1
|
Luz R, Cordeiro R, Gonçalves V, Vasconcelos V, Urbatzka R. Screening of Lipid-Reducing Activity and Cytotoxicity of the Exometabolome from Cyanobacteria. Mar Drugs 2024; 22:412. [PMID: 39330293 PMCID: PMC11433081 DOI: 10.3390/md22090412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Cyanobacteria are rich producers of secondary metabolites, excreting some of these to the culture media. However, the exometabolome of cyanobacteria has been poorly studied, and few studies have dwelled on its characterization and bioactivity assessment. In this work, exometabolomes of 56 cyanobacterial strains were characterized by HR-ESI-LC-MS/MS. Cytotoxicity was assessed on two carcinoma cell lines, HepG2 and HCT116, while the reduction in lipids was tested in zebrafish larvae and in a steatosis model with fatty acid-overloaded human liver cells. The exometabolome analysis using GNPS revealed many complex clusters of unique compounds in several strains, with no identifications in public databases. Three strains reduced viability in HCT116 cells, namely Tolypotrichaceae BACA0428 (30.45%), Aphanizomenonaceae BACA0025 (40.84%), and Microchaetaceae BACA0110 (46.61%). Lipid reduction in zebrafish larvae was only observed by exposure to Dulcicalothrix sp. BACA0344 (60%). The feature-based molecular network shows that this bioactivity was highly correlated with two flavanones, a compound class described in the literature to have lipid reduction activity. The exometabolome characterization of cyanobacteria strains revealed a high chemodiversity, which supports it as a source for novel bioactive compounds, despite most of the time being overlooked.
Collapse
Affiliation(s)
- Rúben Luz
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Rita Cordeiro
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vítor Gonçalves
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Luz R, Cordeiro R, Kaštovský J, Johansen JR, Dias E, Fonseca A, Urbatzka R, Vasconcelos V, Gonçalves V. Description of four new filamentous cyanobacterial taxa from freshwater habitats in the Azores Archipelago. JOURNAL OF PHYCOLOGY 2023; 59:1323-1338. [PMID: 37843041 DOI: 10.1111/jpy.13396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Simple filamentous cyanobacteria comprise a diverse and polyphyletic group of species, primarily in the orders Leptolyngbyales and Oscillatoriales, that need more sampling to improve their taxonomy. Oceanic islands, such as the Azores archipelago, present unique habitats and biogeographic conditions that harbor an unknown range of diversity of microorganisms. Filamentous cyanobacteria isolated from aquatic habitats in the Azores and maintained in the BACA culture collection were described using morphology, both light and transmission electron microscopy, ecology, and genetic data of the 16S rRNA gene sequences and 16S-23S Internal Transcribed Spacer (ITS) rRNA region secondary structure. Our analyses revealed two new monophyletic genera: Tumidithrix elongata gen. sp. nov. (Pseudanabaenaceae) and Radiculonema aquaticum gen. sp. nov. (Leptolyngbyaceae). In addition, two new species Leptodesmis lacustris sp. nov. (Leptolyngbyaceae) and Pycnacronema lacustrum sp. nov. (Wilmottiaceae) are reported as the first aquatic species for these genera. The description of these new taxa and the genetic study of an isolate of Leptodesmis alaskaensis from the Azores followed the polyphasic approach, identifying diacritical features. Our results reinforce the need for taxonomic studies on cyanobacteria from less-studied habits and geographic regions, which have a potential for new taxa description.
