1
|
Tsiftsis S, Štípková Z, Rejmánek M, Kindlmann P. Predictions of species distributions based only on models estimating future climate change are not reliable. Sci Rep 2024; 14:25778. [PMID: 39468261 PMCID: PMC11519670 DOI: 10.1038/s41598-024-76524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Changes in climate and land use are the most often mentioned factors responsible for the current decline in species diversity. To reduce the effect of these factors, we need reliable predictions of future species distributions. This is usually done by utilizing species distribution models (SDMs) based on expected climate. Here we explore the accuracy of such projections: we use orchid (Orchidaceae) recordings and environmental (mainly climatic) data from the years 1901-1950 in SDMs to predict maps of potential species distributions in 1980-2014. This should enable us to compare the predictions of species distributions in 1980-2014, based on records of species distribution in the years 1901-1950, with real data in the 1980-2014 period. We found that the predictions of the SDMs often differ from reality in this experiment. The results clearly indicate that SDM predictions of future species distributions as a reaction to climate change must be treated with caution.
Collapse
Affiliation(s)
- Spyros Tsiftsis
- Department of Forest and Natural Environment Sciences, Democritus University of Thrace, 66132, Drama, Greece.
| | - Zuzana Štípková
- Global Change Research Institute AS CR, Bělidla 986/4a, 60300, Brno, Czech Republic
| | - Marcel Rejmánek
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Pavel Kindlmann
- Global Change Research Institute AS CR, Bělidla 986/4a, 60300, Brno, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic
| |
Collapse
|
2
|
Braz Pires M, Kougioumoutzis K, Norder S, Dimopoulos P, Strid A, Panitsa M. The future of plant diversity within a Mediterranean endemism centre: Modelling the synergistic effects of climate and land-use change in Peloponnese, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174622. [PMID: 38992359 DOI: 10.1016/j.scitotenv.2024.174622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Climate- and land-use change stand as primary threats to terrestrial biodiversity. Yet, their synergistic impacts on species distributions remain poorly understood. To address this knowledge gap, we conducted the first-ever comprehensive species distribution analysis on an entire regional endemism centre within an eastern Mediterranean country, incorporating dynamic land-use/land-cover change data together with climate change scenarios. Specifically, we apply species distribution modelling and spatial data analysis techniques to compare the individual and synergistic effects of these environmental drivers on the endemic vascular flora of Peloponnese, focusing on potential range contractions, altitudinal shifts, and habitat fragmentation levels. Moreover, we identify fine-scale present and potential future endemism hotspots within our study area, incorporating taxonomic and phylogenetic information. Overall, we aim to enhance our current understanding of endemism patterns and contribute to the development of future-proof conservation strategies for safeguarding Greece's endangered endemic flora. The integration of land-use change projections with climate change yielded less severe impacts compared to the effects anticipated when considering climatic variables alone. Most taxa are expected to undergo significant range declines and nearly half might experience increased habitat fragmentation, due to the synergistic effects of climate- and land-use change. We identified endemism hotspots, which are concentrated in or along the main Peloponnesian mountain massifs. However, our predictions indicate that areas presently recognized as endemism hotspots will undergo a concerning area decline, across all future scenarios considered in this study. Our findings highlight the importance of including dynamic land-use variables alongside climatic predictors when projecting species distributions under global change. Moreover, we showed that endemism hotspots are not static and considering their potential geographic shifts is paramount to delineate effective forward-looking conservation strategies.
Collapse
Affiliation(s)
- Mariana Braz Pires
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | | | - Sietze Norder
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
3
|
Kougioumoutzis K, Constantinou I, Panitsa M. Rising Temperatures, Falling Leaves: Predicting the Fate of Cyprus's Endemic Oak under Climate and Land Use Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:1109. [PMID: 38674518 PMCID: PMC11053427 DOI: 10.3390/plants13081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Endemic island species face heightened extinction risk from climate-driven shifts, yet standard models often underestimate threat levels for those like Quercus alnifolia, an iconic Cypriot oak with pre-adaptations to aridity. Through species distribution modelling, we investigated the potential shifts in its distribution under future climate and land-use change scenarios. Our approach uniquely combines dispersal constraints, detailed soil characteristics, hydrological factors, and anticipated soil erosion data, offering a comprehensive assessment of environmental suitability. We quantified the species' sensitivity, exposure, and vulnerability to projected changes, conducting a preliminary IUCN extinction risk assessment according to Criteria A and B. Our projections uniformly predict range reductions, with a median decrease of 67.8% by the 2070s under the most extreme scenarios. Additionally, our research indicates Quercus alnifolia's resilience to diverse erosion conditions and preference for relatively dry climates within a specific annual temperature range. The preliminary IUCN risk assessment designates Quercus alnifolia as Critically Endangered in the future, highlighting the need for focused conservation efforts. Climate and land-use changes are critical threats to the species' survival, emphasising the importance of comprehensive modelling techniques and the urgent requirement for dedicated conservation measures to safeguard this iconic species.
