1
|
Kapoor B, Jenkins J, Schmutz J, Zhebentyayeva T, Kuelheim C, Coggeshall M, Heim C, Lasky JR, Leites L, Islam-Faridi N, Romero-Severson J, DeLeo VL, Lucas SM, Lazic D, Gailing O, Carlson J, Staton M. A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species. G3 (BETHESDA, MD.) 2023; 13:jkad209. [PMID: 37708394 PMCID: PMC10627279 DOI: 10.1093/g3journal/jkad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.
Collapse
Affiliation(s)
- Beant Kapoor
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tatyana Zhebentyayeva
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40506, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Kuelheim
- College of Forest Resources and Environmental Science, Michigan Tech University, Houghton, MI 49931, USA
| | - Mark Coggeshall
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chris Heim
- Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Leites
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, USDA-FS, SRS-4160, Department of Ecology & Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Victoria L DeLeo
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah M Lucas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Desanka Lazic
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Bondarenko V, Geras'kin S, Bondarenko E, Yoschenko V, Bondarenko S, Khanova A, Garbaruk D, Nanba K. Comparative analysis of epigenetic variability in two pine species exposed to chronic radiation in the chernobyl and fukushima affected zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121799. [PMID: 37169241 DOI: 10.1016/j.envpol.2023.121799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Comparative analysis of epigenetic variability in two pine species affected as a result of the Chernobyl and Fukushima accidents is presented. The absorbed dose rate within the affected Chernobyl sites varies over a wider range (1.5-24.6 μGy/h) than within the Fukushima sites (3.5-6.5 μGy/h). It was shown that chronic irradiation can change the level of whole genome methylation in pine populations, but in different ways. The genomes of Japanese red pines are hypomethylated, and the degree of methylation and hydroxymethylation decreases with an increase in the level of radiation exposure. In contrast, the percentages of genome methylation and hydroxymethylation in Scots pine populations exceed the reference levels. The observed discrepancy in the patterns of genome-wide DNA methylation can be attributed partly to the design of the study (differences in the climate, radiation dose, age and species of the pines) which could affect the results. In the frame of IRAP analysis, a larger number of different bands was observed in the Chernobyl populations compared to the Japanese populations. Both the Japanese and Chernobyl populations are characterized by significant genetic variability. However, the main part of this variability is observed within populations. The dendrograms, based on presence/absence of IRAP fragments and Nei's genetic distances, revealed subdivisions of the Chernobyl and Japanese populations according to the level of radioactive contamination. Analysis of the results presented will improve our understanding of the mechanisms underlying the responses of pine trees to chronic radiation exposure.
Collapse
Affiliation(s)
- Vladimir Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation.
| | - Ekaterina Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Sergey Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Anastasiya Khanova
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Dmitriy Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618, Tereshkovoy Str. 7, Khoyniki, Belarus
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| |
Collapse
|
3
|
Meena RK, Negi N, Shankhwar R, Bhandari MS, Kant R, Pandey S, Kumar N, Sharma R, Ginwal HS. Ecological niche modelling and population genetic analysis of Indian temperate bamboo Drepanostachyum falcatum in the western Himalayas. JOURNAL OF PLANT RESEARCH 2023:10.1007/s10265-023-01465-5. [PMID: 37140755 DOI: 10.1007/s10265-023-01465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The present study was conducted to understand the key ecological and biological questions of conservation importance in Drepanostachyum falcatum which aimed to map potential distribution in the western Himalayas and decipher spatial genetic structure. Eco-distribution maps were generated through ecological niche modelling using the Maximum Entropy (MaxEnt) algorithm implemented with 228 geocoordinates of species presence and 12 bioclimatic variables. Concomitantly, 26 natural populations in the western Himalayas were genetically analysed using ten genomic sequence-tagged microsatellite (STMS) markers. Model-derived distribution was adequately supported with appropriate statistical measures, such as area under the 'receiver operating characteristics (ROC)' curve (AUC; 0.917 ± 0.034)", Kappa (K; 0.418), normalized mutual information (NMI; 0.673) and true skill statistic (TSS; 0.715). Further, Jackknife test and response curves showed that the precipitation (pre- and post-monsoon) and temperature (average throughout the year and pre-monsoon) maximize the probabilistic distribution of D. falcatum. We recorded a wide and abundant (4096.86 km2) distribution of D. falcatum in the western Himalayas with maximum occurrence at 1500 to 2500 m asl. Furthermore, marker analysis exemplified high gene diversity with low genetic differentiation in D. falcatum. Relatively, the populations of Uttarakhand are more genetically diverse than Himachal Pradesh, whereas within the Uttarakhand, the Garhwal region captured a higher allelic diversity than Kumaon. Clustering and structure analysis indicated two major gene pools, where genetic admixing appeared to be controlled by long-distance gene flow, horizontal geographical distance, aspect, and precipitation. Both the species distribution map and population genetic structure derived herein may serve as valuable resources for conservation and management of Himalayan hill bamboos.