Collapse
Affiliation(s)
- Rúben Luz
- Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair - Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, Ponta Delgada, Portugal
| | - Rita Cordeiro
- Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair - Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, Ponta Delgada, Portugal
| | - Jan Kaštovský
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jeffrey R Johansen
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Elisabete Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair - Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, Ponta Delgada, Portugal
| | - Amélia Fonseca
- Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair - Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, Ponta Delgada, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vítor Gonçalves
- Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair - Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, Ponta Delgada, Portugal
| |
Collapse
|
3
|
Tang J, Zhou H, Jiang Y, Yao D, Waleron KF, Du LM, Daroch M. Characterization of a novel thermophilic cyanobacterium within Trichocoleusaceae, Trichothermofontia sichuanensis gen. et sp. nov., and its CO 2-concentrating mechanism. Front Microbiol 2023; 14:1111809. [PMID: 37180226 PMCID: PMC10172474 DOI: 10.3389/fmicb.2023.1111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Thermophiles from extreme thermal environments have shown tremendous potential regarding ecological and biotechnological applications. Nevertheless, thermophilic cyanobacteria remain largely untapped and are rarely characterized. Herein, a polyphasic approach was used to characterize a thermophilic strain, PKUAC-SCTB231 (hereafter B231), isolated from a hot spring (pH 6.62, 55.5°C) in Zhonggu village, China. The analyses of 16S rRNA phylogeny, secondary structures of 16S-23S ITS and morphology strongly supported strain B231 as a novel genus within Trichocoleusaceae. Phylogenomic inference and three genome-based indices further verified the genus delineation. Based on the botanical code, the isolate is herein delineated as Trichothermofontia sichuanensis gen. et sp. nov., a genus closely related to a validly described genus Trichocoleus. In addition, our results suggest that Pinocchia currently classified to belong to the family Leptolyngbyaceae may require revision and assignment to the family Trichocoleusaceae. Furthermore, the complete genome of Trichothermofontia B231 facilitated the elucidation of the genetic basis regarding genes related to its carbon-concentrating mechanism (CCM). The strain belongs to β-cyanobacteria according to its β-carboxysome shell protein and 1B form of Ribulose bisphosphate Carboxylase-Oxygenase (RubisCO). Compared to other thermophilic strains, strain B231contains a relatively low diversity of bicarbonate transporters (only BicA for HCO3- transport) but a higher abundance of different types of carbonic anhydrase (CA), β-CA (ccaA) and γ-CA (ccmM). The BCT1 transporter consistently possessed by freshwater cyanobacteria was absent in strain B231. Similar situation was occasionally observed in freshwater thermal Thermoleptolyngbya and Thermosynechococcus strains. Moreover, strain B231 shows a similar composition of carboxysome shell proteins (ccmK1-4, ccmL, -M, -N, -O, and -P) to mesophilic cyanobacteria, the diversity of which was higher than many thermophilic strains lacking at least one of the four ccmK genes. The genomic distribution of CCM-related genes suggests that the expression of some components is regulated as an operon and others in an independently controlled satellite locus. The current study also offers fundamental information for future taxogenomics, ecogenomics and geogenomic studies on distribution and significance of thermophilic cyanobacteria in the global ecosystem.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Krzysztof F. Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Lian-Ming Du
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Maurycy Daroch,
| |
Collapse
|
4
|
Rasmussen KL, Stamps BW, Vanzin GF, Ulrich SM, Spear JR. Spatial and temporal dynamics at an actively silicifying hydrothermal system. Front Microbiol 2023; 14:1172798. [PMID: 37206339 PMCID: PMC10188993 DOI: 10.3389/fmicb.2023.1172798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.
Collapse
Affiliation(s)
- Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Blake W. Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Gary F. Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | | | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- *Correspondence: John R. Spear,
| |
Collapse
|
5
|
Mutoti MI, Jideani AIO, Gumbo JR. Using FlowCam and molecular techniques to assess the diversity of Cyanobacteria species in water used for food production. Sci Rep 2022; 12:18995. [PMID: 36348060 PMCID: PMC9643327 DOI: 10.1038/s41598-022-23818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Globally, the occurrence of cyanobacteria in water currently remains an important subject as they produce cyanotoxins that pose threat to human health. Studies on the contamination of maize meals during mill grinding processes using cyanobacteria-contaminated water have not been conducted. The present study aimed to assess the diversity of cyanobacteria in the samples (process water, uncooked maize meal, and cooked maize meal (porridge)). Polymerized Chain Reaction (PCR) and Advanced digital flow cytometry (FlowCAM) were used to detect and identify cyanobacterial species available in these samples. 16S Primers (forward and reverse) tailed with Universal Sequences were used for amplification and sequencing of full-length 16S rRNA genes from cyanobacteria found in all samples. Cyanobacterial species from order Nostocales, Pseudanabaenales, Oscillatoriales Chroococcales, Synechococcales, and unclassified cyanobacterial order, some of which have the potential to produce cyanotoxins were amplified and identified in process water, raw maize meal and porridge samples using PCR. Images of the genus Microcystis, Phormidium, and Leptolyngbya were captured in process water samples using FlowCAM. These findings show the presence of cyanobacteria species in process water used for maize meal and the absence in cooked maize meal. The presence of cyanobacteria in process water is likely another route of human exposure to cyanotoxins.