Collapse
Affiliation(s)
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (K.K.); (I.C.)
| |
Collapse
|
4
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Boi ME, Fois M, Podda L, Porceddu M, Bacchetta G. Using Mediterranean Native Plants for the Phytoremediation of Mining Sites: An Overview of the Past and Present, and Perspectives for the Future. PLANTS (BASEL, SWITZERLAND) 2023; 12:3823. [PMID: 38005720 PMCID: PMC10674270 DOI: 10.3390/plants12223823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Mining exploitation in the Mediterranean Basin has left evident scars on the environment, and poses serious risks for human health and biodiversity, especially when mine wastes are left abandoned. This review analysed the main issues of metal(loid)s pollution related to mine exploitation in the Mediterranean Basin. Here, a list of Mediterranean native plant species studied for phytoremediation is given and, considering their biological forms, vegetational types, and ecology, we categorised them into halotolerant and hydro/hygrophilous vegetation, annual and perennial meadows, garrigues and maquis, and high maquis and woods. The main conclusions of the review are as follows: (1) plant communities established on mine environments are often rich in endemic taxa which ensure a high biodiversity and landscape value, and can help in the psychophysical health of local inhabitants; (2) political and land management should take greater account of the use of native plants for the remediation of contaminated soils; (3) a multidisciplinary approach that includes, among others, studies on biochemical response to metal(loid)s as well as the application of innovative soil amendments gives better results; (4) phytoextraction applications require a detailed recovery plan that takes into consideration several issues, including the negative influence on biodiversity due to extensive use of monotypic plantations, disposal of harvested hazardous plants, and the risk of phytoextracts entering the food chain; and (5) more studies are necessary to increase knowledge and to detect suitable species-especially halophytic ones-for phytoremediation purposes.
Collapse
Affiliation(s)
| | - Mauro Fois
- Sardinian Germplasm Bank (BG-SAR), Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (M.E.B.); (L.P.); (M.P.); (G.B.)
| | | | | | | |
Collapse
|
6
|
Delgado A, Gonçalves S, Romano A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023; 12:foods12040840. [PMID: 36832914 PMCID: PMC9957056 DOI: 10.3390/foods12040840] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Today's global food system aggravates climate change while failing in meeting SDG2 and more. Yet, some sustainable food cultures, such as the Mediterranean Diet (MD), are simultaneously safe, healthy, and rooted in biodiversity. Their wide range of fruits, herbs, and vegetables convey many bioactive compounds, often associated with colour, texture, and aroma. Phenolic compounds are largely responsible for such features of MD's foods. These plant secondary metabolites all share in vitro bioactivities (e.g., antioxidants), and some are evidenced in vivo (e.g., plant sterols lower cholesterol levels in blood). The present work examines the role of polyphenols in the MD, with respect to human and planetary health. Since the commercial interest in polyphenols is increasing, a strategy for the sustainable exploitation of Mediterranean plants is essential in preserving species at risk while valuing local cultivars (e.g., through the geographical indication mechanism). Finally, the linkage of food habits with cultural landscapes, a cornerstone of the MD, should enable awareness-raising about seasonality, endemism, and other natural constraints to ensure the sustainable exploitation of Mediterranean plants.
Collapse
Affiliation(s)
- Amélia Delgado
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Gonçalves
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
7
|
Zhang X, Ci X, Hu J, Bai Y, Thornhill AH, Conran JG, Li J. Riparian areas as a conservation priority under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159879. [PMID: 36334670 DOI: 10.1016/j.scitotenv.2022.159879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Identifying climatic refugia is important for long-term conservation planning under climate change. Riparian areas have the potential to provide climatic refugia for wildlife, but literature remains limited, especially for plants. This study was conducted with the purpose of identifying climatic refugia of plant biodiversity in the portion of the Mekong River Basin located in Xishuangbanna, China. We first predicted the current and future (2050s and 2070s) potential distribution of 50 threatened woody species in Xishuangbanna by using an ensemble of small models, then stacked the predictions for individual species to derive spatial biodiversity patterns within each 10 × 10 km grid cell. We then identified the top 17 % of the areas for spatial biodiversity patterns as biodiversity hotspots, with climatic refugia defined as areas that remained as biodiversity hotspots over time. Stepwise regression and linear correlation were applied to analyze the environmental correlations with spatial biodiversity patterns and the relationships between climatic refugia and river