Collapse
Affiliation(s)
- Rajendra K Meena
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India.
| | - Nitika Negi
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rajeev Shankhwar
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Maneesh S Bhandari
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rama Kant
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand, 248 006, India
| | - Narinder Kumar
- Division of Genetics and Tree Improvement, Himalayan Forest Research Institute, Shimla, 171 013, Himachal Pradesh, India
| | - Rajesh Sharma
- Division of Genetics and Tree Improvement, Himalayan Forest Research Institute, Shimla, 171 013, Himachal Pradesh, India
- Division of Biodiversity and Climate Change, Indian Council of Forestry Research and Education, Dehradun, Uttarakhand, 248 006, India
| | - Harish S Ginwal
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| |
Collapse
|
4
|
Zhou C, Xia S, Wen Q, Song Y, Jia Q, Wang T, Liu L, Ouyang T. Genetic structure of an endangered species Ormosia henryi in southern China, and implications for conservation. BMC PLANT BIOLOGY 2023; 23:220. [PMID: 37098472 PMCID: PMC10131447 DOI: 10.1186/s12870-023-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.
Collapse
Affiliation(s)
- Chengchuan Zhou
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Shiqi Xia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Qiang Wen
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Ying Song
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Quanquan Jia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Tian Wang
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Liting Liu
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China.
| | - Tianlin Ouyang
- Jiangxi Provincial Forestry Science and Technology Experiment Center, Ganzhou, China.
| |
Collapse
|
5
|
Meena RK, Kashyap P, Shamoon A, Dhyani P, Sharma H, Bhandari MS, Barthwal S, Ginwal HS. Genome survey sequencing-based SSR marker development and their validation in Dendrocalamus longispathus. Funct Integr Genomics 2023; 23:103. [PMID: 36973584 DOI: 10.1007/s10142-023-01033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Bamboo is an important genetic resource in India, supporting rural livelihood and industries. Unfortunately, most Indian bamboo taxa are devoid of basic genomic or marker information required to comprehend the genetic processes for further conservation and management. In this study, we perform genome survey sequencing for development of de novo genomic SSRs in Dendrocalamus longispathus, a socioeconomically important bamboo species of northeast India. Using Illumina platform, 69.49 million raw reads were generated and assembled into 1,145,321 contig with GC content 43% and N50 1228 bp. In total, 46,984 microsatellite repeats were mined-out wherein di-nucleotide repeats were most abundant (54.71%) followed by mono- (31.91%) and tri-repeats (9.85%). Overall, AT-rich repeats were predominant in the genome, but GC-rich motifs were more frequent in tri-repeats. Afterwards, 21,596 SSR loci were successfully tagged with the primer pairs, and a subset of 50 were validated through polymerase chain reaction amplification. Of these, 36 SSR loci were successfully amplified, and 16 demonstrated polymorphism. Using 13 polymorphic SSRs, a moderate level of gene diversity (He = 0.480; Ar = 3.52) was recorded in the analysed populations of D. longispathus. Despite the high gene flow (Nm = 4.928) and low genetic differentiation (FST = 0.119), severe inbreeding (FIS = 0.407) was detected. Further, genetic clustering and STRUCTURE analysis revealed that the entire genetic variability is captured under two major gene pools. Conclusively, we present a comprehensive set of novel SSR markers in D. longispathus as well as other taxa of tropical woody bamboos.