Collapse
Affiliation(s)
- Mulalo I. Mutoti
- grid.412964.c0000 0004 0610 3705Department of Earth Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag, Thohoyandou, X50500950 South Africa
| | - Afam I. O. Jideani
- grid.412964.c0000 0004 0610 3705Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950 South Africa ,Special Interest Group Post Harvest Handling, ISEKI-Food Association, Muthgasse 18, 1190 Vienna, Austria
| | - Jabulani R. Gumbo
- grid.412964.c0000 0004 0610 3705Department of Earth Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag, Thohoyandou, X50500950 South Africa
| |
Collapse
|
6
|
Luz R, Cordeiro R, Fonseca A, Raposeiro PM, Gonçalves V. Distribution and diversity of cyanobacteria in the Azores Archipelago: An annotated checklist. Biodivers Data J 2022; 10:e87638. [PMID: 36761623 PMCID: PMC9848483 DOI: 10.3897/bdj.10.e87638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background Knowledge about cyanobacteria diversity in the Azores is spread over several publications, dating from 1874, with some of them not generally available to the scientific community due to their restricted access. The dispersion and sometimes inaccessibility of this information hinder a deeper analysis and a better understanding of the biodiversity of the Azores Islands and more general ecological processes in oceanic islands. Here we present the first checklist of cyanobacteria for the Azores Archipelago with updated taxonomy of all recorded taxa. New information This work provides a compiled and annotated checklist of all known cyanobacteria from the Azores Archipelago with morphological identification from preserved samples and cultures, based on published literature. All records of taxa known to occur in the Azores were taxonomically updated. The present checklist comprises 225 taxa distributed by six orders (Chroococcales, Nostocales, Oscillatoriales, Pleurocapsales, Spirulinales and Synechococcales). Our literature review reveals that the Azores Archipelago hosts a high diversity of cyanobacteria, despite several overlooked habitats that may present great potential regarding cyanobacteria diversity. Increasing efforts to study these neglected habitats could contribute to the knowledge of cyanobacteria taxonomy. This checklist provides the basis for future works on the taxonomy and taxa richness of cyanobacteria in the Azores and the Atlantic Islands, as also for understanding and monitoring non-indigenous and invasive species.
