1
|
B Gowda SG, Shekhar C, Gowda D, Chen Y, Chiba H, Hui SP. Mass spectrometric approaches in discovering lipid biomarkers for COVID-19 by lipidomics: Future challenges and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:1041-1065. [PMID: 37102760 DOI: 10.1002/mas.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Lane D, Allsopp R, Holmes CW, Slingsby OC, Jukes-Jones R, Bird P, Anderson NL, Razavi M, Yip R, Pearson TW, Pope M, Khunti K, Doykov I, Hällqvist J, Mills K, Skipp P, Carling R, Ng L, Shaw J, Gupta P, Jones DJL. A high throughput immuno-affinity mass spectrometry method for detection and quantitation of SARS-CoV-2 nucleoprotein in human saliva and its comparison with RT-PCR, RT-LAMP, and lateral flow rapid antigen test. Clin Chem Lab Med 2024; 62:1206-1216. [PMID: 38253336 DOI: 10.1515/cclm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVES Many reverse transcription polymerase chain reaction (RT-PCR) methods exist that can detect SARS-CoV-2 RNA in different matrices. RT-PCR is highly sensitive, although viral RNA may be detected long after active infection has taken place. SARS-CoV-2 proteins have shorter detection windows hence their detection might be more meaningful. Given salivary droplets represent a main source of transmission, we explored the detection of viral RNA and protein using four different detection platforms including SISCAPA peptide immunoaffinity liquid chromatography-mass spectrometry (SISCAPA-LC-MS) using polyclonal capture antibodies. METHODS The SISCAPA-LC MS method was compared to RT-PCR, RT-loop-mediated isothermal amplification (RT-LAMP), and a lateral flow rapid antigen test (RAT) for the detection of virus material in the drool saliva of 102 patients hospitalised after infection with SARS-CoV-2. Cycle thresholds (Ct) of RT-PCR (E gene) were compared to RT-LAMP time-to-positive (TTP) (NE and Orf1a genes), RAT optical densitometry measurements (test line/control line ratio) and to SISCAPA-LC-MS for measurements of viral protein. RESULTS SISCAPA-LC-MS showed low sensitivity (37.7 %) but high specificity (89.8 %). RAT showed lower sensitivity (24.5 %) and high specificity (100 %). RT-LAMP had high sensitivity (83.0 %) and specificity (100.0 %). At high initial viral RNA loads (<20 Ct), results obtained using SISCAPA-LC-MS correlated with RT-PCR (R2 0.57, p-value 0.002). CONCLUSIONS Detection of SARS-CoV-2 nucleoprotein in saliva was less frequent than the detection of viral RNA. The SISCAPA-LC-MS method allowed processing of multiple samples in <150 min and was scalable, enabling high throughput.
Collapse
Affiliation(s)
- Dan Lane
- The Department of Chemical Pathology and Metabolic Diseases, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rebecca Allsopp
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Christopher W Holmes
- Clinical Microbiology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Rebekah Jukes-Jones
- The Department of Chemical Pathology and Metabolic Diseases, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | - Paul Bird
- Clinical Microbiology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | | | - Richard Yip
- SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | | | - Matt Pope
- SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Kamlesh Khunti
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Ivan Doykov
- Genetics & Genomic Medicine Department, Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, UK
- Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health, London, UK
| | - Jenny Hällqvist
- Genetics & Genomic Medicine Department, Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, UK
- Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health, London, UK
| | - Kevin Mills
- Genetics & Genomic Medicine Department, Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, UK
- Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health, London, UK
| | - Paul Skipp
- Centre for Proteomic Research, University of Southampton, Southampton, UK
| | - Rachel Carling
- Biochemical Sciences, Synnovis, Guys & St Thomas' NHSFT, London, UK
- GKT School Medical Education, Kings College London, London, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- van Geest MS-OMICS Facility, University of Leicester, Leicester, UK
| | - Jacqui Shaw
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Pankaj Gupta
- The Department of Chemical Pathology and Metabolic Diseases, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Donald J L Jones
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- van Geest MS-OMICS Facility, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Yegorov S, Kadyrova I, Korshukov I, Sultanbekova A, Kolesnikova Y, Barkhanskaya V, Bashirova T, Zhunusov Y, Li Y, Parakhina V, Kolesnichenko S, Baiken Y, Matkarimov B, Vazenmiller D, Miller MS, Hortelano GH, Turmukhambetova A, Chesca AE, Babenko D. Application of MALDI-TOF MS and machine learning for the detection of SARS-CoV-2 and non-SARS-CoV-2 respiratory infections. Microbiol Spectr 2024; 12:e0406823. [PMID: 38497716 PMCID: PMC11064577 DOI: 10.1128/spectrum.04068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) could aid the diagnosis of acute respiratory infections (ARIs) owing to its affordability and high-throughput capacity. MALDI-TOF MS has been proposed for use on commonly available respiratory samples, without specialized sample preparation, making this technology especially attractive for implementation in low-resource regions. Here, we assessed the utility of MALDI-TOF MS in differentiating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vs non-COVID acute respiratory infections (NCARIs) in a clinical lab setting in