Collapse
Affiliation(s)
- Rajendra K Meena
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Priyanka Kashyap
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Payal Dhyani
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Hansraj Sharma
- ICFRE - Bamboo & Rattan Centre, Aizawl, 796007, Mizoram, India
- ICFRE-Rain Forest Research Institute, Jorhat, 785001, Assam, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Harish S Ginwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| |
Collapse
|
6
|
High genetic diversity in American chestnut (Castanea dentata) despite a century of decline. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Torre S, Sebastiani F, Burbui G, Pecori F, Pepori AL, Passeri I, Ghelardini L, Selvaggi A, Santini A. Novel Insights Into Refugia at the Southern Margin of the Distribution Range of the Endangered Species Ulmus laevis. FRONTIERS IN PLANT SCIENCE 2022; 13:826158. [PMID: 35242155 PMCID: PMC8886209 DOI: 10.3389/fpls.2022.826158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 05/27/2023]
Abstract
Riparian ecosystems, in long-time developed regions, are among the most heavily impacted by human activities; therefore, the distribution of tree riparian species, such as Ulmus laevis, is highly affected. This phenomenon is particularly relevant at the margins of the natural habitat of the species, where populations are small and rare. In these cases, it is difficult to distinguish between relics or introductions, but it is relevant for the restoration of natural habitats and conservation strategies. The aim of this study was to study the phylogeography of the southern distribution of the species. We sequenced the entire chloroplast (cp) genomes of 54 individuals from five sampled populations across different European regions to highlight polymorphisms and analyze their distribution. Thirty-two haplotypes were identified. All the sampled populations showed private haplotypes that can be considered an indicator of long-term residency, given the low mutation rate of organellar DNA. The network of all haplotypes showed a star-like topology, and Serbian haplotypes were present in all branches. The Balkan population showed the highest level of nucleotide and genetic diversity. Low genetic differentiation between populations was observed but we found a significant differentiation among Serbia vs. other provenances. Our estimates of divergent time of U. laevis samples highlight the early split of above all Serbian individuals from other populations, emphasizing the reservoir role of white elm genetic diversity of Serbian population.
Collapse
Affiliation(s)
- Sara Torre
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Federico Sebastiani
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Guia Burbui
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Francesco Pecori
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Alessia L. Pepori
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Iacopo Passeri
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| | - Luisa Ghelardini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali (DAGRI), Università di Firenze, Florence, Italy
| | - Alberto Selvaggi
- Istituto per le Piante da Legno e l’Ambiente - I.P.L.A. S.p.A., Turin, Italy
| | - Alberto Santini
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Florence, Italy
| |
Collapse
|
8
|
Kumar R, Kumar A, Banyal R, Kumar M, Singh A, Yadav RK, Dobhal S, Sharma S. Seed and seedling diversity delimitation and differentiation of Indian populations of Melia dubia cav. Saudi J Biol Sci 2022; 29:489-498. [PMID: 35002445 PMCID: PMC8716888 DOI: 10.1016/j.sjbs.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/21/2022] Open
Abstract
Melia dubia is one of the most important industrial tree species in the South East Asia. In last few decades, the populations of M. dubia has rapidly expanded in the Indian sub-continents, leading to an increase in the genetic diversity of species. However, very less information is available on intra-specific variation in Melia under the Indian subcontinent. Therefore, a present investigation was undertaken, to assess the level of diversity in seed and saplings of the Melia populations (ecotypes) collected from three agro-ecological regions of India. Results revealed that the seed and saplings of all the ecotypes are significantly different for all the traits, except for number of branches per plant, and the maximum variability was recorded in germination percentage, seed weight, internodal length, and sapling height of the species. The high heritability for seed weight (0.99), length (0.99), and width (0.97), and germination percentage (0.99) indicated that selection and genetic gain for these traits would be effective during the commencement of improvement program. Trait association analysis explained that higher seed weight significantly reduced sapling height, collar diameter, number of leaves per plant, internodal length, petiole length, and germination percentage (r = −0.86; p < 0.001) that ultimately reduced the seedling vigor in Melia dubia. Interestingly, the number of branches per plant were not associated with any of the morphological traits. The first principal component explained 50.09% of the entire variation and all the traits contributed greatly to the variation for this principal component, except for number of branches, leaf width and seed length. The clustering approach assorted geographic variation of M. dubia populations into three main sub-clusters i.e. South, North, and North East populations each consisting of five, seven and one populations (including cultivar), respectively. Among different ecotypes, Bahumukhi, Varsha and US Nagar seed sources outperformed all others in seedling vigour (sapling height) and rest of the growth parameters. Overall, findings explained that considerable scope exists for the development of superior planting material of M. dubia through exploration of seeds and selection at the early seedling stage.