Collapse
Affiliation(s)
- Rúben Luz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal,Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, PortugalFaculdade de Ciências e Tecnologia, Universidade dos AçoresPonta DelgadaPortugal
| | - Rita Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal,Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, PortugalFaculdade de Ciências e Tecnologia, Universidade dos AçoresPonta DelgadaPortugal
| | - Amélia Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal,Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, PortugalFaculdade de Ciências e Tecnologia, Universidade dos AçoresPonta DelgadaPortugal
| | - Pedro Miguel Raposeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal,Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, PortugalFaculdade de Ciências e Tecnologia, Universidade dos AçoresPonta DelgadaPortugal
| | - Vítor Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal,Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, PortugalFaculdade de Ciências e Tecnologia, Universidade dos AçoresPonta DelgadaPortugal
| |
Collapse
|
7
|
Salmaso N, Vasselon V, Rimet F, Vautier M, Elersek T, Boscaini A, Donati C, Moretto M, Pindo M, Riccioni G, Stefani E, Capelli C, Lepori F, Kurmayer R, Mischke U, Klemenčič AK, Novak K, Greco C, Franzini G, Fusato G, Giacomazzi F, Lea A, Menegon S, Zampieri C, Macor A, Virgilio D, Zanut E, Zorza R, Buzzi F, Domaizon I. DNA sequence and taxonomic gap analyses to quantify the coverage of aquatic cyanobacteria and eukaryotic microalgae in reference databases: Results of a survey in the Alpine region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155175. [PMID: 35421505 DOI: 10.1016/j.scitotenv.2022.155175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The taxonomic identification of organisms based on the amplification of specific genetic markers (metabarcoding) implicitly requires adequate discriminatory information and taxonomic coverage of environmental DNA sequences in taxonomic databases. These requirements were quantitatively examined by comparing the determination of cyanobacteria and microalgae obtained by metabarcoding and light microscopy. We used planktic and biofilm samples collected in 37 lakes and 22 rivers across the Alpine region. We focused on two of the most used and best represented genetic markers in the reference databases, namely the 16S rRNA and 18S rRNA genes. A sequence gap analysis using blastn showed that, in the identity range of 99-100%, approximately 30% (plankton) and 60% (biofilm) of the sequences did not find any close counterpart in the reference databases (NCBI GenBank). Similarly, a taxonomic gap analysis showed that approximately 50% of the cyanobacterial and eukaryotic microalgal species identified by light microscopy were not represented in the reference databases. In both cases, the magnitude of the gaps differed between the major taxonomic groups. Even considering the species determined under the microscope and represented in the reference databases, 22% and 26% were still not included in the results obtained by the blastn at percentage levels of identity ≥95% and ≥97%, respectively. The main causes were the absence of matching sequences due to amplification and/or sequencing failure and potential misidentification in the microscopy step. Our results quantitatively demonstrated that in metabarcoding the main obstacles in the classification of 16S rRNA and 18S rRNA sequences and interpretation of high-throughput sequencing biomonitoring data were due to the existence of important gaps in the taxonomic completeness of the reference databases and the short length of reads. The study focused on the Alpine region, but the extent of the gaps could be much greater in other less investigated geographic areas.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Valentin Vasselon
- OFB, Pôle R&D ECLA, Site INRAE CARRTEL, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Frédéric Rimet
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Marine Vautier
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Tina Elersek
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Giulia Riccioni
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Erika Stefani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Camilla Capelli
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Fabio Lepori
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria.
| | - Ute Mischke
- Bavarian Environment Agency, Ref. 83, Wielenbach, Germany.
| | | | - Katarina Novak
- Slovenian Environment Agency, Vojkova 1b, 1000 Ljubljana, Slovenia.
| | - Claudia Greco
- Italian National Institute for Environmental Protection and Research (ISPRA), Ozzano, Italy.
| | - Giorgio Franzini
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Giampaolo Fusato
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Federica Giacomazzi
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Alessia Lea
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Ospedale Civile 24, 35121 Padova, Italy.
| | - Silvia Menegon
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Santa Barbara 5/a, 31100 Treviso, Italy.
| | - Chiara Zampieri
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Arianna Macor
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Damiano Virgilio
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Elisa Zanut
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Raffaella Zorza
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Fabio Buzzi
- ARPA Lombardia, Sede di Lecco, U.O. Laghi e Monitoraggio Biologico Fiumi, Italy.