Kazakhstan. Nasopharyngeal swabs were collected from inpatients and outpatients with respiratory symptoms and from asymptomatic controls (ACs) in 2020-2022. PCR was used to differentiate SARS-CoV-2+ and NCARI cases. MALDI-TOF MS spectra were obtained for a total of 252 samples (115 SARS-CoV-2+, 98 NCARIs, and 39 ACs) without specialized sample preparation. In our first sub-analysis, we followed a published protocol for peak preprocessing and machine learning (ML), trained on publicly available spectra from South American SARS-CoV-2+ and NCARI samples. In our second sub-analysis, we trained ML models on a peak intensity matrix representative of both South American (SA) and Kazakhstan (Kaz) samples. Applying the established MALDI-TOF MS pipeline "as is" resulted in a high detection rate for SARS-CoV-2+ samples (91.0%), but low accuracy for NCARIs (48.0%) and ACs (67.0%) by the top-performing random forest model. After re-training of the ML algorithms on the SA-Kaz peak intensity matrix, the accuracy of detection by the top-performing support vector machine with radial basis function kernel model was at 88.0%, 95.0%, and 78% for the Kazakhstan SARS-CoV-2+, NCARI, and AC subjects, respectively, with a SARS-CoV-2 vs rest receiver operating characteristic area under the curve of 0.983 [0.958, 0.987]; a high differentiation accuracy was maintained for the South American SARS-CoV-2 and NCARIs. MALDI-TOF MS/ML is a feasible approach for the differentiation of ARI without specialized sample preparation. The implementation of MALDI-TOF MS/ML in a real clinical lab setting will necessitate continuous optimization to keep up with the rapidly evolving landscape of ARI.IMPORTANCEIn this proof-of-concept study, the authors used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning (ML) to identify and distinguish acute respiratory infections (ARI) caused by SARS-CoV-2 versus other pathogens in low-resource clinical settings, without the need for specialized sample preparation. The ML models were trained on a varied collection of MALDI-TOF MS spectra from studies conducted in Kazakhstan and South America. Initially, the MALDI-TOF MS/ML pipeline, trained exclusively on South American samples, exhibited diminished effectiveness in recognizing non-SARS-CoV-2 infections from Kazakhstan. Incorporation of spectral signatures from Kazakhstan substantially increased the accuracy of detection. These results underscore the potential of employing MALDI-TOF MS/ML in resource-constrained settings to augment current approaches for detecting and differentiating ARI.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Irina Kadyrova
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | - Ilya Korshukov
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | | | | | | | - Tatiana Bashirova
- City Centre for Primary Medical and Sanitary Care, Karaganda, Kazakhstan
| | - Yerzhan Zhunusov
- Infectious Disease Centre of the Karaganda Regional Clinical Hospital, Karaganda, Kazakhstan
| | - Yevgeniya Li
- Infectious Disease Centre of the Karaganda Regional Clinical Hospital, Karaganda, Kazakhstan
| | - Viktoriya Parakhina
- Infectious Disease Centre of the Karaganda Regional Clinical Hospital, Karaganda, Kazakhstan
- Department of Internal Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | | | - Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Astana, Kazakhstan
| | | | - Matthew S. Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | - Dmitriy Babenko
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
4
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
5
|
Yamada CAO, de Paula Oliveira Santos B, Lemos RP, Batista ACS, da Conceição IMCA, de Paula Sabino A, E Lima LMTDR, de Magalhães MTQ. Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:33-61. [PMID: 38409415 DOI: 10.1007/978-3-031-50624-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.
Collapse
Affiliation(s)
- Camila Akemi Oliveira Yamada
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno de Paula Oliveira Santos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Pereira Lemos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Silva Batista
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Adriano de Paula Sabino
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Clinical and Molecular Hematology - Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana T Q de Magalhães
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Biochemistry and Immunology Postgraduate Program, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Błońska D, Kłodzińska E, Buszewski B. Fractionation of bacteria by electrophoresis as pre-separation method before MALDI-MS detection. Electrophoresis 2023; 44:1165-1176. [PMID: 37171810 DOI: 10.1002/elps.202300012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The present study attempted to apply the capillary electrophoresis technique for the fractionation and separation of S. Staphylococcus hominis and Escherichia coli bacteria isolated from urine samples and the detection of migrated fraction with spectrometric method. This involved the selection of suitable conditions for separation as well as the identification of pathogens. The result of the research was the separation of Gram-negative and Gram-positive bacteria, as well as their subsequent identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using two different approaches (culture of fractions on an agar plate and direct analysis of the collected fractions). The preliminary results provide a solid basis for further research on the use of electromigration techniques with LDI detection to identify pathogens such as bacteria and viruses in biological samples.