Collapse
Affiliation(s)
- Raj Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Rakesh Banyal
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Manish Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Awtar Singh
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - R K Yadav
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Sneha Dobhal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India.,VCSG Uttarakhand University of Horticulture and Forestry, Ranichauri, Uttarakhand, India
| | - Samriti Sharma
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India
| |
Collapse
|
9
|
Mugula BB, Kiboi SK, Kanya JI, Egeru A, Okullo P, Curto M, Meimberg H. Knowledge Gaps in Taxonomy, Ecology, Population Distribution Drivers and Genetic Diversity of African Sandalwood ( Osyris lanceolata Hochst. & Steud.): A Scoping Review for Conservation. PLANTS 2021; 10:plants10091780. [PMID: 34579313 PMCID: PMC8465005 DOI: 10.3390/plants10091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The increasing demand for ornamental, cosmetic and pharmaceutical products is driving exploitation of plant species globally. Sub-Saharan Africa harbours unique and valuable plant resources and is now a target of plant resource depletion. African Sandalwood (Osyris lanceolata), a multi-purpose and drought-tolerant species, has seen increased exploitation for the last thirty years and is now declared endangered. Initiatives to conserve O. lanceolata are not yet successful in Africa due to poor understanding of the species. This review surveys relevant research on the ecology, taxonomy, population dynamics, genetic diversity and ethnobotany of O. lanceolata, and highlights gaps in the literature for further research. A scoping review of grey literature, scholarly papers and reports was applied with pre-determined criteria to screen relevant information. Review findings indicate O. lanceolata is a globally distributed species with no identified center of origin. In Africa, it ranges from Algeria to Ethiopia and south to South Africa; in Europe it occurs in the Iberian Peninsula and Balearic Islands; in Asia from India to China, and also on Socotra. The species has a confusing taxonomy, with unresolved issues in nomenclature, country range distribution, extensive synonymisation and variation in growth form (shrub or tree). The species population is reported to be declining in Africa, but information on population dynamics across its entire range of distribution is anecdotal. Additionally, ecological factors influencing spatial distribution and survival of the species remain unknown. A variety of uses are reported for O. lanceolata globally, including: cultural; medicinal and food; dye; perfumery; timber; ethnoveterinary and phytoremediation. Key research areas and implications for conservation of O. lanceolata in Sub-Saharan Africa are proposed.
Collapse
Affiliation(s)
- Ben Belden Mugula
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
- Department of Life and Physical Sciences, School of Natural Sciences, Bugema University, Kampala P.O. Box 6529, Uganda
- Correspondence:
| | - Samuel Kuria Kiboi
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
| | - James Ireri Kanya
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
| | - Anthony Egeru
- College of Environmental and Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Paul Okullo
- National Agricultural Research Organization (NARO), Entebbe P.O. Box 295, Uganda;
| | - Manuel Curto
- Department of Integrative Biology and Biodiversity Research, Institute of Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Gregor Mendel-Straße 33, A-1180 Vienna, Austria; (M.C.); (H.M.)
- MARE-Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Harald Meimberg
- Department of Integrative Biology and Biodiversity Research, Institute of Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Gregor Mendel-Straße 33, A-1180 Vienna, Austria; (M.C.); (H.M.)
| |
Collapse
|
10
|
Genetic Diversity and Differentiation of Pedunculate Oak (Quercus robur L.) Populations at the Southern Margin of Its Distribution Range—Implications for Conservation. DIVERSITY 2021. [DOI: 10.3390/d13080371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding intraspecific genetic variation is one of the principal requirements for the evaluation of tree species capacity to cope with intensive climatic changes, as well as designing long-term conservation programs. Herein, we evaluated the genetic diversity and genetic structure of seven pedunculate oak (Quercus robur L.) populations, located at the southern margin of its distribution range on the Balkan Peninsula (Serbia). The objective of the study was to propose future in situ conservation measures aimed at protection of pedunculate oak adaptive and neutral genetic diversity at the species rear-edge. Genetic diversity and structure were estimated using twelve highly polymorphic simple sequence repeat (SSR) markers. The mean expected heterozygosity (He) was 0.769, allelic richness (AR) 9.63, and private allelic richness (pAR) 0.79, indicating high genetic diversity in the studied populations. Genetic differentiation among the populations was low (Fst = 0.032). Structure analysis, the unweighted pair group method with arithmetic mean (UPGMA) showed the existence of two gene pools unrelated to the populations’ area of occurrence. Taking into consideration the results of the current study and previous conservation activities on the pedunculate oak in Serbia, as well as the importance of rear-edge populations in the long-term conservation of the species genetic diversity, we suggested establishing three additional gene conservation units for securing long-term sustainability of the species.