| | - Isabelle Domaizon
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| |
Collapse
|
8
|
Gaysina LA, Johansen JR, Saraf A, Allaguvatova RZ, Pal S, Singh P. Roholtiella volcanica sp. nov., a New Species of Cyanobacteria from Kamchatkan Volcanic Soils. DIVERSITY 2022. [DOI: 10.3390/d14080620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
During a study of biodiversity of cyanobacteria in Gorely volcano soils (Kamchatka Peninsula), a strain of heterocytous, a false branching cyanobacterium with gradually tapered filaments, was isolated. Prominent features of the strain were purplish-grey trichomes and firm, distinct multilayered sheaths. Based on the results obtained from the morphological, ecological, and phylogenetic analysis using the 16S rRNA and 16S–23S ITS region, 16S–23S ITS secondary structure analysis, comparison of flanking regions of BoxB and V3 helices, and the p-distance between the 16S–23S ITS region, we describe our strain K7 as a novel species of the genus Roholtiella with the name Roholtiella volcanica sp. nov., in accordance with the International Code of Nomenclature for algae, fungi, and plants. This work continues the rapid expansion of the description of new taxa of cyanobacteria, and particularly demonstrates a coming phase in cyanobacterial taxonomy in which the discovery of new species in recently described genera rapidly increases our understanding of the diversity in this phylum.
Collapse
|
9
|
Tang J, Shah MR, Yao D, Jiang Y, Du L, Zhao K, Li L, Li M, Waleron MM, Waleron M, Waleron K, Daroch M. Polyphasic Identification and Genomic Insights of Leptothermofonsia sichuanensis gen. sp. nov., a Novel Thermophilic Cyanobacteria Within Leptolyngbyaceae. Front Microbiol 2022; 13:765105. [PMID: 35418964 PMCID: PMC8997340 DOI: 10.3389/fmicb.2022.765105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023] Open
Abstract
Thermal environments are an important reservoir of thermophiles with significant ecological and biotechnological potentials. However, thermophilic isolates remain largely unrecovered from their habitats and are rarely systematically identified. In this study, we characterized using polyphasic approaches a thermophilic strain, PKUAC-SCTAE412 (E412 hereafter), recovered from Lotus Lake hot spring based in Ganzi prefecture, China. The results of 16S rRNA/16S-23S ITS phylogenies, secondary structure, and morphology comparison strongly supported that strain E412 represent a novel genus within Leptolyngbyaceae. This delineation was further confirmed by genome-based analyses [phylogenomic inference, average nucleotide/amino-acid identity, and the percentages of conserved proteins (POCP)]. Based on the botanical code, the isolate is herein delineated as Leptothermofonsia sichuanensis gen. sp. nov, a genus adjacent to recently delineated Kovacikia and Stenomitos. In addition, we successfully obtained the first complete genome of this new genus. Genomic analysis revealed its adaptations to the adverse hot spring environment and extensive molecular components related to mobile genetic elements, photosynthesis, and nitrogen metabolism. Moreover, the strain was capable of modifying the composition of its light-harvesting apparatus depending on the wavelength and photoperiod, showing chromatic adaptation capacity characteristic for T1 and T2 pigmentation types. Other physiological studies showed the strain’s ability to utilize sodium bicarbonate and various sulfur compounds. The strain was also shown to be diazotrophic. Interestingly, 24.6% of annotated protein-coding genes in the E412 genome were identified as putatively acquired, hypothesizing that a large number of genes acquired through HGT might contribute to the genome expansion and habitat adaptation of those thermophilic strains. Most the HGT candidates (69.4%) were categorized as metabolic functions as suggested by the KEGG analysis. Overall, the complete genome of strain E412 provides the first insight into the genomic feature of the genus Leptothermofonsia and lays the foundation for future global ecogenomic and geogenomic studies.