Collapse
Affiliation(s)
- Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies - BioSep, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Kłodzińska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies - BioSep, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Buszewski B, Błońska D, Kłodzińska E, Konop M, Kubesová A, Šalplachta J. Determination of Pathogens by Electrophoretic and Spectrometric Techniques. Crit Rev Anal Chem 2023:1-24. [PMID: 37326587 DOI: 10.1080/10408347.2023.2219748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In modern medical diagnostics, where analytical chemistry plays a key role, fast and accurate identification of pathogens is becoming increasingly important. Infectious diseases pose a growing threat to public health due to population growth, international air travel, bacterial resistance to antibiotics, and other factors. For instance, the detection of SARS-CoV-2 in patient samples is a key tool to monitor the spread of the disease. While there are several techniques for identifying pathogens by their genetic code, most of these methods are too expensive or slow to effectively analyze clinical and environmental samples that may contain hundreds or even thousands of different microbes. Standard approaches (e.g., culture media and biochemical assays) are known to be very time- and labor-intensive. The purpose of this review paper is to highlight the problems associated with the analysis and identification of pathogens that cause many serious infections. Special attention was paid to the description of mechanisms and the explanation of the phenomena and processes occurring on the surface of pathogens as biocolloids (charge distribution). This review also highlights the importance of electromigration techniques and demonstrates their potential for pathogen pre-separation and fractionation and demonstrates the use of spectrometric methods, such as MALDI-TOF MS, for their detection and identification.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University in Toruń, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Torun, Poland
| | - Ewa Kłodzińska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kubesová
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| |
Collapse
|
8
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
9
|
Santos HM, Carvalho LB, Lodeiro C, Martins G, Gomes IL, D. T. Antunes W, Correia V, Almeida-Santos MM, Rebelo-de-Andrade H, Matos AP, Capelo J. “How to dissect viral infections and their interplay with the host-proteome by immunoaffinity and mass spectrometry: A tutorial.”. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wong TF, So PK, Yao ZP. Advances in rapid detection of SARS-CoV-2 by mass spectrometry. Trends Analyt Chem 2022; 157:116759. [PMID: 36035092 PMCID: PMC9391230 DOI: 10.1016/j.trac.2022.116759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 12/25/2022]
Abstract
COVID-19 has already been lasting for more than two years and it has been severely affecting the whole world. Still, detection of SARS-CoV-2 remains the frontline approach to combat the pandemic, and the reverse transcription polymerase chain reaction (RT-PCR)-based method is the well recognized detection method for the enormous analytical demands. However, the RT-PCR method typically takes a relatively long time, and can produce false positive and false negative results. Mass spectrometry (MS) is a very commonly used technique with extraordinary sensitivity, specificity and speed, and can produce qualitative and quantitative information of various analytes, which cannot be achieved by RT-PCR. Since the pandemic outbreak, various mass spectrometric approaches have been developed for rapid detection of SARS-CoV-2, including the LC-MS/MS approaches that could allow analysis of several hundred clinical samples per day with one MS system, MALDI-MS approaches that could directly analyze clinical samples for the detection, and efforts for the on-site detection with portable devices. In this review, these mass spectrometric approaches were summarized, and their pros and cons as well as further development were also discussed.
Collapse
Affiliation(s)
- Tsz-Fung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
11
|
Iles RK, Iles JK, Lacey J, Gardiner A, Zmuidinaite R. Direct Detection of Glycated Human Serum Albumin and Hyperglycosylated IgG3 in Serum, by MALDI-ToF Mass Spectrometry, as a Predictor of COVID-19 Severity. Diagnostics (Basel) 2022; 12:diagnostics12102521. [PMID: 36292212 PMCID: PMC9601263 DOI: 10.3390/diagnostics12102521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The prefusion spike protein of SARS-CoV-2 binds advanced glycation end product (AGE)-glycated human serum albumin (HSA) and a higher mass (hyperglycosylated/glycated) immunoglobulin (Ig) G3, as determined by matrix assisted laser desorption mass spectrometry (MALDI-ToF). We set out to investigate if the total blood plasma of patients who had recovered from acute respiratory distress syndrome (ARDS) as a result of COVID-19, contained more glycated HSA and higher mass (glycosylated/glycated) IgG3 than those with only clinically mild or asymptomatic infections. A direct serum dilution, and disulphide bond reduction, method was developed and applied to plasma samples from SARS-CoV-2 seronegative (n = 30) and seropositive (n = 31) healthcare workers (HCWs) and 38 convalescent plasma samples from patients who had been admitted with acute respiratory distress (ARDS) associated with COVID-19. Patients recovering from COVID-19 ARDS had significantly higher mass AGE-glycated HSA and higher mass IgG3 levels. This would indicate that increased levels and/or ratios of hyper-glycosylation (probably terminal sialic acid) IgG3 and AGE glycated HSA may be predisposition markers for the development of COVID-19 ARDS as a result of SARS-CoV2 infection. Furthermore, rapid direct analysis of serum/plasma samples by MALDI-ToF for such humoral immune correlates of COVID-19 presents a feasible screening technology for the most at risk; regardless of age or known health conditions.