distribution, respectively. Our results showed potential upward and northward shifts in threatened woody species, with range contractions and expansions predicted. The spatial biodiversity patterns shift from southeast to northwest, and were influenced by temperature, precipitation, and elevation heterogeneity. Climatic refugia under climate change were related closely to river distribution in Xishuangbanna, with riparian areas identified that could provide climatic refugia. These refugial zones are recommended as priority conservation areas for mitigating the impacts of climate change on biodiversity. Our study confirmed that riparian areas could act as climatic refugia for plants and emphasizes the conservation prioritization of riparian areas within river basins for protecting biodiversity under climate change.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| | - Jianlin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan 666303, China
| | - Andrew H Thornhill
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia; State Herbarium of South Australia, Botanic Garden and State Herbarium, Department for Environment and Water, Hackney Road, Adelaide, South Australia 5001, Australia
| | - John G Conran
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| |
Collapse
|
8
|
Kougioumoutzis K, Trigas P, Tsakiri M, Kokkoris IP, Koumoutsou E, Dimopoulos P, Tzanoudakis D, Iatrou G, Panitsa M. Climate and Land-Cover Change Impacts and Extinction Risk Assessment of Rare and Threatened Endemic Taxa of Chelmos-Vouraikos National Park (Peloponnese, Greece). PLANTS (BASEL, SWITZERLAND) 2022; 11:3548. [PMID: 36559660 PMCID: PMC9784511 DOI: 10.3390/plants11243548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chelmos-Vouraikos National Park is a floristic diversity and endemism hotspot in Greece and one of the main areas where Greek endemic taxa, preliminary assessed as critically endangered and threatened under the IUCN Criteria A and B, are mainly concentrated. The climate and land-cover change impacts on rare and endemic species distributions is more prominent in regional biodiversity hotspots. The main aims of the current study were: (a) to investigate how climate and land-cover change may alter the distribution of four single mountain endemics and three very rare Peloponnesian endemic taxa of the National Park via a species distribution modelling approach, and (b) to estimate the current and future extinction risk of the aforementioned taxa based on the IUCN Criteria A and B, in order to investigate the need for designing an effective plant micro-reserve network and to support decision making on spatial planning efforts and conservation research for a sustainable, integrated management. Most of the taxa analyzed are expected to continue to be considered as critically endangered based on both Criteria A and B under all land-cover/land-use scenarios, GCM/RCP and time-period combinations, while two, namely Alchemilla aroanica and Silene conglomeratica, are projected to become extinct in most future climate change scenarios. When land-cover/land-use data were included in the analyses, these negative effects were less pronounced. However, Silene conglomeratica, the rarest mountain endemic found in the study area, is still expected to face substantial range decline. Our results highlight the urgent need for the establishment of micro-reserves for these taxa.
Collapse
Affiliation(s)
| | - Panayiotis Trigas
- Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Maria Tsakiri
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Eleni Koumoutsou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Dimitris Tzanoudakis
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Gregoris Iatrou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
9
|
Zikos A, Constantinidis T. Plant Diversity of Mts. Oligirtos and Farmakas (NE Peloponnisos, Greece) with Emphasis on Their Endemic Flora. PLANTS (BASEL, SWITZERLAND) 2022; 11:2649. [PMID: 36235515 PMCID: PMC9572623 DOI: 10.3390/plants11192649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Greece is known to be a biodiversity hotspot. Though the plant diversity of Peloponnisos, the southernmost part of the Greek mainland, has been well-studied during the past 200 years, there are still gaps in our knowledge. To this end, the flora of the neighboring mountains Oligirtos and Farmakas was investigated, with a total of 740 and 762 taxa (species and subspecies) recorded, respectively, of which 635 and 756 for the first time. Ten species or subspecies were previously not known from Peloponnisos. Endemics correspond to 10.2% and 8.9% of the total flora and are predominately hemicryptophytes and entomogamous. Almost half of them produce capsules. The number of endemics per 2 × 2 km grid cell reveals that their highest number is found in areas of high elevation, and corresponds to habitats above the tree line, or to the limestone cliffs vegetation. No less than 62 endemic plant taxa of Mt. Oligirtos and 58 of Mt. Farmakas are threatened. A comparison of Mts. Oligirtos and Farmakas with five neighboring mountains shows that elevation correlates positively with the number of regional or bi-regional endemics but not with local or narrow endemics. The importance of mountainous regions for plant conservation is stressed.