Collapse
Affiliation(s)
- Jie Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lianming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Michal M Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
10
|
Tang J, Du LM, Li M, Yao D, Jiang Y, Waleron M, Waleron K, Daroch M. Characterization of a Novel Hot-Spring Cyanobacterium Leptodesmis sichuanensis sp. Nov. and Genomic Insights of Molecular Adaptations Into Its Habitat. Front Microbiol 2022; 12:739625. [PMID: 35154020 PMCID: PMC8832068 DOI: 10.3389/fmicb.2021.739625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The newly described genus Leptodesmis comprises several strains of filamentous cyanobacteria from diverse, primarily cold, habitats. Here, we sequenced the complete genome of a novel hot-spring strain, Leptodesmis sp. PKUAC-SCTA121 (hereafter A121), isolated from Erdaoqiao hot springs (pH 6.32, 40.8°C), China. The analyses of 16S rRNA/16S-23S ITS phylogenies, secondary structures, and morphology strongly support strain A121 as a new species within Leptodesmis, Leptodesmis sichuanensis sp. nov. Notably, strain A121 is the first thermophilic representative of genus Leptodesmis and more broadly the first Leptodesmis sp. to have its genome sequenced. In addition, results of genome-scale phylogenetic analysis and average nucleotide/amino acid identity as well as in silico DNA-DNA hybridization and patristic analysis verify the establishment of genus Leptodesmis previously cryptic to Phormidesmis. Comparative genomic analyses reveal that the Leptodesmis A121 and Thermoleptolyngbya sichuanensis A183 from the same hot-spring biome exhibit different genome structures but similar functional classifications of protein-coding genes. Although the core molecular components of photosynthesis, metabolism, and signal transduction were shared by the two strains, distinct genes associated with photosynthesis and signal transduction were identified, indicating that different strategies might be used by these strains to adapt to that specific niche. Furthermore, the complete genome of strain A121 provides the first insight into the genomic features of genus Leptodesmis and lays the foundation for future global ecogenomic and geogenomic studies.
Collapse
Affiliation(s)
- Jie Tang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Lian-Ming Du
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Maurycy Daroch,
| |
Collapse
|
11
|
Shahid A, Khurshid M, Aslam B, Muzammil S, Mehwish HM, Rajoka MSR, Hayat HF, Sarfraz MH, Razzaq MK, Nisar MA, Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J Basic Microbiol 2021; 62:1125-1142. [PMID: 34747529 DOI: 10.1002/jobm.202100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
The wide diversity of cyanobacterial species and their role in a variety of biological activities have been reported in the previous few years. Cyanobacteria, especially from marine sources, constitutes a major source of biologically active metabolites that have gained great attention especially due to their anticancer potential. Numerous chemically diverse metabolites from various cyanobacterial species have been recognized to inhibit the growth and progression of tumor cells through the induction of apoptosis in many different types of cancers. These metabolites activate the apoptosis in the cancer cells by different molecular mechanisms, however, the dysregulation of the mitochondrial pathway, death receptors signaling pathways, and the activation of several caspases are the crucial mechanisms that got considerable interest. The array of metabolites and the range of mechanisms involved may also help to overcome the resistance acquired by the different tumor types against the ongoing therapeutic agents. Therefore, the primary or secondary metabolites from the cyanobacteria as well as their synthetic derivates could be used to develop novel anticancer drugs alone or in combination with other chemotherapeutic agents. In this study, we have discussed the role of cyanobacterial metabolites in the induction of cytotoxicity and the potential to inhibit the growth of cancer cells through the induction of apoptosis, cell signaling alteration, oxidative damage, and mitochondrial dysfunctions. Moreover, the various metabolites produced by cyanobacteria have been summarized with their anticancer mechanisms. Furthermore, the ongoing trials and future developments for the therapeutic implications of these compounds in cancer therapy have been discussed.
