular domain for structural studies. Protein Expr Purif 2022; 193:106058. [PMID: 35114376 DOI: 10.1016/j.pep.2022.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Neurotrophin signaling pathways are one of the major cascades in neuronal development and involved in many key processes including proliferation, differentiation, apoptosis, synaptic plasticity, axonal growth. In addition to the main classes of neurotrophin receptors, Trk and P75NTR, there are many auxiliary proteins, which can also bind neurotrophins and regulate the signaling pathways. The versatility of interactions between them could explain multiple and completely opposite biological outcomes such as cell survival or apoptosis. Membrane protein SorCS2, a vacuolar protein sorting 10 protein-domain receptor, interacts with P75NTR and controls the activity of Trk receptors. The abnormal functioning of SorCS2 is associated with neurodegenerative diseases, such as Alzheimer's and Huntington's disease. But the mechanism of SorCS2 activation and basis of the interaction with P75NTR has remained elusive. Herein, we describe two efficient approaches for the intracellular domain of the SorCS2 production employing bacterial and cell-free expression systems, as well as purification and refolding protocols. Finally, we characterized the purified protein by DLS and NMR and demonstrated that the protein sample is suitable for structural studies.
Collapse
Affiliation(s)
- L E Artemieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - S A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
40
|
Das A, Bysack A, Raghuraman H. Effectiveness of dual-detergent strategy using Triton X-100 in membrane protein purification. Biochem Biophys Res Commun 2021; 578:122-128. [PMID: 34560581 DOI: 10.1016/j.bbrc.2021.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Membrane solubilization by detergents is a critical step for successful membrane protein purification. Alkyl maltoside detergents such as DDM and DM are very expensive and are commonly used to produce most of the high-quality proteins in stable and functional form. Recently, dual-detergent strategy using inexpensive detergents for membrane solubilization step has been shown to be highly effective in purifying different classes of membrane proteins in a cost-effective manner. In this work, we have monitored the effectiveness of 'dual-detergent strategy' towards successful purification of the isolated voltage sensing domain (VSD) of KvAP and the inward rectifying K+ channel, KirBac1.1. We demonstrate that the inexpensive detergent Triton X-100 extracts the activated conformation of the KvAP-VSD well without compromising the structural integrity of the sensor, and also retains its proper structural dynamics. Importantly, the cost associated with solubilizing the KvAP sensor can be reduced by ∼2000 fold. To the best of our knowledge, our results constitute the first report characterizing the purification of KvAP voltage sensor using an inexpensive detergent. However, the dual-detergent strategy using Triton X-100 for membrane solubilization is not effective for the purification of inward rectifying K+ channel, KirBac1.1 even in presence of high salt concentration during solubilization. We propose that the dual-detergent strategy will be useful for extracting stable and functional proteins that are both DDM- and DM-extractable, but will be ineffective if the protein is only DM-extractable. The relevance of the effectiveness of dual-detergent strategy with respect to the hydrophobic thickness of proteins is discussed.
Collapse
Affiliation(s)
- Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Arpan Bysack
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India.
| |
Collapse
|
41
|
Ung KL, Alsarraf H, Kremer L, Blaise M. MmpL3, the trehalose monomycolate transporter, is stable in solution in several detergents and can be reconstituted into peptidiscs. Protein Expr Purif 2021; 191:106014. [PMID: 34767949 DOI: 10.1016/j.pep.2021.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Mycobacteria possess a complex and waxy cell wall comprising a large panel of glycolipids. Among these, trehalose monomycolate (TMM) represents abundant and crucial components for the elaboration of the mycomembrane. TMM is synthesized in the cytoplasmic compartment and translocated across the inner membrane by the MmpL3 transporter. Inhibitors impeding TMM transport by targeting MmpL3 show great promises as new antimycobacterials. The recent X-ray or Cryo-EM structures of MmpL3 complexed to TMM or its inhibitors have shed light on the mechanisms of TMM transport and inhibition. So far, purification procedures mainly involved the use of n-Dodecyl-ß-d-Maltopyranoside to solubilize and stabilize MmpL3 from Mycobacterium smegmatis (MmpL3Msm) or Lauryl Maltose Neopentyl Glycol for MmpL3 from Mycobacterium tuberculosis. Herein, we explored the possibility to solubilize and stabilize MmpL3 with other detergents. We demonstrate that several surfactants from the ionic, non-ionic and zwitterionic classes are prone to solubilize MmpL3Msm expressed in Escherichia coli. The capacity of these detergents to stabilize MmpL3Msm was evaluated by size-exclusion chromatography and thermal stability. This study unraveled three new detergents DM, LDAO and sodium cholate that favor solubilization and stabilization of MmpL3Msm in solution. In addition, we report a protocol that allows reconstitution of MmpL3Msm into peptidiscs.
