1
|
Smith MR, Yu EL, Malki GJ, Newton KP, Goyal NP, Heskett KM, Schwimmer JB. Systematic review of exercise for the treatment of pediatric metabolic dysfunction-associated steatotic liver disease. PLoS One 2024; 19:e0314542. [PMID: 39656734 DOI: 10.1371/journal.pone.0314542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND & AIMS Steatotic liver disease affects approximately 1 in 10 children in the U.S. and increases the risk of cirrhosis, diabetes, and cardiovascular disease. Lifestyle modification centered on increased physical activity and dietary improvement is the primary management approach. However, significant gaps in the literature hinder the establishment of exercise as a targeted therapeutic strategy for pediatric metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD). We performed a systematic review of studies assessing the impact of exercise interventions on validated hepatic outcomes in children with NAFLD. METHODS We searched CENTRAL, PubMed, Embase, Web of Science, CINAHL, and Google Scholar on June 5 and 6, 2023, for studies in English involving children aged 0 to 19 years diagnosed with NAFLD or at increased risk for NAFLD due to overweight or obesity. We updated the search on August 8, 2024. Eligible studies were required to examine the impact of exercise interventions on hepatic steatosis or liver chemistry. The risk of bias was assessed with RoB2 and ROBINS-I. Data extraction was performed by two independent reviewers. RESULTS After screening 1578 unique records, 16 studies involving 998 children were included. This comprised seven studies comparing exercise intervention with non-exercising controls, three uncontrolled studies of exercise intervention, two studies comparing exercise plus lifestyle interventions with lifestyle interventions alone, and nine studies comparing different types of exercise interventions. Five of the 11 studies that evaluated hepatic steatosis reported an absolute decrease of 1% to 3%. In the nine studies that evaluated liver chemistry, no significant changes were observed. CONCLUSIONS Evidence supporting exercise intervention for the treatment of pediatric MASLD is limited. Existing studies were constrained by their methodological approaches; thus, there is a pressing need for high-quality future research. This will enable the development of precise, evidence-based exercise guidelines crucial for the effective clinical management of this condition.
Collapse
Affiliation(s)
- Martha R Smith
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Elizabeth L Yu
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Ghattas J Malki
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Kimberly P Newton
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Nidhi P Goyal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| | - Karen M Heskett
- The Library, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, United States of America
| |
Collapse
|
2
|
Liu J, Wang Z, Yu D, Yang Y, Li Z, Wang X, Yang Y, Cheng C, Zou C, Gan J. Comparative analysis of hepatic fat quantification across 5 T, 3 T and 1.5 T: A study on consistency and feasibility. Eur J Radiol 2024; 180:111709. [PMID: 39222564 DOI: 10.1016/j.ejrad.2024.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) is a critical noninvasive technique for evaluating liver steatosis, with efficient and precise fat quantification being essential for diagnosing liver diseases. This study leverages 5 T ultra-high-field MRI to demonstrate the clinical significance of liver fat quantification, and explores the consistency and accuracy of the Proton Density Fat Fraction (PDFF) in the liver across different magnetic field strengths and measurement methodologies. METHODS The study involved phantoms with lipid contents ranging from 0 % to 30 % and 35 participants (21 females, 14 males; average age 30.17 ± 13.98 years, body mass index 25.84 ± 4.76, waist-hip ratio 0.84 ± 0.09). PDFF measurements were conducted using chemical shift encoded (CSE) MRI at 5 T, 3 T, and 1.5 T, alongside magnetic resonance spectroscopy (MRS) at 5 T and 1.5 T for both liver and phantoms, analyzed using jMRUI software. The MRS-derived PDFF values served as the reference standard. Repeatability of 5 T MRI measurements was assessed through correlation analysis, while accuracy was evaluated using linear regression analysis against the reference standards. RESULTS The CSE-PDFF measurements at 5 T demonstrated strong consistency with those at 3 T and 1.5 T, showing high intraclass correlation coefficients (ICC) of 0.988 and 0.980, respectively (all p < 0.001). There was also significant consistency across ROIs within liver lobes, with ICC values ranging from 0.975 to 0.986 (all p < 0.001). MRS-PDFF measurements for both phantoms and liver at 5 T and 1.5 T exhibited substantial agreement, with ICC values of 0.996 and 0.980, respectively (all p < 0.001). Particularly, ICC values for ROIs in the liver ranged from 0.963 to 0.990 (all p < 0.001). Despite overall agreement, statistically significant differences were noted in specific ROIs within the liver lobes (p = 0.004 and 0.012). The CSE and MRS PDFF measurements at 5 T displayed strong consistency, with an ICC of 0.988 (p < 0.001), and significant agreement was also found between 5 T CSE and 1.5 T MRS PDFF measurements, with an ICC of 0.978 (p < 0.001). Agreement was significant within the ROIs of the liver lobes on the same platform at 5 T, with ICC values ranging from 0.986 to 0.991 (all p < 0.001). CONCLUSION PDFF measurements at 5 T MR imaging exhibited both accuracy and repeatability, indicating that 5 T imaging provides reliable quantification of liver fat content and shows substantial potential for clinical diagnostic applications.