Collapse
Affiliation(s)
- Ray K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- NISAD, Sundstorget 2, 252-21 Helsingborg, Sweden
- Correspondence:
| | - Jason K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan Lacey
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Anna Gardiner
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Raminta Zmuidinaite
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
12
|
Yu S, Li X, Xin Z, Sun L, Shi J. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Front Immunol 2022; 13:923387. [PMID: 36203586 PMCID: PMC9530739 DOI: 10.3389/fimmu.2022.923387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
At the end of 2019, the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, seriously damaged world public health security. Several protein markers associated with virus infection have been extensively explored to combat the ever-increasing challenge posed by SARS-CoV-2. The proteomics of COVID-19 deepened our understanding of viral particles and their mechanisms of host invasion, providing us with information on protein changes in host tissues, cells and body fluids following infection in COVID-19 patients. In this review, we summarize the proteomic studies of SARS-CoV-2 infection and review the current understanding of COVID-19 in terms of the quantitative and qualitative proteomics of viral particles and host entry factors from the perspective of protein pathological changes in the organism following host infection.
Collapse
Affiliation(s)
- Shengman Yu
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Xiaoyan Li
- Department of Infection Control Department, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Liyuan Sun
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
13
|
Iles RK, Iles JK, Zmuidinaite R, Roberts M. A How to Guide: Clinical Population Test Development and Authorization of MALDI-ToF Mass Spectrometry-Based Screening Tests for Viral Infections. Viruses 2022; 14:v14091958. [PMID: 36146765 PMCID: PMC9501081 DOI: 10.3390/v14091958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Applying MALDI-ToF mass spectrometry as a clinical diagnostic test for viruses is different from that of bacteria, fungi and other micro-organisms. This is because the systems biology of viral infections, the size and chemical nature of specific viral proteins and the mass spectrometry biophysics of how they are quantitated are fundamentally different. The analytical challenges to overcome when developing a clinical MALDI-ToF mass spectrometry tests for a virus, particularly human pathogenic enveloped viruses, are sample enrichment, virus envelope disruption, optimal matrix formulation, optimal MALDI ToF MS performance and optimal spectral data processing/bioinformatics. Primarily, the instrument operating settings have to be optimized to match the nature of the viral specific proteins, which are not compatible with setting established when testing for bacterial and many other micro-organisms. The capacity to be a viral infection clinical diagnostic instrument often stretches current mass spectrometers to their operational design limits. Finally, all the associated procedures, from sample collection to data analytics, for the technique have to meet the legal and operational requirement for often high-throughput clinical testing. Given the newness of the technology, clinical MALDI ToF mass spectrometry does not fit in with standard criteria applied by regulatory authorities whereby numeric outputs are compared directly to similar technology tests that have already been authorized for use. Thus, CLIA laboratory developed test (LDT) criteria have to be applied. This article details our experience of developing a SAR-CoV-2 MALDI-ToF MS test suitable for asymptomatic carrier infection population screening.
Collapse
Affiliation(s)
- Ray K. Iles
- MAP Sciences Ltd., The iLAB, Stannard Way, Priory Business Park, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| | - Jason K. Iles
- MAP Sciences Ltd., The iLAB, Stannard Way, Priory Business Park, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Raminta Zmuidinaite
- MAP Sciences Ltd., The iLAB, Stannard Way, Priory Business Park, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Michael Roberts
- Chem Quant Analytical Solutions, LLC, 1093 Investment Blvd, Apex, NC 27502, USA
| |
Collapse
|
14
|
Chen D, Bryden WA, Fenselau C, McLoughlin M, Haddaway CR, Devin AP, Caton ER, Bradrick SS, Miller JM, Tacheny EA, Lemmon MM, Bogan J. MALDI-TOF Mass Spectrometric Detection of SARS-CoV-2 Using Cellulose Sulfate Ester Enrichment and Hot Acid Treatment. J Proteome Res 2022; 21:2055-2062. [PMID: 35787094 PMCID: PMC9305670 DOI: 10.1021/acs.jproteome.2c00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry,
University of Maryland, College Park, Maryland 20742,
United States
| | | | | | - Alese P. Devin
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | - Emily R. Caton
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Joy M. Miller
- MRIGlobal, Kansas City,
Missouri 64110, United States
| | | | | | - Joseph Bogan
- MRIGlobal, Gaithersburg,
Maryland 20878, United States
| |
Collapse
|
15
|
Tsai H, Phinney BS, Grigorean G, Salemi MR, Rashidi HH, Pepper J, Tran NK. Identification of Endogenous Peptides in Nasal Swab Transport Media used in MALDI-TOF-MS Based COVID-19 Screening. ACS OMEGA 2022; 7:17462-17471. [PMID: 35600141 PMCID: PMC9113002 DOI: 10.1021/acsomega.2c01864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS) based diagnostic detection of 2019 novel coronavirus infectious disease (COVID-19) has been postulated to be a useful alternative to classical PCR based diagnostics. These MS based approaches have the potential to be both rapid and sensitive and can be done on-site without requiring a dedicated laboratory or depending on constrained supply chains (i.e., reagents and consumables). Matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) MS has a long and established history of microorganism detection and systemic disease assessment. Previously, we have shown that automated machine learning (ML) enhanced MALDI-TOF-MS screening of nasal swabs can be both sensitive and specific for COVID-19 detection. The underlying molecules responsible for this detection are generally unknown nor are they required for this automated ML platform to detect COVID-19. However, the identification of these molecules is important for understanding both the mechanism of detection and potentially the biology of the underlying infection. Here, we used nanoscale liquid chromatography tandem MS to identify endogenous peptides found in nasal swab saline transport media to identify peptides in the same the mass over charge (m/z) values observed by the MALDI-TOF-MS method. With our peptidomics workflow, we demonstrate that we can identify endogenous peptides and endogenous protease cut sites. Further, we show that SARS-CoV-2 viral peptides were not readily detected and are highly unlikely to be responsible for the accuracy of MALDI based SARS-CoV-2 diagnostics. Further analysis with more samples will be needed to validate our findings, but the methodology proves to be promising.