Collapse
|
11
|
Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L, Piotti A, Popescu F, Postolache D, Vendramin GG, Csilléry K. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 2021; 30:5247-5265. [PMID: 34365696 PMCID: PMC9291806 DOI: 10.1111/mec.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine‐scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east‐west isolation‐by‐distance pattern consistent with the post‐glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post‐glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non‐spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.
Collapse
Affiliation(s)
- Enikő I Major
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Mária Höhn
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Bruno Fady
- Ecology of Mediterranean Forests (URFM), INRAE, UR629, Avignon, France
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Flaviu Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Dragos Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Dabral A, Shamoon A, Meena RK, Kant R, Pandey S, Ginwal HS, Bhandari MS. Genome skimming-based simple sequence repeat (SSR) marker discovery and characterization in Grevillea robusta. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1623-1638. [PMID: 34305342 PMCID: PMC8285676 DOI: 10.1007/s12298-021-01035-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Proteaceae, a largely southern hemisphere family consisting of 80 genera distributed in Australia and southern Africa as its centres of greatest diversity, also extends well in northern and southern America. Under this family, Grevillea robusta is a fast-growing species got popularity in farm and avenue plantations. Despite the ecological and economic importance, the species has not yet been investigated for its genetic improvement and genome-based studies. Only a few molecular markers are available for the species or its close relatives, which hinders genomic and population genetics studies. Genetic markers have been intensively applied for the main strategies in breeding programs, especially for the economically important traits. Hence, it is of utmost priority to develop genomic database resources and species-specific markers for studying quantitative genetics in G. robusta. Given this, the present study aimed to develop de novo genome sequencing, robust microsatellites markers, sequence annotation and their validation in different stands of G. robusta in northern India. Library preparation and sequencing were carried out using Illumina paired-end sequencing technology. Approximately, ten gigabases (Gb) sequence data with 70.87 million raw reads assembled into 425,923 contigs (read mapped to 76.48%) comprising 455 Mb genome size (23 × coverage) generated through genome skimming approach. In total, 9421 simple sequence repeat (SSR) primer pairs were successfully designed from 13,335 microsatellite repeats. Afterward, a subset of 161 primer pairs was randomly selected, synthesized and validated. All the tested primers showed successful amplification but only 13 showed polymorphisms. The polymorphic SSRs were further used to estimate the measures of genetic diversity in 12 genotypes each from the states of Punjab, Haryana, Himachal Pradesh and Uttarakhand. Importantly, the average number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.69, 0.356, 0.557 and 0.388, respectively. The availability of sequence information and newly developed SSR markers could potentially be used in various genetic analyses and improvements through molecular breeding strategies for G. robusta. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01035-w.
Collapse
Affiliation(s)
- Aman Dabral
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Rajendra K. Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand 248 006 India
| | - Harish S. Ginwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Maneesh S. Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| |
Collapse
|
13
|
Wang Y, Lyu T, Luo A, Li Y, Liu Y, Freckleton RP, Liu S, Wang Z. Spatial Patterns and Drivers of Angiosperm Sexual Systems in China Differ Between Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1222. [PMID: 32849756 PMCID: PMC7432134 DOI: 10.3389/fpls.2020.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Plant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.
Collapse
Affiliation(s)
- Yunyun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaoqi Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Robert P. Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Phenotypic Variability and Genetic Diversity in a Pinus koraiensis Clonal Trial in Northeastern China. Genes (Basel) 2020; 11:genes11060673. [PMID: 32575537 PMCID: PMC7348814 DOI: 10.3390/genes11060673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
Combining phenotypic and genetic characteristics in a genetic variation study is of paramount importance to effectively orient the selection of producers’ elite trees in a seed orchard. In total, 28 phenotypic characteristics and 16 microsatellite loci were used to analyze the clonal genetic variation, to characterize the genetic diversity, and to refine the genetic classifications of 110 Pinus koraiensis clones grown in the Naozhi orchard in northeastern China. All clones were significantly different in most traits. Most of the phenotypic characteristics showed great genetic variation among clones, while the genotypic differentiation was weak between the selection sites of clones. The SSR markers showed a relatively high level of genetic diversity (Na = 4.67 ± 0.43, Ne = 2.916 ± 0.18, I = 1.15 ± 0.07, Ho = 0.69 ± 0.04, He = 0.62 ± 0.02, and mean polymorphic information content (PIC) of 0.574), with higher heterozygosity as an indication of a lower probability of inbreeding events in the orchard. Despite weak correlation coefficients between dissimilarity matrices (r(A/B), range equal to 0.022, p-value < 0.001), the genetic and phenotypic classifications congruently subdivided all the clones into three major groups. The patterns of phenotypic trait variations and genetic diversity are valuable to effectively select materials in breeding programs of P. koraiensis.