Collapse
|
10
|
Mota FMM, Heming NM, Morante‐Filho JC, Talora DC. Climate change is expected to restructure forest frugivorous bird communities in a biodiversity hot‐point within the Atlantic Forest. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Flávio Mariano Machado Mota
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - Neander Marcel Heming
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - José Carlos Morante‐Filho
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - Daniela Custódio Talora
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| |
Collapse
|
11
|
Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. SUSTAINABILITY 2022. [DOI: 10.3390/su14148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Forests host important plant biodiversity. Nevertheless, due to climate change and human disturbances, the floristic quality of forest ecosystems is degraded. Greek peri-urban forests biodiversity is threatened by anthropogenic activities such as forest fragmentation, pollution, garbage, etc. Measurement of biodiversity status and the floristic quality assessment can be used to estimate the degree of forest degradation caused by anthropogenic disturbances. In this study, we compared and evaluated six forest ecosystem types in the peri-urban forests of Thessaloniki, northern Greece, by using Shannon’s biodiversity index as well as and α and β diversity Sørensen indices. Furthermore, we recorded the prevailing anthropogenic disturbances and compared the plant families and the ruderal species appearing in each forest ecosystem. Finally, the average conservatism value (C value) of the plant species found in each ecosystem was determined in order to calculate the ecosystem floristic quality index. Analysis of the results showed that the floristic and ecological parameters tested greatly vary among ecosystems. Broadleaf forests of higher altitude hosted the greatest biodiversity, and the higher floristic quality index and plant conservation value. On the contrary, most disturbances and most ruderal species were recorded in ecosystems of lower altitude, adjacent to the city (Pinus brutia forest and Maqui vegetation), the least disturbed ecosystems were found in the steep slopes (Castanea sativa forest). Most ruderal species found belonged to the Asteraceae and Rosaceae families. Accessibility and attractiveness of stands were positively correlated with disturbances. Insufficient management, lack of protection measures, and littering removal contribute to the increase in the level of disturbance.
Collapse
|
12
|
Benítez-Benítez C, Sanz-Arnal M, Urbani M, Jiménez-Mejías P, Martín-Bravo S. Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ 2022; 10:e13464. [PMID: 35669962 PMCID: PMC9165605 DOI: 10.7717/peerj.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Anticipating the evolutionary responses of species to ongoing climate change is essential to propose effective management and conservation measures. The Western Mediterranean Basin constitutes one of the hotspots of biodiversity where the effects of climate change are expected to be more dramatic. Plant species with ecological relevance constitute ideal models to evaluate and predict the impact of climate change on ecosystems. Here we investigate these impacts through the spatio-temporal comparison of genetic diversity/structure (AFLPs), potential distribution under different future scenarios of climate change, and ecological space in two Western Mediterranean sister species of genus Carex. Both species are ecologically key in their riparian habitats, but display contrasting distribution patterns, with one widespread in the Iberian Peninsula and North Africa (C. reuteriana), while the other (C. panormitana) is a restricted, probably endangered, Central Mediterranean endemic. At present, we found a strong genetic structure driven by geography in both species, and lower values of genetic diversity and a narrower ecological space in C. panormitana than in C. reuteriana, while the allelic rarity was higher in the former than in C. reuteriana subspecies. Future projections predict an overall dramatic reduction of suitable areas for both species under all climate change scenarios, which could be almost total for C. panormitana. In addition, gene diversity was inferred to decrease in all taxa, with genetic structure reinforcing in C. reuteriana by the loss of admixture among populations. Our findings stress the need for a reassessment of C. panormitana conservation status under IUCN Red List criteria and the implementation of conservation measures.
Collapse
Affiliation(s)
- Carmen Benítez-Benítez
- Department of Molecular Biology and Biochemical Engineering/Botany Area, Universidad Pablo de Olavide, Seville, Seville, Spain
| | - María Sanz-Arnal
- Department of Biology, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Madrid, Spain
| | - Malvina Urbani
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Sardinia, Italy
| | - Pedro Jiménez-Mejías
- Department of Biology, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Madrid, Spain
| | - Santiago Martín-Bravo
- Department of Molecular Biology and Biochemical Engineering/Botany Area, Universidad Pablo de Olavide, Seville, Seville, Spain
| |
Collapse
|
13
|
Assessing the Ecosystem Services Potential of Endemic Floras: A Systematic Review on the Greek Endemics of Peloponnese. SUSTAINABILITY 2022. [DOI: 10.3390/su14105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the interest in new, natural, sustainable products arises in many fields, wild plants are reconsidered as providers of traditional or innovative applications. The notion of ecosystem services (ES) provides a frame to evaluate their benefits, but is still scarcely applied to endemic floras. The present study reviews the available literature on the ES provided by the 494 taxa endemic to Greece that are present in Peloponnese. Six main categories are isolated: medical, aromatic, folk medicine, antimicrobial, environmental and craftsmanship interests. The literature documents such ES for 24.7% of the endemic taxa, with Lamiaceae, Asteraceae and Boraginaceae as the families with the highest numbers of documented taxa. Spatial hotspots with a high density in taxa providing ES are mapped, while gaps of knowledge on the ES of endemic taxa are highlighted. For the first time, to our knowledge, taxonomic and phylogenetic bounds between taxa are exploited as a base to explore potential properties for endemic taxa. The basis for the development of predictive tools utilizing literature review datasets is set. Final outcomes also provide robust scientific evidence to support decision and policy making for the sustainable use and management of rural areas. The development of cultivation areas for threatened taxa of interest is suggested as a potent conservation measure, by selecting fields according to habitat suitability models.
