1
|
Chircov C, Petcu MC, Vasile BS, Purcăreanu B, Nicoară AI, Oprea OC, Popescu RC. Irinotecan-loaded magnetite-silica core-shell systems for colorectal cancer treatment. Int J Pharm 2024; 661:124420. [PMID: 38971512 DOI: 10.1016/j.ijpharm.2024.124420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems. The magnetite particles were obtained through a solvothermal treatment, while the silica shell was obtained through the Stöber method directly onto the surface of magnetite particles. Subsequently, the core-shell systems were physico-chemically and morpho-structurally evaluated trough X-ray diffraction (XRD) and (high-resolution) transmission electron microscopy ((HR-)TEM) equipped with a High Annular Angular Dark Field Detector (HAADF) for elemental mapping. After the irinotecan loading, the drug delivery systems were evaluated through Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and UV-Vis spectrophotometry. Additionally, the Brunauer-Emmett-Teller (BET) method was employed for determining the surface area and pore volume of the systems. The biological functionality of the core-shells was investigated through the MTT assay performed on both normal and cancer cells. The results of the study confirmed the formation of highly crystalline magnetite particles comprising the core and mesoporous silica layers of sizes varying between 2 and 7 nm as the shell. Additionally, the drug loading and release was dependent on the type of the silica synthesis procedure, since the lack of hexadecyltrimethylammonium bromide (CTAB) resulted in higher drug loading but lower cumulative release. Moreover, the nanostructured systems demonstrated a targeted efficiency towards HT-29 colorectal adenocarcinoma cells, as in the case of normal L929 fibroblast cells, the cell viability was higher than for the pristine drug. In this manner, this study provides the means and procedures for developing drug delivery systems with applicability in the treatment of cancer.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania.
| | - Mihai-Cătălin Petcu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania.
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania.
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania.
| | - Adrian Ionuț Nicoară
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania.
| | - Ovidiu Cristian Oprea
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania.
| | - Roxana Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Department of Life and Environmental Science, National Institute for R&D in Physics and Nuclear Engineering Horia Hulubei, 30 Reactorului, 077125 Magurele, Romania.
| |
Collapse
|
2
|
Jebari N, Dufour-Gergam E, Ammar M. 3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers. MICROMACHINES 2024; 15:936. [PMID: 39203587 PMCID: PMC11356042 DOI: 10.3390/mi15080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 09/03/2024]
Abstract
This study presents the design and comprehensive 3D multiphysics simulation of a novel microfluidic immunosensor for non-invasive, real-time detection of pro-inflammatory biomarkers in human sweat. The patch-like device integrates magnetofluidic manipulation of antibody-functionalized magnetic nanoparticles (MNPs) with direct-field capacitive sensing (DF-CS). This unique combination enhances sensitivity, reduces parasitic capacitance, and enables a more compact design compared to traditional fringing-field approaches. A comprehensive 3D multiphysics simulation of the device, performed using COMSOL Multiphysics, demonstrates its operating principle by analyzing the sensor's response to changes in the dielectric properties of the medium due to the presence of magnetic nanoparticles. The simulation reveals a sensitivity of 42.48% at 85% MNP occupancy within the detection zone, highlighting the sensor's ability to detect variations in MNP concentration, and thus indirectly infer biomarker levels, with high precision. This innovative integration of magnetofluidic manipulation and DF-CS offers a promising new paradigm for continuous, non-invasive health monitoring, with potential applications in point-of-care diagnostics, personalized medicine, and preventive healthcare.