Collapse
Affiliation(s)
- Helen Tsai
- Proteomics
Core, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, United States
| | - Brett S. Phinney
- Proteomics
Core, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, United States
| | - Gabriela Grigorean
- Proteomics
Core, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, United States
| | - Michelle R. Salemi
- Proteomics
Core, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, United States
| | - Hooman H. Rashidi
- Department
of Pathology and Laboratory Medicine, University
of California, Davis, 4400 V St., Sacramento, California 95817, United States
| | - John Pepper
- SpectraPass,
LLC, 1980 Festival Plaza,
Suite 770, Las Vegas, Nevada 89135, United States
- Allegiant
Air, 1201 North Town
Center Drive, Las Vegas, Nevada 89144, United
States
| | - Nam K. Tran
- Department
of Pathology and Laboratory Medicine, University
of California, Davis, 4400 V St., Sacramento, California 95817, United States
| |
Collapse
|
16
|
Yoshinari T, Hayashi K, Hirose S, Ohya K, Ohnishi T, Watanabe M, Taharaguchi S, Mekata H, Taniguchi T, Maeda T, Orihara Y, Kawamura R, Arai S, Saito Y, Goda Y, Hara-Kudo Y. Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry Analysis for the Direct Detection of SARS-CoV-2 in Nasopharyngeal Swabs. Anal Chem 2022; 94:4218-4226. [PMID: 35238540 PMCID: PMC8903212 DOI: 10.1021/acs.analchem.1c04328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The most common diagnostic
method used for coronavirus disease-2019
(COVID-19) is real-time reverse transcription polymerase chain reaction
(PCR). However, it requires complex and labor-intensive procedures
and involves excessive positive results derived from viral debris.
We developed a method for the direct detection of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs, which
uses matrix-assisted laser desorption and ionization time-of-flight
mass spectrometry (MALDI-ToF MS) to identify specific peptides from
the SARS-CoV-2 nucleocapsid phosphoprotein (NP). SARS-CoV-2 viral
particles were separated from biological molecules in nasopharyngeal
swabs by an ultrafiltration cartridge. Further purification was performed
by an anion exchange resin, and purified NP was digested into peptides
using trypsin. The peptides from SARS-CoV-2 that were inoculated into
nasopharyngeal swabs were detected by MALDI-ToF MS, and the limit
of detection was 106.7 viral copies. This value equates
to 107.9 viral copies per swab and is approximately equivalent
to the viral load of contagious patients. Seven NP-derived peptides
were selected as the target molecules for the detection of SARS-CoV-2
in clinical specimens. The method detected between two and seven NP-derived
peptides in 19 nasopharyngeal swab specimens from contagious COVID-19
patients. These peptides were not detected in four specimens in which
SARS-CoV-2 RNA was not detected by PCR. Mutated NP-derived peptides
were found in some specimens, and their patterns of amino acid replacement
were estimated by accurate mass. Our results provide evidence that
the developed MALDI-ToF MS-based method in a combination of straightforward
purification steps and a rapid detection step directly detect SARS-CoV-2-specific
peptides in nasopharyngeal swabs and can be a reliable high-throughput
diagnostic method for COVID-19.
Collapse
Affiliation(s)
- Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Katsuhiko Hayashi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Kenji Ohya
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Satoshi Taharaguchi
- Laboratory of Microbiology, Department of Veterinary Medicine, Azabu University, 1-17-71 Fucihnobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takahide Taniguchi
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yuta Orihara
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Rieko Kawamura
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Sakura Arai
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukihiro Goda
- Director General, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|
17
|
Consolidating the potency of Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in viral diagnosis: extrapolating its applicability for COVID diagnosis? Trends Analyt Chem 2022; 150:116569. [PMID: 35221399 PMCID: PMC8861128 DOI: 10.1016/j.trac.2022.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MALDI-TOF-MS has essentially delivered more than expected with respect to clinical pathogens. Viruses are the most versatile entities of clinical pathogens that have challenged well-established microbiological methodologies. This review evaluates the existing scenario with respect to MALDI TOF-MS analytical technique in the successful analysis of viral pathogens. The milestones achieved with respect to detection and identification of COVID-19 has been presented. The fact that only a handful of scattered applications for COVID-19 exist has been pointed out in the review. Further, the lapses in the utilization of the available state-of-the art MALDI-TOF-MS variants/benchmark sophistications for COVID-19 analysis, are highlighted. When the world is seeking for rapid solutions for early, sensitive, rapid COVID-19 diagnosis, maybe MALDI-TOF-MS, may be the actual ‘gold standard’. Reverting to the title, this review emphasizes that there is a need for extrapolating MALDI-TOF-MS for COVID-19 analysis and this calls for urgent scientific attention.