Collapse
Affiliation(s)
- Kien Lam Ung
- Université de Montpellier, IRIM, CNRS, Montpellier, France
| | - Husam Alsarraf
- Université de Montpellier, IRIM, CNRS, Montpellier, France; Department of Molecular Biology and Genetics, University of Aarhus, 8000, Aarhus, Denmark
| | - Laurent Kremer
- Université de Montpellier, IRIM, CNRS, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Mickaël Blaise
- Université de Montpellier, IRIM, CNRS, Montpellier, France.
| |
Collapse
|
42
|
Neves AT, Stenner R, Race PR, Curnow P. Expression, purification and preliminary characterisation of the choline transporter LicB from opportunistic bacterial pathogens. Protein Expr Purif 2021; 190:106011. [PMID: 34737041 DOI: 10.1016/j.pep.2021.106011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
Many opportunistic bacteria that infect the upper respiratory tract decorate their cell surface with phosphorylcholine to support colonisation and outgrowth. These surface modifications require the active import of choline from the host environment, a process thought to be mediated by a family of dedicated integral membrane proteins that act as choline permeases. Here, we present the expression and purification of the archetype of these choline transporters, LicB from Haemophilus influenzae. We show that LicB can be recombinantly produced in Escherichia coli and purified to homogeneity in a stable, folded state using the detergent n-dodecyl-β-d-maltopyranoside. Equilibrium binding studies with the fluorescent ligand dansylcholine suggest that LicB is selective towards choline, with reduced affinity for acetylcholine and no apparent activity towards other small molecules including glycine, carnitine and betaine. We also identify a conserved sequence motif within the LicB family and show that mutations within this motif compromise protein structure and function. Our results are consistent with previous observations that LicB is a specific high-affinity choline transporter, and provide an experimental platform for further studies of this permease family.
Collapse
Affiliation(s)
| | | | - Paul R Race
- School of Biochemistry, University of Bristol, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, UK.
| |
Collapse
|
43
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
44
|
Wehbie M, Bouchemal I, Deletraz A, Pebay-Peyroula E, Breyton C, Ebel C, Durand G. Glucose-Based Fluorinated Surfactants as Additives for the Crystallization of Membrane Proteins: Synthesis and Preliminary Physical-Chemical and Biochemical Characterization. ACS OMEGA 2021; 6:24397-24406. [PMID: 34604622 PMCID: PMC8482409 DOI: 10.1021/acsomega.1c02581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
We report herein the synthesis of a series of fluorinated surfactants with a glucose moiety as a polar head group and whose alkyl chain was varied in length and in fluorine/hydrogen ratio. They were synthesized in two or four steps in 20 to 50% overall yields allowing gram-scale synthesis. Their solubility in water is between 0.2 and 13.8 g/L, which indicates low water solubility. Two derivatives of the series were found to form micelles in water at ∼11 mM. Their hydrophilic-lipophilic balance was determined both by Griffin's and Davies' methods; they may exhibit a "harsh" character toward membrane proteins. This, combined with their low water solubility, suggest that they could advantageously be used in detergent mixtures containing a "mild" detergent. Finally, the potency of one of the derivatives, F3H5-β-Glu, to act as an additive for the crystallization of AcrB was evaluated in detergent mixtures with n-dodecyl-β-d-maltopyranoside (DDM). Among the six crystallization conditions investigated, adding F3H5-β-Glu improved the crystallization for three of them, as compared to control drops without additives. Moreover, preliminary tests with other compounds of the series showed that none of them hampered crystallization and suggested improvement for three of them. These novel glucose-based fluorinated detergents should be regarded as potential additives that could be included in screening kits used in crystallization.
Collapse
Affiliation(s)
- Moheddine Wehbie
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Ilham Bouchemal
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Anaïs Deletraz
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Eva Pebay-Peyroula
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Cécile Breyton
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Christine Ebel
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Grégory Durand
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
45
|
Lohi V, Lanjekar K, Rathod V. Synergistic effect of ultrasonication and detergent on protein extraction from soymeal. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vaishnavi Lohi
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| | - Kavita Lanjekar
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| | - Virendra Rathod
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| |
Collapse
|
46
|
Stetsenko A, Stehantsev P, Dranenko NO, Gelfand MS, Guskov A. Structural and biochemical characterization of a novel ZntB (CmaX) transporter protein from Pseudomonas aeruginosa. Int J Biol Macromol 2021; 184:760-767. [PMID: 34175341 DOI: 10.1016/j.ijbiomac.2021.06.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Abstract
The 2-TM-GxN family of membrane proteins is widespread in prokaryotes and plays an important role in transport of divalent cations. The canonical signature motif, which is also a selectivity filter, has a composition of Gly-Met-Asn. Some members though deviate from this composition, however no data are available as to whether this has any functional implications. Here we report the functional and structural analysis of CmaX protein from a pathogenic Pseudomonas aeruginosa bacterium, which has a Gly-Ile-Asn signature motif. CmaX readily transports Zn2+, Mg2+, Cd2+, Ni2+ and Co2+ ions, but it does not utilize proton-symport as does ZntB from Escherichia coli. Together with the bioinformatics analysis, our data suggest that deviations from the canonical signature motif do not reveal any changes in substrate selectivity or transport and easily alter in course of evolution.