Collapse
|
15
|
Abstract
Norway spruce is a widespread and economically highly important tree species in Central Europe which occurs there in different morphotypic forms (also known as ecotypes). Previously established common garden experiments indicated that the morphological differentiation is most likely genetically determined. The genetic structure of Norway spruce morphological variants might be an indicator (marker) of specific sustainability in forest ecosystems. In this study, we investigated 436 individuals from autochthonous populations belonging to three different ecotypes. The main aim was to evaluate a level of genetic intra and interpopulation diversity among the low, medium and high-elevation ecotypes using both expressed sequence tag simple sequence repeats (EST – SSR) and genomic SSR markers. Sixteen highly polymorphic microsatellite loci folded in two newly designed multiplexes were used to depicture the genetic structure of targeted trees. Important allele frequency parameters, such as the mean expected (0.722, SE = 0.061) and observed (0.585, SE = 0.062) heterozygosity and mean effective number of alleles (Ne = 5.943, SE = 1.279), were estimated. The low genetic differentiation detected among different ecotypes (Fst = 0.008) was further discussed and clarified.
Collapse
|
16
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
17
|
Assessment of Genetic Diversity and Population Genetic Structure of Norway Spruce (Picea abies (L.) Karsten) at Its Southern Lineage in Europe. Implications for Conservation of Forest Genetic Resources. FORESTS 2019. [DOI: 10.3390/f10030258] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present paper we studied the genetic diversity and genetic structure of five Norway spruce (Picea abies (L.) Karsten) natural populations situated in Serbia, belonging to the southern lineage of the species at the southern margin of the species distribution range. Four populations occur as disjunct populations on the outskirts of the Dinaric Alps mountain chain, whereas one is located at the edge of Balkan Mountain range and, therefore, can be considered as ecologically marginal due to drier climatic conditions occurring in this region. Due to the negative effect of biotic and abiotic stress factors, the sustainability of these populations is endangered, making conservation of their genetic resources one of the key measures of Norway spruce persistence in Serbia under climatic changes. The insight on genetic diversity and genetic structure of the studied spruce populations can provide the information required for the initiation of programs aimed at the conservation and utilization of spruce genetic resources at the rear edge of species environmental limits. Norway spruce genetic variation and population genetic structure were estimated using eight EST-SSR markers. The results showed that mean expected heterozygosity was 0.616 and allelic richness 10.22. Genetic differentiation among populations was low (Fst = 0.007). No recent bottleneck effect or isolation by distance were detected. Bayesian clustering, obtained with STRUCTURE, grouped the populations into two genetic clusters, whereas UPGMA analysis distinguished three main groups approximately in line with the geographic area of occurrence. Based on the study results and the EUFORGEN Pan-European strategy for genetic conservation of forest trees, the establishment of additional dynamic gene conservation units must be considered in Serbia in order to protect the adaptive and neutral genetic diversity of the species.
Collapse
|
18
|
Meena RK, Bhandhari MS, Barhwal S, Ginwal HS. Genetic diversity and structure of Dendrocalamus hamiltonii natural metapopulation: a commercially important bamboo species of northeast Himalayas. 3 Biotech 2019; 9:60. [PMID: 30729084 DOI: 10.1007/s13205-019-1591-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Dendrocalamus hamiltonii is a commercially important bamboo species of India, experiencing population depletion due to heavy extraction from natural forests. Nuclear simple sequence repeats (nSSRs) were used to study the genetic diversity and population genetic structure of 19 natural stands of D. hamiltonii distributed across the northeast Himalayas. A total of 68 nSSR primer pairs of D. latiflorus and Bambusa arundinacea have been tested in D. hamiltonii for their transferability, out of which 17 primers showing positive and polymorphic amplification were used for genotyping. A total of 130 alleles were generated in 535 individuals of all the populations using selected primer pairs. The marker analysis indicated that D. hamiltonii populations have maintained a low level of genetic diversity (h = 0.175, I = 0.291) in northeastern region of India. Despite a large proportion of the genetic variation (83.47%) confined within the populations, a moderate level of genetic differentiation (F ST = 0.165) was observed among the populations. The clustering pattern obtained in UPGMA and STRUCTURE analysis revealed that most of the populations were clustered in accordance with their geographical distribution. Two populations (DH03 and DH13) exhibiting significant genetic admixture were identified and recommended for in situ conservation. In addition, six highly diverse populations were also suggested for conservation in different geographical area under study. The study has revealed useful nSSR markers for D. hamiltonii, which were lacking earlier and the information generated herein is of paramount importance in devising programs for species conservation and genetic improvement.