Collapse
|
18
|
Costa MM, Martin H, Estellon B, Dupé FX, Saby F, Benoit N, Tissot-Dupont H, Million M, Pradines B, Granjeaud S, Almeras L. Exploratory Study on Application of MALDI-TOF-MS to Detect SARS-CoV-2 Infection in Human Saliva. J Clin Med 2022; 11:295. [PMID: 35053990 PMCID: PMC8781148 DOI: 10.3390/jcm11020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 has caused a large outbreak since its emergence in December 2019. COVID-19 diagnosis became a priority so as to isolate and treat infected individuals in order to break the contamination chain. Currently, the reference test for COVID-19 diagnosis is the molecular detection (RT-qPCR) of the virus from nasopharyngeal swab (NPS) samples. Although this sensitive and specific test remains the gold standard, it has several limitations, such as the invasive collection method, the relative high cost and the duration of the test. Moreover, the material shortage to perform tests due to the discrepancy between the high demand for tests and the production capacities puts additional constraints on RT-qPCR. Here, we propose a PCR-free method for diagnosing SARS-CoV-2 based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling and machine learning (ML) models from salivary samples. Kinetic saliva samples were collected at enrollment and ten and thirty days later (D0, D10 and D30), to assess the classification performance of the ML models compared to the molecular tests performed on NPS specimens. Spectra were generated using an optimized protocol of saliva collection and successive quality control steps were developed to ensure the reliability of spectra. A total of 360 averaged spectra were included in the study. At D0, the comparison of MS spectra from SARS-CoV-2 positive patients (n = 105) with healthy healthcare controls (n = 51) revealed nine peaks that significantly distinguished the two groups. Among the five ML models tested, support vector machine with linear kernel (SVM-LK) provided the best performance on the training dataset (accuracy = 85.2%, sensitivity = 85.1%, specificity = 85.3%, F1-Score = 85.1%). The application of the SVM-LK model on independent datasets confirmed its performances with 88.9% and 80.8% of correct classification for samples collected at D0 and D30, respectively. Conversely, at D10, the proportion of correct classification had fallen to 64.3%. The analysis of saliva samples by MALDI-TOF MS and ML appears as an interesting supplementary tool for COVID-19 diagnosis, despite the mitigated results obtained for convalescent patients (D10).
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Hugo Martin
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Bertrand Estellon
- Laboratoire d’Informatique et Systèmes, Aix-Marseille University, CNRS, University de Toulon, 13013 Marseille, France; (B.E.); (F.-X.D.)
| | - François-Xavier Dupé
- Laboratoire d’Informatique et Systèmes, Aix-Marseille University, CNRS, University de Toulon, 13013 Marseille, France; (B.E.); (F.-X.D.)
| | - Florian Saby
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Samuel Granjeaud
- CRCM Integrative Bioinformatics Platform, Centre de Recherche en Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille Université UM 105, 13009 Marseille, France;
| | - Lionel Almeras
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| |
Collapse
|
19
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
20
|
Lima NM, Fernandes BL, Alves GF, de Souza JC, Siqueira MM, Patrícia do Nascimento M, Moreira OB, Sussulini A, de Oliveira MA. Mass spectrometry applied to diagnosis, prognosis, and therapeutic targets identification for the novel coronavirus SARS-CoV-2: A review. Anal Chim Acta 2021; 1195:339385. [PMID: 35090661 PMCID: PMC8687343 DOI: 10.1016/j.aca.2021.339385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022]
Abstract
Mass spectrometry (MS) has found numerous applications in medicine and has been widely used in the detection and characterization of biomolecules associated with viral infections such as COVID-19. COVID-19 is a multisystem disease and, therefore, the need arises to carry out a careful and conclusive assessment of the pathophysiological parameters involved in the infection, to develop an effective therapeutic approach, assess the prognosis of the disease, and especially the early diagnosis of the infected population. Thus, the urgent need for highly accurate methods of diagnosis and prognosis of this infection presents new challenges for the development of laboratory medicine, whose methods require sensitivity, speed, and accuracy of the techniques for analyzing the biological markers involved in the infection. In this context, MS stands out as a robust analytical tool, with high sensitivity and selectivity, accuracy, low turnaround time, and versatility for the analysis of biological samples. However, it has not yet been adopted as a frontline clinical laboratory technique. Therefore, this review explores the potential and trends of current MS methods and their contribution to the development of new strategies to COVID-19 diagnosis and prognosis and how this tool can assist in the discovery of new therapeutic targets, in addition, to comment what could be the future of MS in medicine.
Collapse
|
21
|
Di Genova C, Sampson A, Scott S, Cantoni D, Mayora-Neto M, Bentley E, Mattiuzzo G, Wright E, Derveni M, Auld B, Ferrara BT, Harrison D, Said M, Selim A, Thompson E, Thompson C, Carnell G, Temperton N. Production, Titration, Neutralisation, Storage and Lyophilisation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Lentiviral Pseudotypes. Bio Protoc 2021; 11:e4236. [PMID: 34859134 PMCID: PMC8595416 DOI: 10.21769/bioprotoc.4236] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022] Open
Abstract
This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.