Collapse
|
14
|
Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece. SUSTAINABILITY 2022. [DOI: 10.3390/su14074269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The ongoing climate change has already left its imprint on species distributions, with rare, endemic species being more threatened. These changes are more prominent in regional biodiversity hotspots, such as Greece, which is already facing the short term impacts of human induced climate change. Greek flora hosts numerous endemic medicinal and aromatic plant taxa (MAPs), which are economically important and provide integral ecosystem services. The genus Nepeta is one of the largest Lamiaceae genera, containing several MAPs, yet, despite its taxonomical and economical significance, it remains vastly understudied in Greece. We explore the effects of climate change on the range of the Greek endemic Nepeta MAPs, via a species distribution models (SDMs) approach in an ensemble modeling framework, using soil, topographical and bioclimatic variables as predictors in three different time steps. By doing so, we attempt to estimate the current and future extinction risk of these taxa and to locate their current and future species richness hotspots in Greece. The taxa analyzed are expected to experience severe range retractions, with minor intraspecific variation across all time steps (p > 0.05), driven mainly by soil- and aridity-related variables. The extinction risk status of only one taxon is predicted to worsen in the future, while all other taxa will remain threatened. Current species richness hotspots are mainly located in southern Greece and are projected to shift both altitudinally and latitudinally over time (p < 0.01).
Collapse
|
15
|
Assessing Climate Change Impacts on Island Bees: The Aegean Archipelago. BIOLOGY 2022; 11:biology11040552. [PMID: 35453751 PMCID: PMC9030098 DOI: 10.3390/biology11040552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Pollinators’ climate change impact assessments focus mainly on mainland regions. Thus, we are unaware how island species might fare in a rapidly changing world. This is even more pressing in the Mediterranean Basin, a global biodiversity hotspot. In Greece, a regional pollinator hotspot, climate change research is in its infancy and the insect Wallacean shortfall still remains unaddressed. In a species distribution modelling framework, we used the most comprehensive occurrence database for bees in Greece to locate the bee species richness hotspots in the Aegean, and investigated whether these might shift in the future due to climate change and assessed the Natura 2000 protected areas network effectiveness. Range contractions are anticipated for most taxa, becoming more prominent over time. Species richness hotspots are currently located in the NE Aegean and in highly disturbed sites. They will shift both altitudinally and latitudinally in the future. A small proportion of these hotspots are currently included in the Natura 2000 protected areas network and this proportion is projected to decrease in the coming decades. There is likely an extinction debt present in the Aegean bee communities that could result to pollination network collapse. There is a substantial conservation gap in Greece regarding bees and a critical re-assessment of the established Greek protected areas network is needed, focusing on areas identified as bee diversity hotspots over time.
Collapse
|
16
|
Do Spatially Structured Soil Variables Influence the Plant Diversity in Tabuk Arid Region, Saudi Arabia? SUSTAINABILITY 2022. [DOI: 10.3390/su14052611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant diversity is affected by spatial variables as well as soil physical and chemical variables. In this study, plant species and soil variables were investigated in five sites of Tabuk Province (Saudi Arabia), namely Aldesah, Alzetah, Alawz, Harra and Sharma, to understand if the spatially structured soil variables (pH, electric conductivity (EC), soil texture, calcium, potassium, phosphorus, phosphate, total organic matter (OM), bicarbonate and sodium) influence the plant diversity. A total of 163 plant species belong to 41 families and 124 genera were reported from the 5 sites. Diversity indices including the species richness (alpha), evenness, Brillouin, Menhinick, Margalef, equitability and estimated Chao-1 were significantly different among the studied sites with pronounced high values in Sharma and Aldesah. The highest value of beta diversity was reported in Aldesah (0.253) followed by Sharma (0.171). According to the principal coordinates of neighbourhood matrix (PCNM) analysis, 11 positive spatial vectors (variables) were found. However, after running the forward selection procedures (using 2 stopping criteria), only 3 spatial vectors were retained (PCNM 1 (adj–R2 = 0.043, F = 5.201, p = 0.004), PCNM 2 (adj–R2 = 0.027, F = 3.97, p = 0.006) and PCNM 3 (adj–R2 = 0.019, F = 3.36, p = 0.007)). The linear models between the selected spatial variables (PCNM vectors) and soil variables were produced to investigate their spatial structure. In the first model, the first PCNM 1 axis showed significant relationship with pH and potassium (adj–R2 = 0.175, p = 0.046). In the second model, the second PCNM 2 axis had a significant relationship with OM and sodium (adj–R2 = 0.561, p < 0.001). Lastly, sodium was the only factor significantly correlated with the third PCNM 3 axis (adj–R2 = 0.365, p = 0.002). In conclusion, the spatially structured variables of soil did not show strong influence on plant diversity except pH and potassium, which were correlated with PCNM 1, OM and sodium, which were correlated with PCNM 2, and sodium, which was correlated with PCNM 3.