Collapse
|
19
|
Manzanedo RD, Schanz FR, Fischer M, Allan E. Fagus sylvatica seedlings show provenance differentiation rather than adaptation to soil in a transplant experiment. BMC Ecol 2018; 18:42. [PMID: 30285730 PMCID: PMC6171197 DOI: 10.1186/s12898-018-0197-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding and predicting the response of tree populations to climate change requires understanding the pattern and scale of their adaptation. Climate is often considered the major driver of local adaptation but, although biotic factors such as soil pathogens or mutualists could be as important, their role has typically been neglected. Biotic drivers might also interact with climate to affect performance and mycorrhizae, in particular, are likely to play a key role in determining drought resistance, which is important in the context of adaptation to future environmental change. To address these questions, we performed a fully reciprocal soil-plant transplant experiment using Fagus sylvatica seedlings and soils from three regions in Germany. To separate the biotic and abiotic effects of inoculation, half of the plants were inoculated with natural soil from the different origins, while the rest were grown on sterilized substrate. We also imposed a drought stress treatment to test for interactions between soil biota and climate. After 1 year of growth, we measured aboveground biomass of all seedlings, and quantified mycorrhizal colonization for a subset of the seedlings, which included all soil-plant combinations, to disentangle the effect of mycorrhiza from other agents. RESULTS We found that plant origin had the strongest effect on plant performance, but this interacted with soil origin. In general, trees showed a slight tendency to produce less aboveground biomass on local soils, suggesting soil antagonists could be causing trees to be maladapted to their local soils. Consistently, we found lower mycorrhizal colonization rate under local soil conditions. Across all soils, seedlings from low elevations produced more annual biomass than middle (+ 290%) and high (+ 97%) elevations. Interestingly, mycorrhizal colonization increased with drought in the two provenances that showed higher drought tolerance, which supports previous results showing that mycorrhizae can increase drought resistance. CONCLUSIONS Our findings suggest that soil communities play a role in affecting early performance of temperate trees, although this role may be smaller than that of seed origin. Also, other effects, such as the positive response to generalists or negative interactions with soil biota may be as important as the highly specialized mycorrhizal associations.
Collapse
Affiliation(s)
- R. D. Manzanedo
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - F. R. Schanz
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - M. Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - E. Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
20
|
Hendrickson B. Genetic Diversity and Population Structure of Shortleaf Pine (Pinus echinata) in the Missouri Ozarks. AMERICAN MIDLAND NATURALIST 2018. [DOI: 10.1674/0003-0031-180.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- B. Hendrickson
- Division of Biological Sciences, University of Missouri, Columbia, 65211
| |
Collapse
|
21
|
|
22
|
Rebaa F, Abid G, Aouida M, Abdelkarim S, Aroua I, Muhovski Y, Baudoin JP, M’hamdi M, Sassi K, Jebara M. Genetic variability in Tunisian populations of faba bean ( Vicia faba L. var. major) assessed by morphological and SSR markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:397-409. [PMID: 28461727 PMCID: PMC5391353 DOI: 10.1007/s12298-017-0419-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The genetic diversity of 21 faba bean populations was examined using morphological and molecular markers. DNA was extracted from 189 individuals and 8 microsatellite markers were genotyped individually in these 21 populations. A total of 53 alleles were obtained in all populations, with an average of 6.62 alleles per locus. The expected and observed heterozygosity was 0.38 and 0.62 respectively. The average polymorphism index content of SSR markers was 0.61, ranging from 0.31 to 0.81. The unweighted pair group method with arithmetic mean dendrogram clustered all the populations into two groups, each for them subdivided into 3 sub-groups according to geographical origin. Morphological variation showed that the populations were not grouped according to their geographical origin. Therefore, patterns of differentiation of morphological traits did not coincide with molecular differentiation, indicating that morphological variation does not reflect genetic subdivision in studied faba bean populations. Analysis of molecular variance revealed high levels of genetic variation (83%) within population and provides a good base for designing genetic improvement programs. The result of Principal Component Analysis (PCA) revealed that three dimensional principal components (PC1, PC2 and PC3) contributed 40.56% of the total variability and accounted with values of 20.64, 11.22 and 8.70%, respectively. Cluster analysis based on PCA indicated three separate groups of populations. The genetic relationships found between the 21 populations samples were the same in both the PCA and STRUCTURE analysis which support the results observed. These data may serve as a foundation for the development of faba bean breeding programs.