Collapse
Affiliation(s)
- Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, China.,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hafiz Fakhar Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Chen Z, Shang JL, Hou S, Li T, Li Q, Yang YW, Hess WR, Qiu BS. Genomic and transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field cyanobacterium Nostoc sphaeroides. Environ Microbiol 2021; 23:5802-5822. [PMID: 33848055 DOI: 10.1111/1462-2920.15521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Nitrogen-fixing cyanobacteria are common in paddy fields, one of the most productive wetland ecosystems. Here, we present the complete genome of Nostoc sphaeroides, a paddy-field diazotroph used for food and medicine for more than 1700 years and deciphered the transcriptional regulation during the developmental transition from hormogonia to vegetative filaments with heterocysts. The genome of N. sphaeroides consists of one circular chromosome (6.48 Mb), one of the largest ever reported megaplasmids (2.34 Mb), and seven plasmids. Multiple gene families involved in the adaption to high solar radiation and water fluctuation conditions were found expanded, while genes involved in anoxic adaptation and phosphonate utilization are located on the megaplasmid, suggesting its indispensable role in environmental adaptation. Distinct gene expression patterns were observed during the light-intensity-regulated transition from hormogonia to vegetative filaments, specifically, genes encoding proteins involved in photosynthetic light reaction, carbon fixation, nitrogen metabolism and heterocyst differentiation were significantly upregulated, whereas genes related to cell motility were down-regulated. Our results provide genomic and transcriptomic insights into the adaptation of a filamentous nitrogen-fixing cyanobacterium to the highly dynamic paddy-field habitat, suggesting N. sphaeroides as an excellent system to understand the transition from aquatic to terrestrial habitats and to support sustainable rice production.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jin-Long Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089, USA
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Yi-Wen Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
13
|
Cordeiro R, Azevedo J, Luz R, Vasconcelos V, Gonçalves V, Fonseca A. Cyanotoxin Screening in BACA Culture Collection: Identification of New Cylindrospermopsin Producing Cyanobacteria. Toxins (Basel) 2021; 13:toxins13040258. [PMID: 33916821 PMCID: PMC8065757 DOI: 10.3390/toxins13040258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/05/2022] Open
Abstract
Microcystins (MCs), Saxitoxins (STXs), and Cylindrospermopsins (CYNs) are some of the more well-known cyanotoxins. Taking into consideration the impacts of cyanotoxins, many studies have focused on the identification of unknown cyanotoxin(s)-producing strains. This study aimed to screen strains from the Azorean Bank of Algae and Cyanobacteria (BACA) for MCs, STX, and CYN production. A total of 157 strains were searched for mcy, sxt, and cyr producing genes by PCR, toxin identification by ESI-LC-MS/MS, and cyanotoxin-producing strains morphological identification and confirmation by 16S rRNA phylogenetic analysis. Cyanotoxin-producing genes were amplified in 13 strains and four were confirmed as toxin producers by ESI-LC-MS/MS. As expected Aphanizomenon gracile BACA0041 was confirmed as an STX producer, with amplification of genes sxtA, sxtG, sxtH, and sxtI, and Microcystis aeruginosa BACA0148 as an MC-LR producer, with amplification of genes mcyC, mcyD, mcyE, and mcyG. Two nostocalean strains, BACA0025 and BACA0031, were positive for both cyrB and cyrC genes and ESI-LC-MS/MS confirmed CYN production. Although these strains morphologically resemble Sphaerospermopsis, the 16S rRNA phylogenetic analysis reveals that they probably belong to a new genus.
Collapse
Affiliation(s)
- Rita Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- Correspondence:
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.A.); (V.V.)
| | - Rúben Luz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.A.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Vítor Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Amélia Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
14
|
Mishra D, Saraf A, Kumar N, Pal S, Singh P. Issues in cyanobacterial taxonomy: comprehensive case study of unbranched, false branched and true branched heterocytous cyanobacteria. FEMS Microbiol Lett 2021; 368:6102548. [PMID: 33452884 DOI: 10.1093/femsle/fnab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
The order Nostocales is represented by morphologically diverse forms with respect to the branching patterns and polarity of the filaments. With growing understanding of taxonomy and systematics, members of the order Nostocales have also undergone multiple taxonomic revisions. The last decade has seen a surge in the description of new genera and families within the order Nostocales. In this study, we discuss the taxonomic status of all the newly described and reclassified taxa of some of the prominent morphological forms within the order Nostocales by constructing comprehensive phylogenetic trees. Further, we propose certain strategies that would contribute to resolving the taxonomic complexities arising due to inadequate taxon sampling.
Collapse
Affiliation(s)
- Deeksha Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Aniket Saraf
- Department of Botany, Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, India
| | - Naresh Kumar
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sagarika Pal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Prashant Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|