Collapse
Affiliation(s)
- Cecilia Di Genova
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Alex Sampson
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge, UK
| | - Simon Scott
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Diego Cantoni
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Emma Bentley
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire, UK
| | - Edward Wright
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Mariliza Derveni
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Bethany Auld
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Bill T. Ferrara
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dale Harrison
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Mohamed Said
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Arwa Selim
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Elinor Thompson
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | | | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| |
Collapse
|
22
|
Investigation of MALDI-TOF Mass Spectrometry for Assessing the Molecular Diversity of Campylobacter jejuni and Comparison with MLST and cgMLST: A Luxembourg One-Health Study. Diagnostics (Basel) 2021; 11:diagnostics11111949. [PMID: 34829296 PMCID: PMC8621691 DOI: 10.3390/diagnostics11111949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
There is a need for active molecular surveillance of human and veterinary Campylobacter infections. However, sequencing of all isolates is associated with high costs and a considerable workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen C. jejuni genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per isolate. Concordance and discriminating ability were evaluated based on protein profiles and different cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an AWC of 1.000, 0.933 and 0.851 was obtained for MLSTCC, MLSTST and cgMLST profile, respectively. The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different STs. Protein profiles allowed to predict C. jejuni CCs, STs and CTs at 100%, 93% and 85%, respectively. Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give an early signal of recurrent C. jejuni on a routine basis.
Collapse
|
23
|
Chivte P, LaCasse Z, Seethi VDR, Bharti P, Bland J, Kadkol SS, Gaillard ER. MALDI-ToF protein profiling as a potential rapid diagnostic platform for COVID-19. J Mass Spectrom Adv Clin Lab 2021; 21:31-41. [PMID: 34518823 PMCID: PMC8426322 DOI: 10.1016/j.jmsacl.2021.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
More than a year after the COVID-19 pandemic was declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Compared to the nasopharyngeal swabs, several studies have established saliva as a more amenable specimen type for early detection of SARS-CoV-2. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry in the analysis of 60 gargle samples from human donors and compared the resultant spectra against COVID-19 status. Several standards, including isolated human serum immunoglobulins, and controls, such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus, were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this workflow. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on nasopharyngeal swabs was ≥90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study suggest that MALDI-ToF could be used to develop a relatively rapid and inexpensive COVID-19 assay.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AUC, area under the curve
- Asymptomatic
- COVID-19 testing
- COVID-19, coronavirus disease 2019
- Ct, cycle threshold, DTT, dithiothreitol
- E Protein, envelope protein
- EUA, emergency use authorization
- FDA, food and drug administration
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- Immunoglobulins
- LoD, limit of detection, LC-MS, liquid chromatography mass spectrometry
- M Protein, membrane protein
- MALDI-ToF
- MALDI-ToF MS, matrix-assisted laser desorption/ionization-time of flight mass spectrometry
- N Protein, nucleocapsid protein
- NP, nasopharyngeal
- RBD, receptor binding domain
- RNA, ribonucleic acid
- ROC, receiver operating characteristic, RT-qPCR, reverse transcriptase quantitative polymerase chain reaction
- S Protein, spike protein
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Saliva
- VEP, viral envelope protein
- WHO, world health organization
Collapse
Affiliation(s)
- Prajkta Chivte
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, United States
| | - Zane LaCasse
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, United States
| | | | - Pratool Bharti
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, United States
| | - Joshua Bland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Shrihari S. Kadkol
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Elizabeth R. Gaillard
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, United States
- Corresponding author.
| |
Collapse
|
24
|
Rais Y, Fu Z, Drabovich AP. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin Proteomics 2021; 18:19. [PMID: 34384361 PMCID: PMC8358260 DOI: 10.1186/s12014-021-09325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Molecular diagnostics of the coronavirus disease of 2019 (COVID-19) now mainly relies on the measurements of viral RNA by RT-PCR, or detection of anti-viral antibodies by immunoassays. In this review, we discussed the perspectives of mass spectrometry-based proteomics as an analytical technique to identify and quantify proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to enable basic research and clinical studies on COVID-19. While RT-PCR and RNA sequencing are indisputably powerful techniques for the detection of SARS-CoV-2 and identification of the emerging mutations, proteomics may provide confirmatory diagnostic information and complimentary biological knowledge on protein abundance, post-translational modifications, protein-protein interactions, and the functional impact of the emerging mutations. Pending advances in sensitivity and throughput of mass spectrometry and liquid chromatography, shotgun and targeted proteomic assays may find their niche for the differential quantification of viral proteins in clinical and environmental samples. Targeted proteomic assays in combination with immunoaffinity enrichments also provide orthogonal tools to evaluate cross-reactivity of serology tests and facilitate development of tests with the nearly perfect diagnostic specificity, this enabling reliable testing of broader populations for the acquired immunity. The coronavirus pandemic of 2019-2021 is another reminder that the future global pandemics may be inevitable, but their impact could be mitigated with the novel tools and assays, such as mass spectrometry-based proteomics, to enable continuous monitoring of emerging viruses, and to facilitate rapid response to novel infectious diseases.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
26
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
27
|
Abstract
This article reviews the many and varied mass spectrometry based responses to the SARS-CoV2 coronavirus amidst a continuing global healthcare crisis. Although RT-PCR is the most prevalent molecular based surveillance approach, improvements in the detection sensitivities with mass spectrometry coupled to the rapid nature of analysis, the high molecular precision of measurements, opportunities for high sample throughput, and the potential for in-field testing, offer advantages for characterising the virus and studying the molecular pathways by which it infects host cells. The detection of biomarkers by MALDI-TOF mass spectrometry, studies of viral peptides using proteotyping strategies, targeted LC-MS analyses to identify abundant peptides in clinical specimens, the analysis of viral protein glycoforms, proteomics approaches to understand impacts of infection on host cells, and examinations of point-of-care breath analysis have all been explored. This review organises and illustrates these applications with reference to the many studies that have appeared in the literature since the outbreak. In this respect, those studies in which mass spectrometry has a major role are the focus, and only those which have peer-reviewed have been cited.