Collapse
|
17
|
Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations. SUSTAINABILITY 2021. [DOI: 10.3390/su132413778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human-induced climate- and land-use change have been affecting biogeographical and biodiversity patterns for the past two centuries all over the globe, resulting in increased extinction and biotic homogenization rates. High mountain ecosystems are more sensitive to these changes, which have led to physiological and phenological shifts, as well as to ecosystem processes’ deformation. Glacial relicts, such as arctic-alpine taxa, are sensitive indicators of the effects of global warming and their rear-edge populations could include warm-adapted genotypes that might prove—conservation-wise—useful in an era of unprecedented climate regimes. Despite the ongoing thermophilization in European and Mediterranean summits, it still remains unknown how past and future climate-change might affect the distributional patterns of the glacial relict, arctic-alpine taxa occurring in Greece, their European southernmost distributional limit. Using species distribution models, we investigated the impacts of past and future climate changes on the arctic-alpine taxa occurring in Greece and identified the areas comprising arctic-alpine biodiversity hotspots in Greece. Most of these species will be faced with severe range reductions in the near future, despite their innate resilience to a multitude of threats, while the species richness hotspots will experience both altitudinal and latitudinal shifts. Being long-lived perennials means that there might be an extinction-debt present in these taxa, and a prolonged stability phase could be masking the deleterious effects of climate change on them. Several ex situ conservation measures (e.g., seed collection, population augmentation) should be taken to preserve the southernmost populations of these rare arctic-alpine taxa and a better understanding of their population genetics is urgently needed.
Collapse
|
18
|
Tomou EM, Skaltsa H, Economou G, Trichopoulou A. Sustainable diets & medicinal aromatic plants in Greece: Perspectives towards climate change. Food Chem 2021; 374:131767. [PMID: 34922164 DOI: 10.1016/j.foodchem.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
In recent years, climate change continuously concerns the scientific community about its effects on agrobiodiversity, food safety and human health. Remodeling to sustainable diets and lifestyles is proved to be the most radical need to tackle this grave phenomenon. The goals of this commentary are to present the Greek traditional Mediterranean diet as a principal sustainable diet, to emphasize the role of Medicinal and Aromatic Plants in Greece as indispensable components of this healthy dietary pattern, and to discuss the potential results of climate change at their phytochemical content. Moreover, the impact of climate challenge at the occurrence of Greek MAPs and their survival is also described. Multiple approaches for addressing this challenge are proposed, as well as recommendations for specific actions with a focus on Greek traditional Mediterranean diet and MAPs of Greece.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece.
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece
| | - Garyfalia Economou
- Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 11527 Athens, Greece; School of Medicine, National and Kapodistrian University of Athens, 75 M. Asias Street, Goudi, 11527 Athens, Greece
| |
Collapse
|
19
|
Rivera SN, Fortini LB, Plentovich S, Price MR. Perceived Barriers to the Use of Assisted Colonization for Climate Sensitive Species in the Hawaiian Islands. ENVIRONMENTAL MANAGEMENT 2021; 68:329-339. [PMID: 34160659 PMCID: PMC8384802 DOI: 10.1007/s00267-021-01491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Conservation actions to safeguard climate change vulnerable species may not be utilized due to a variety of perceived barriers. Assisted colonization, the intentional movement and release of an organism outside its historical range, is one tool available for species predicted to lose habitat under future climate change scenarios, particularly for single island or single mountain range endemic species. Despite the existence of policies that allow for this action, to date, assisted colonization has rarely been utilized for species of conservation concern in the Hawaiian Islands. Given the potential for climate driven biodiversity loss, the Hawaiian Islands are a prime location for the consideration of adaptation strategies. We used first-person interviews with conservation decision makers, managers, and scientists who work with endangered species in the Hawaiian Islands to identify perceived barriers to the use of assisted colonization. We found that assisted colonization was often not considered or utilized due to a lack of expertize with translocations; ecological risk and uncertainty, economic constraints, concerns regarding policies and permitting, concerns with public perception, and institutional resistance. Therefore, conservation planners may benefit from decision tools that integrate risk and uncertainty into decision models, and compare potential outcomes among conservation actions under consideration, including assisted colonization. Within a decision framework that addresses concerns, all conservation actions for climate sensitive species, including assisted colonization, may be considered in a timely manner.