Collapse
Affiliation(s)
- Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Pavlo Stehantsev
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Natalia O Dranenko
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia; Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
47
|
Zampieri V, Hilpert C, Garnier M, Gestin Y, Delolme S, Martin J, Falson P, Launay G, Chaptal V. The Det.Belt Server: A Tool to Visualize and Estimate Amphipathic Solvent Belts around Membrane Proteins. MEMBRANES 2021; 11:459. [PMID: 34206634 PMCID: PMC8307592 DOI: 10.3390/membranes11070459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Detergents wrap around membrane proteins to form a belt covering the hydrophobic part of the protein serving for membrane insertion and interaction with lipids. The number of detergent monomers forming this belt is usually unknown to investigators, unless dedicated detergent quantification is undertaken, which for many projects is difficult to setup. Yet, having an approximate knowledge of the amount of detergent forming the belt is extremely useful, to better grasp the protein of interest in interaction with its direct environment rather than picturing the membrane protein "naked". We created the Det.Belt server to dress up membrane proteins and represent in 3D the bulk made by detergent molecules wrapping in a belt. Many detergents are included in a database, allowing investigators to screen in silico the effect of different detergents around their membrane protein. The input number of detergents is changeable with fast recomputation of the belt for interactive usage. Metrics representing the belt are readily available together with scripts to render quality 3D images for publication. The Det.Belt server is a tool for biochemists to better grasp their sample.
Collapse
Affiliation(s)
- Veronica Zampieri
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, CEDEX 9, 38042 Grenoble, France;
| | - Cécile Hilpert
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Mélanie Garnier
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Yannick Gestin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Sébastien Delolme
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Guillaume Launay
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| |
Collapse
|
48
|
Pitch SG, Yao W, Szundi I, Fay J, Chen E, Shumate A, Kliger DS, Farrens DL. Functional integrity of membrane protein rhodopsin solubilized by styrene-maleic acid copolymer. Biophys J 2021; 120:3508-3515. [PMID: 34022241 DOI: 10.1016/j.bpj.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022] Open
Abstract
Membrane proteins often require solubilization to study their structure or define the mechanisms underlying their function. In this study, the functional properties of the membrane protein rhodopsin in its native lipid environment were investigated after being solubilized with styrene-maleic acid (SMA) copolymer. The static absorption spectra of rhodopsin before and after the addition of SMA were recorded at room temperature to quantify the amount of membrane protein solubilized. The samples were then photobleached to analyze the functionality of rhodopsin upon solubilization. Samples with low or high SMA/rhodopsin ratios were compared to find a threshold in which the maximal amount of active rhodopsin was solubilized from membrane suspensions. Interestingly, whereas the highest SMA/rhodopsin ratios yielded the most solubilized rhodopsin, the rhodopsin produced under these conditions could not reach the active (Meta II) state upon photoactivation. The results confirm that SMA is a useful tool for membrane protein research, but SMA added in excess can interfere with the dynamics of protein activation.
Collapse
Affiliation(s)
- Stephanie G Pitch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Weekie Yao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Jonathan Fay
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - David L Farrens
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
49
|
Cotrim CA, Jarrott RJ, Whitten AE, Choudhury HG, Drew D, Martin JL. Heterologous Expression and Biochemical Characterization of the Human Zinc Transporter 1 (ZnT1) and Its Soluble C-Terminal Domain. Front Chem 2021; 9:667803. [PMID: 33996761 PMCID: PMC8120272 DOI: 10.3389/fchem.2021.667803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Human zinc transporter 1 (hZnT1) belongs to the cation diffusion facilitator (CDF) family. It plays a major role in transporting zinc (Zn2+) from the cytoplasm across the plasma membrane and into the extracellular space thereby protecting cells from Zn2+ toxicity. Through homology with other CDF family members, ZnT1 is predicted to contain a transmembrane region and a soluble C-terminal domain though little is known about its biochemistry. Here, we demonstrate that human ZnT1 and a variant can be produced by heterologous expression in Saccharomyces cerevisiae cells and purified in the presence of detergent and cholesteryl hemisuccinate. We show that the purified hZnT1 variant has Zn2+/H+ antiporter activity. Furthermore, we expressed, purified and characterized the soluble C-terminal domain of hZnT1 (hZnT1-CTD) in a bacterial expression system. We found that the hZnT1-CTD melting temperature increases at acidic pH, thus, we used an acetate buffer at pH 4.5 for purifications and concentration of the protein up to 12 mg/mL. Small-angle X-ray scattering analysis of hZnT1-CTD is consistent with the formation of a dimer in solution with a V-shaped core.
Collapse
Affiliation(s)
- Camila A. Cotrim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Russell J. Jarrott
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Hassanul G. Choudhury
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Vice-Chancellor's Unit, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
50
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|