Collapse
Affiliation(s)
- Justin H Griffin
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| |
Collapse
|
28
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
29
|
Bittremieux W, Adams C, Laukens K, Dorrestein PC, Bandeira N. Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. J Proteome Res 2021; 20:1464-1475. [PMID: 33605735 DOI: 10.1021/acs.jproteome.0c00929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 virus is the causative agent of the 2020 pandemic leading to the COVID-19 respiratory disease. With many scientific and humanitarian efforts ongoing to develop diagnostic tests, vaccines, and treatments for COVID-19, and to prevent the spread of SARS-CoV-2, mass spectrometry research, including proteomics, is playing a role in determining the biology of this viral infection. Proteomics studies are starting to lead to an understanding of the roles of viral and host proteins during SARS-CoV-2 infection, their protein-protein interactions, and post-translational modifications. This is beginning to provide insights into potential therapeutic targets or diagnostic strategies that can be used to reduce the long-term burden of the pandemic. However, the extraordinary situation caused by the global pandemic is also highlighting the need to improve mass spectrometry data and workflow sharing. We therefore describe freely available data and computational resources that can facilitate and assist the mass spectrometry-based analysis of SARS-CoV-2. We exemplify this by reanalyzing a virus-host interactome data set to detect protein-protein interactions and identify host proteins that could potentially be used as targets for drug repurposing.
Collapse
Affiliation(s)
- Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science and Engineering, University of California San Diego, La Jolla 92093, California, United States
| |
Collapse
|
30
|
Grenga L, Armengaud J. Proteomics in the COVID-19 Battlefield: First Semester Check-Up. Proteomics 2021; 21:e2000198. [PMID: 33236484 PMCID: PMC7744874 DOI: 10.1002/pmic.202000198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Proteomics offers a wide collection of methodologies to study biological systems at the finest granularity. Faced with COVID-19, the most worrying pandemic in a century, proteomics researchers have made significant progress in understanding how the causative virus hijacks the host's cellular machinery and multiplies exponentially, how the disease can be diagnosed, and how it develops, as well as its severity predicted. Numerous cellular targets of potential interest for the development of new antiviral drugs have been documented. Here, the most striking results obtained in the proteomics field over this first semester of the pandemic are presented. The molecular machinery of SARS-CoV-2 is much more complex than initially believed, as many post-translational modifications can occur, leading to a myriad of proteoforms and a broad heterogeneity of viral particles. The interplay of protein-protein interactions, protein abundances, and post-translational modifications has yet to be fully documented to provide a full picture of this intriguing but lethal biological threat. Proteomics has the potential to provide rapid detection of the SARS-CoV-2 virus by mass spectrometry proteotyping, and to further increase the knowledge of severe respiratory syndrome COVID-19 and its long-term health consequences.
Collapse
Affiliation(s)
- Lucia Grenga
- Université Paris‐SaclayCEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐CezeF‐30200France
| | - Jean Armengaud
- Université Paris‐SaclayCEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐CezeF‐30200France
| |
Collapse
|
31
|
Grossegesse M, Hartkopf F, Nitsche A, Schaade L, Doellinger J, Muth T. Perspective on Proteomics for Virus Detection in Clinical Samples. J Proteome Res 2020; 19:4380-4388. [PMID: 33090795 PMCID: PMC7640980 DOI: 10.1021/acs.jproteome.0c00674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted.
Collapse
Affiliation(s)
- Marica Grossegesse
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Felix Hartkopf
- Microbial
Genomics (NG 1), Robert Koch Institute, Berlin 13353, Germany
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Nitsche
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Lars Schaade
- Centre
for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Joerg Doellinger
- Centre
for Biological Threats and Special Pathogens, Proteomics and Spectroscopy
(ZBS 6), Robert Koch Institute, Berlin 13353, Germany
| | - Thilo Muth
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|