Collapse
Affiliation(s)
- Nessrine Jebari
- Center for Nanosciences and Nanotechnology (C2N), CNRS UMR 9001, University of Paris-Saclay, 91120 Palaiseau, France
| | | | | |
Collapse
|
3
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
4
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
5
|
Mozooni Z, Mansouri N, Bafrani F, Kolahi AA, Movafagh A, Mirzaei HR. Molecular Characteristics of TYK2 Gene Expressions in Patients with Colorectal Cancer. Adv Biomed Res 2023; 12:255. [PMID: 38192889 PMCID: PMC10772794 DOI: 10.4103/abr.abr_440_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 01/10/2024] Open
Abstract
Background TYK2 is a member of the JAK family and is known to mediate signals of multiple cytokines that play a crucial role in immune and inflammatory signaling. Activation of TYK2 in tumor cells has been linked to promote cell survival, growth, and invasion. This study aimed to investigate the expression of tyrosine kinase 2 (TYK2) in colorectal cancer (CRC) and adjacent control tissues. Materials and Methods Quantitative Real-Time PCR (qRT-PCR) method was elaborated to examine the expression levels of TYK2 in 100 colorectal tumor tissues and adjacent tissues as a control. Furthermore, we analyzed the diagnostic power of the mentioned TYK2 by plotting the receiver operating characteristic (ROC) curve. Results Our results revealed that the expression level of TYK2 was significantly up-regulated in CRC patients sample compared to the adjacent sample of the control group. Analysis of patient's clinic pathological features shows that expressions TYK2 were differently associated with lymph vascular invasion and TMN stage (P < 0.0001, P < 0.0006). Conclusion These results indicated that TYK2 levels potential biomarkers for diagnosing colorectal cancer may be identified.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mansouri
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Freshteh Bafrani
- Department of Gastroenterology, Iran University of Medical Sciences, Tehran Iran
| | - Ali A. Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Al Faifi JJ, AlAradi MM, Alomar NA, AlMuqrin FF, AlKublan RM. Awareness and Acceptance of Digital Rectal Examination for the Clinical Evaluation of Anorectal Conditions Among the Saudi Population: A Cross-Sectional Study. Cureus 2023; 15:e41873. [PMID: 37581127 PMCID: PMC10423588 DOI: 10.7759/cureus.41873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Digital rectal examination (DRE) is an important diagnostic tool used by physicians to resolve several confusing clinical situations. The history and physical examination cannot be complete without performing a DRE. Any patient that presents with abdominal complaints (e.g., diarrhea, constipation, nausea, vomiting, abdominal or rectal pain, bleeding) needs a DRE which is important for detecting warning signs of serious conditions that require further investigation and evaluation such as malignancies. Therefore, our aim was to assess and measure the awareness of the Saudi population regarding the importance and acceptance to perform DRE. METHODS This cross-sectional study was conducted in Riyadh, the capital city of Saudi Arabia, using an online survey between September 2022 and March 2023; the targeted participants were adults between the ages of 18 to 75. RESULTS The study indicated that the general community awareness of DRE is low, with only 59.1% of participants having heard of DRE and 14.6% having undergone the procedure previously. The majority of individuals (60.9%) were willing to undergo DRE if a healthcare provider suggested it. Participants' knowledge of DRE's ability to detect various anorectal diseases varied. While the majority of individuals believed DRE could detect hemorrhoids, just 40.4% believed DRE could help detect colorectal cancer. Chronic constipation or diarrhea, feces-induced stretching, and prolonged sitting were the most oft-cited causes of hemorrhoids. Anemia was the most often reported consequence of hemorrhoids, followed by hypertension and diabetes. CONCLUSION The significance of DRE as a screening tool for the early detection and prevention of anorectal problems, as well as the need for adequate care and treatment of hemorrhoids to prevent complications, are highlighted by these findings. Healthcare practitioners should actively recommend and provide information about DRE and other screening technologies, as well as address their patients' concerns and misconceptions.
Collapse
Affiliation(s)
- Jubran J Al Faifi
- General Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Musaab M AlAradi
- General Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Naif A Alomar
- General Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Farah F AlMuqrin
- Medicine and Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Reem M AlKublan
- General Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| |
Collapse
|
7
|
Hanna M, Dey N, Grady WM. Emerging Tests for Noninvasive Colorectal Cancer Screening. Clin Gastroenterol Hepatol 2023; 21:604-616. [PMID: 36539002 PMCID: PMC9974876 DOI: 10.1016/j.cgh.2022.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is among the most common cancers globally and a major cause of cancer-related deaths. The American Cancer Society estimates that CRC will kill 1 in 60 Americans, and CRC screening is recommended for all Americans ≥45 years of age. Current CRC screening methods are effective for preventing CRC and have been shown to reduce CRC-related mortality. However, none of the currently available tests is ideal, and many people are not compliant with screening recommendations. Novel screening tests based on advances in CRC molecular biology, genetics, and epigenetics, combined with developments in sequencing technologies and computational analytic methods, have been developed to address the shortcomings of current CRC screening tests. These emerging tests include blood-based assays that use plasma-derived circulating tumor DNA and serum proteins to detect early CRC and advanced adenomas, assays that use stool DNA or mRNA, and methods for profiling the gut microbiome. Here we review current screening modalities, and we discuss the principles behind the most promising emerging CRC screening tests and the data supporting their potential to be used in clinical practice.