Collapse
Affiliation(s)
- Shannon N Rivera
- University of Hawai'i at Mānoa, 1910 East-West Road, Honolulu, HI, 96822, USA.
| | - Lucas Berio Fortini
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, 1845 Wasp Blvd, Bldg 176, Honolulu, HI, 96818, USA
| | - Sheldon Plentovich
- U. S. Fish and Wildlife Service, Pacific Islands Coastal Program, 300 Ala Moana Blvd, Rm 3-122, Honolulu, HI, 96850, USA
| | - Melissa R Price
- University of Hawai'i at Mānoa, 1910 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
20
|
Abstract
Protected areas, such as natural World Heritage sites, RAMSAR wetlands and Biosphere Reserves, are ecosystems within landscapes. Each site meets certain criteria that allow it to qualify as a heritage or protected area. Both climate change and human influence (e.g., incursion, increased tourist visitation) are altering biophysical conditions at many such sites. As a result, conditions at many sites are falling outside the criteria for their original designation. The alternatives are to change the criteria, remove protection from the site, change site boundaries such that the larger or smaller landscape meets the criteria, or manage the existing landscape in some way that reduces the threat. This paper argues for adaptive heritage, an approach that explicitly recognizes changing conditions and societal value. We discuss the need to view heritage areas as parts of a larger landscape, and to take an adaptive approach to the management of that landscape. We offer five themes of adaptive heritage: (1) treat sites as living heritage, (2) employ innovative governance, (3) embrace transparency and accountability, (4) invest in monitoring and evaluation, and (5) manage adaptively. We offer the Australian Wet Tropics as an example where aspects of adaptive heritage currently are practiced, highlighting the tools being used. This paper offers guidance supporting decisions about natural heritage in the face of climate change and non-climatic pressures. Rather than delisting or lowering standards, we argue for adaptive approaches.
Collapse
|
21
|
Panitsa M, Kokkoris IP, Kougioumoutzis K, Kontopanou A, Bazos I, Strid A, Dimopoulos P. Linking Taxonomic, Phylogenetic and Functional Plant Diversity with Ecosystem Services of Cliffs and Screes in Greece. PLANTS 2021; 10:plants10050992. [PMID: 34067537 PMCID: PMC8156371 DOI: 10.3390/plants10050992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Sparsely vegetated habitats of cliffs and screes act as refugia for many regional and local endemic specialized plant taxa most of which have evolved precisely for that type of habitat. The interplay between taxonomic, phylogenetic, and functional plant diversity on rock and scree habitats of extreme environmental conditions, enlightens the relations of plant communities and ecosystems and facilitates management planning for the conservation of biodiversity and ecosystem services. The identification of biodiversity patterns and hotspots (taxonomic, phylogenetic, and functional) contributes to the integration of the ecosystem services (ES) approach for the mapping and assessment of ecosystems and their services (MAES) implementation in Greece and the creation of thematic maps based on the MAES reporting format. The overlap among the protected areas’ network revealed that almost all areas of cliffs and screes of medium, high, and very high taxonomic and phylogenetic plant endemism are included in the Natura 2000 area network. The results of this study provide the baseline information for ES assessments at sparsely vegetated land of cliffs and screes. Our results contribute to the implementation of certain indicators of the national set of MAES indicators in Greece such as (a) floristic diversity and (b) microrefugia of endemic diversity and support of decision-making.
Collapse
Affiliation(s)
- Maria Panitsa
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Correspondence: (M.P.); (P.D.)
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
| | - Konstantinos Kougioumoutzis
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece;
| | - Anna Kontopanou
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
| | - Ioannis Bazos
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece;
| | | | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Correspondence: (M.P.); (P.D.)
| |
Collapse
|
22
|
Conservation Genetics of Four Critically Endangered Greek Endemic Plants: A Preliminary Assessment. DIVERSITY 2021. [DOI: 10.3390/d13040152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Mediterranean basin constitutes one of the largest global biodiversity hotspots, hosting more than 11,000 endemic plants, and it is recognised as an area with a high proportion of threatened taxa. Nevertheless, only a tiny fraction of the threatened Mediterranean endemics have their genetic diversity assessed, and we are unaware if and how climate change might impact their conservation status. This is even more pronounced in Eastern Mediterranean countries with a rich endemic flora, such as Greece, which hosts a large portion of the plant taxa assessed at the European level under the IUCN criteria. Using inter simple sequence repeats (ISSR) markers and species distribution models, we analysed the genetic diversity and investigated the impacts of climate change on four critically endangered and extremely narrow and rare Greek island endemic plants, namely Aethionema retsina, Allium iatrouinum, Convolvulus argyrothamnos, and Saponaria jagelii. All four species are facing intense anthropogenic threats and display moderate genetic diversity (uHe: 0.254–0.322), while climate change is expected to have a profound impact on their range size during the coming decades. A combination of in- and ex-situ measures, such as population reinforcement and seed bank conservation, are urgently needed in order to preserve these highly threatened and rare Greek endemics.