Collapse
Affiliation(s)
- Feten Rebaa
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Marwa Aouida
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Souhir Abdelkarim
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Ibtissem Aroua
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Yordan Muhovski
- Department of Life Sciences, Unit of Biological Engineering, Walloon Agricultural Research Centre, Chaussée de Charleroi, 234, 5030 Gembloux, Belgium
| | - Jean-Pierre Baudoin
- Laboratory of Tropical Agroecology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Mahmoud M’hamdi
- Laboratory of Vegetable Crops, Higher Agronomic Institute of Chott Mariem (ISA-CM), 47, 4042 Chott-Mariem, Tunisia
| | - Khaled Sassi
- Department of Agronomy and Plant Biotechnology, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, 43, 1082 Tunis-Mahrajène, Tunisia
| | - Moez Jebara
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
23
|
|
24
|
Reim S, Lochschmidt F, Proft A, Tröber U, Wolf H. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany. BIODIVERSITY: RESEARCH AND CONSERVATION 2016. [DOI: 10.1515/biorc-2016-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR) and chloroplast single nucleotide polymorphism (cpSNP). In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA). The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM) in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.
Collapse
|
25
|
Porth I, Klápště J, McKown AD, La Mantia J, Guy RD, Ingvarsson PK, Hamelin R, Mansfield SD, Ehlting J, Douglas CJ, El-Kassaby YA. Evolutionary Quantitative Genomics of Populus trichocarpa. PLoS One 2015; 10:e0142864. [PMID: 26599762 PMCID: PMC4658102 DOI: 10.1371/journal.pone.0142864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture, Wooster, Ohio, 44691 United States of America
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pär K. Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-901 87, Sweden
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- * E-mail:
| |
Collapse
|
26
|
Sumathi M, Yasodha R. Microsatellite resources of Eucalyptus: current status and future perspectives. BOTANICAL STUDIES 2014; 55:73. [PMID: 28510953 PMCID: PMC5430318 DOI: 10.1186/s40529-014-0073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 06/07/2023]
Abstract
Eucalyptus is the premier paper pulp, short rotation plantation species grown all over the world. Genetic improvement programs integrating molecular marker tools are in progress in many parts of the globe to increase the productivity. Whole genome sequence and expressed sequence tags (ESTs) of the eucalypts paved way for introduction of molecular genetics and breeding in this genus. Different molecular characterization approaches have been used simultaneously in eucalypts, however, microsatellites or simple sequence repeats (SSRs) with their prolific characteristics could occupy a special niche in Eucalyptus genetic improvement. Further, highly informative SSRs were used for the clonal identity, genetic fidelity and in certification of breeder's rights. Eucalyptus genetic linkage maps generated with microsatellite loci were used successfully to identify quantitative trait loci (QTLs) for various economically important traits. Progressively more numbers of microsatellites are being linked to genes associated with adaptive and functional variations, therefore making their utility broader in genetic applications. Availability of common SSR markers across the species provides an opportunity to validate the expression of QTLs across variable genetic backgrounds and accurately compare the position of QTLs in other species. Recent evidences suggest that the presence of SSRs in micro RNAs of plant species play a role in the quantitative trait expression. Similar studies in eucalypts may provide new insights into the genetic architecture of transcript-level variations and post transcriptional gene regulation. This review on eucalypts microsatellites, highlights the availability and characteristics of genomic and eSSRs and their potential in genetic analysis of natural and breeding populations and also discusses the future prospects in population genetics and marker assisted selection.
Collapse
Affiliation(s)
- Murugan Sumathi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| | - Ramasamy Yasodha
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| |
Collapse
|