Collapse
Affiliation(s)
- Marina Hanna
- Department of Medicine, University of Washington, Seattle, Washington
| | - Neelendu Dey
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - William M Grady
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
8
|
Quantitative Metabolomics to Explore the Role of Plasma Polyamines in Colorectal Cancer. Int J Mol Sci 2022; 24:ijms24010101. [PMID: 36613539 PMCID: PMC9820724 DOI: 10.3390/ijms24010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major public health and socio-economic problems, which management demands the development of non-invasive screening tests. Assessment of circulating polyamines could be a valuable tool, although analytical problems still preclude its clinical practice. We exploited ultra-high-resolution liquid chromatography and mass spectrometry, as a highly sensitive and innovative method, to profile eleven polyamines, including spermine and spermidine with their acetylated forms. These data together with an evaluation of the inflammatory indexes might represent suitable biomarkers for the identification of CRC patients. The statistical models revealed good discrimination in distinguishing CRC patients from healthy subjects. The plasma assessment of ornithine and acetylspermine, as well as lymphocyte/platelet ratio, revealed helpful information on the progression of CRC. The combined profiles of circulating polyamines and inflammatory indexes, together with the application of an innovative technology, could represent a valuable tool for discriminating patients from different clinical groups.
Collapse
|
9
|
Siri G, Alesaeidi S, Dizghandi SE, Alani B, Mosallaei M, Soosanabadi M. Analysis of SDC2 gene promoter methylation in whole blood for noninvasive early detection of colorectal cancer. J Cancer Res Ther 2022; 18:S354-S358. [PMID: 36510988 DOI: 10.4103/jcrt.jcrt_1072_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objectives Considering the limitations of the current approaches to colorectal cancer (CRC) screening, scientists strived to find noninvasive and more powerful biomarkers for the early diagnosis of CRC. Nowadays, there are different sources of biomarkers for CRC diagnosis. Blood-based samples including circulating cell-free tumor DNA (ctDNA) and DNA extracted from leukocytes in peripheral blood might be promising sources of noninvasive cancer biomarkers such as cancer-specific methylation patterns. In this study, we aimed to evaluate the noninvasive early diagnosis of CRC via quantitative promotor methylation analysis of SDC2 gene in whole blood. Materials and Methods Sixty-five CRC patients and 65 healthy participants were enrolled to assess promoter methylation of SDC2 gene in whole blood using the methylation quantification endonuclease-resistant DNA (MethyQESD) technique. Results Our findings demonstrated drastic hypermethylation of SDC2 in blood samples from CRC subjects (37.91%) compared with non-malignant individuals (17.02%) (P < 0.001). The sensitivity for detection of CRC by methylation of SDC2 was 81.54%, with a specificity of 69.23%. The ROC curve analysis demonstrated that the AUC was 0.847 (P < 0.001), indicating that the status of SDC2 promoter methylation in whole blood is an excellent biomarker of CRC diagnosis. Furthermore, our results showed that methylation level in CRC patients significantly increased in higher tumor stages, demonstrating that an increased percentage of methylation is correlated with tumor progression (P < 0.001). Conclusion SDC2 promoter methylation status in blood samples is a valuable cancer biomarker and holds high power and accuracy in distinguishing CRC patients from healthy subjects in the early stages of the disease.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Alesaeidi
- Department of Rheumatology and Internal Medicine, Rheumatology Research Center, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Mosallaei
- School of Medicine, Aja University of Medical Science, Tehran; Department of Medical Genetics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences; Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|