Collapse
|
23
|
Kougioumoutzis K, Kokkoris IP, Panitsa M, Strid A, Dimopoulos P. Extinction Risk Assessment of the Greek Endemic Flora. BIOLOGY 2021; 10:195. [PMID: 33806693 PMCID: PMC7999807 DOI: 10.3390/biology10030195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/24/2023]
Abstract
Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.
Collapse
Affiliation(s)
- Konstantinos Kougioumoutzis
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Maria Panitsa
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | | | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| |
Collapse
|
24
|
An Orchid in Retrograde: Climate-Driven Range Shift Patterns of Ophrys helenae in Greece. PLANTS 2021; 10:plants10030470. [PMID: 33801443 PMCID: PMC8000551 DOI: 10.3390/plants10030470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen's bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species' response to climate change. We predicted the species' future distribution based on three different climate models in two climate scenarios. We also explored the species' potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.
Collapse
|
25
|
Kougioumoutzis K, Kokkoris IP, Panitsa M, Kallimanis A, Strid A, Dimopoulos P. Plant Endemism Centres and Biodiversity Hotspots in Greece. BIOLOGY 2021; 10:72. [PMID: 33498512 PMCID: PMC7909545 DOI: 10.3390/biology10020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Biodiversity hotspots (BH) cover a small fraction of the Earth's surface, yet host numerous endemics. Human-induced biodiversity loss has been increasing worldwide, despite attempts to halt the extinction crisis. There is thus an urgent need to efficiently allocate the available conservation funds in an optimised conservation prioritization scheme. Identifying BH and endemism centres (EC) is therefore a valuable tool in conservation prioritization and planning. Even though Greece is one of the most plant species-rich European countries, few studies have dealt with the identification of BH or EC and none has ever incorporated phylogenetic information or extended to the national scale. Consequently, we are unaware of the extent that Special Areas of Conservation (SAC) of the Natura 2000 network efficiently protect Greek plant diversity. Here, we located for the first time at a national scale and in a phylogenetic framework, the areas serving as BH and EC, and assessed the effectiveness of the Greek SAC in safeguarding them. BH and EC are mainly located near mountainous areas, and in areas supposedly floristically impoverished, such as the central Aegean islands. A critical re-assessment of the Greek SAC might be needed to minimize the extinction risk of the Greek endemics, by focusing the conservation efforts also on the BH and EC that fall outside the established Greek SAC.
Collapse
Affiliation(s)
- Konstantinos Kougioumoutzis
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis P. Kokkoris
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Maria Panitsa
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Athanasios Kallimanis
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Panayotis Dimopoulos
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| |
Collapse
|
26
|
Integrating Plant Diversity Data into Mapping and Assessment of Ecosystem and Their Services (MAES) Implementation in Greece: Woodland and Forest Pilot. FORESTS 2020. [DOI: 10.3390/f11090956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This is the first approach that integrates biodiversity data into Mapping and Assessment of Ecosystem and their Services (MAES) implementation and natural capital accounting process, at the national scale, using an extensive vascular plant dataset for Greece. Background and Objectives: The study aims to support the MAES implementation in Greece, by assessing, as a pilot, the woodland and forest ecosystem type; the targets of the study are: (a) Identify and map ecosystem type extent; (b) identify ecosystem condition using biodiversity in terms of plant species richness (i.e., total, ecosystem exclusive, endemic, ecosystem exclusive endemic diversity); (c) develop ecosystem asset proxy indicators by combining ecosystem extent and ecosystem condition outcomes; (d) identify shortcomings; and (e) propose future steps and implications for the MAES implementation and natural capital accounting, based on biodiversity data. Materials and Methods: Following the national European Union’s and United Nations System of Environmental Economic Accounts-Experimental Ecosystem Accounting (SEEA-EEA) guidelines and the adopted National Set of MAES Indicators, we developed a set of four proxy ecosystem asset indicators to assess ecosystem types with respect to ecosystem area extent and ecosystem condition. This was as interpreted by its plant diversity in terms of species richness (total, ecosystem exclusive, endemic, and ecosystem exclusive endemic diversity). Results: The results revealed that when indicators use well-developed biodiversity datasets, in combination with ecosystem extent data, they can provide the baseline for ecosystem condition assessment, ecosystem asset delineation, and support operational MAES studies. Conclusions: The relation among biodiversity, ecosystem condition, and ecosystem services is not a linear equation and detailed, fine-scale assessments are needed to identify and interpret all aspects of biodiversity. However, areas of importance are pinpointed throughout Greece, and guidance is provided for case-study selection, conservation strategy, and decision-making under the perspective of national and EU environmental policies.
Collapse
|
27
|
Spatial Phylogenetics, Biogeographical Patterns and Conservation Implications of the Endemic Flora of Crete (Aegean, Greece) under Climate Change Scenarios. BIOLOGY 2020; 9:biology9080199. [PMID: 32751787 PMCID: PMC7463760 DOI: 10.3390/biology9080199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.
Collapse
|