Collapse
Affiliation(s)
- Jianxian Liu
- Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China
| | - Zhensong Wang
- Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China
| | - Dan Yu
- United Imaging Research Institute of Intelligent Imaging, Beijing 100089, China
| | - Yanxing Yang
- Shanghai United Imaging Healthcare Co., Shanghai 201807, China
| | - Zhengyi Li
- Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China
| | - Xin Wang
- Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China
| | - Yuxin Yang
- United Imaging Research Institute of Intelligent Imaging, Beijing 100089, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Jie Gan
- Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China.
| |
Collapse
|
3
|
Otero Sanchez L, Moreno C. Noninvasive Tests in Assessment of Patients with Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:715-729. [PMID: 39362717 DOI: 10.1016/j.cld.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) remains a significant public health concern, accounting for at least half of cirrhosis cases in Europe. Historically, liver biopsy has been considered the gold standard method for both diagnosing and staging ALD. However, in the past 3 decades, there has been a growing interest in developing noninvasive biomarkers for identifying high-risk patients prone to develop liver-related complications, including elastography methods or blood-based biomarkers. This review aims to summarize currently available noninvasive testing methods that are clinically available for assessing patients with ALD, including notably steatosis and fibrosis.
Collapse
Affiliation(s)
- Lukas Otero Sanchez
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
4
|
Kim H, Park MJ, Kim MG, Kim K. Correspondence to editorial on "Comparison of glucagon-like peptide-1 receptor agonists and thiazolidinediones on treating nonalcoholic fatty liver disease: a network meta-analysis". Clin Mol Hepatol 2024; 30:989-991. [PMID: 39188227 PMCID: PMC11540367 DOI: 10.3350/cmh.2024.0705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Hayeon Kim
- College of Pharmacy, Korea University, Sejong, Korea
| | - Min Jeong Park
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Myeong Gyu Kim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Korea
- Institute of Pharmaceutical Science, Korea University, Sejong, Korea
| |
Collapse
|
5
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
6
|
Iqbal Z, Albuquerque K, Chan KL. Magnetic Resonance Spectroscopy for Cervical Cancer: Review and Potential Prognostic Applications. Cancers (Basel) 2024; 16:2141. [PMID: 38893260 PMCID: PMC11171343 DOI: 10.3390/cancers16112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
This review article investigates the utilization of MRS in the setting of cervical cancer. A variety of different techniques have been used in this space including single-voxel techniques such as point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode spectroscopy (STEAM). Furthermore, the experimental parameters for these acquisitions including field strength, repetition times (TR), and echo times (TE) vary greatly. This study critically examines eleven MRS studies that focus on cervical cancer. Out of the eleven studies, ten studies utilized PRESS acquisition, while the remaining study used STEAM acquisition. These studies generally showed that the choline signal is altered in cervical cancer (4/11 studies), the lipid signal is generally increased in cervical cancer or the lipid distribution is changed (5/11 studies), and that diffusion-weighted imaging (DWI) can quantitatively detect lower apparent diffusion coefficient (ADC) values in cervical cancer (2/11 studies). Two studies also investigated the role of MRS for monitoring treatment response and demonstrated mixed results regarding choline signal, and one of these studies showed increased lipid signal for non-responders. There are several new MRS technologies that have yet to be implemented for cervical cancer including advanced spectroscopic imaging and artificial intelligence, and those technologies are also discussed in the article.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kevin Albuquerque
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kimberly L. Chan
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| |
Collapse
|
7
|
Tudor MS, Gheorman V, Simeanu GM, Dobrinescu A, Pădureanu V, Dinescu VC, Forțofoiu MC. Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis. Metabolites 2024; 14:198. [PMID: 38668326 PMCID: PMC11052048 DOI: 10.3390/metabo14040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The utilization of evolutive models and algorithms for predicting the evolution of hepatic steatosis holds immense potential benefits. These computational approaches enable the analysis of complex datasets, capturing temporal dynamics and providing personalized prognostic insights. By optimizing intervention planning and identifying critical transition points, they promise to revolutionize our approach to understanding and managing hepatic steatosis progression, ultimately leading to enhanced patient care and outcomes in clinical settings. This paradigm shift towards a more dynamic, personalized, and comprehensive approach to hepatic steatosis progression signifies a significant advancement in healthcare. The application of evolutive models and algorithms allows for a nuanced characterization of disease trajectories, facilitating tailored interventions and optimizing clinical decision-making. Furthermore, these computational tools offer a framework for integrating diverse data sources, creating a more holistic understanding of hepatic steatosis progression. In summary, the potential benefits encompass the ability to analyze complex datasets, capture temporal dynamics, provide personalized prognostic insights, optimize intervention planning, identify critical transition points, and integrate diverse data sources. The application of evolutive models and algorithms has the potential to revolutionize our understanding and management of hepatic steatosis, ultimately leading to improved patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Marinela Sînziana Tudor
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Veronica Gheorman
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Georgiana-Mihaela Simeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Adrian Dobrinescu
- Department of Thoracic Surgery, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania
| | - Vlad Pădureanu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Mircea-Cătălin Forțofoiu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania;
| |
Collapse
|
8
|
Nguyen M, Asgharpour A, Dixon DL, Sanyal AJ, Mehta A. Emerging therapies for MASLD and their impact on plasma lipids. Am J Prev Cardiol 2024; 17:100638. [PMID: 38375066 PMCID: PMC10875196 DOI: 10.1016/j.ajpc.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD) affects 1 out of every 3 individuals in the adult population and the disease prevalence is predicted to increase worldwide. Patients with MASLD are also burdened by cardiovascular disease, which is the leading cause of mortality in this population. Complex metabolic derangements such as insulin resistance and atherogenic dyslipidemia affect patients with MASLD. In patients with MASLD, treatment such as pharmacotherapy may be best directed towards improving the adverse concomitant metabolic disorders associated with MASLD, particularly the ones that may contribute to MASLD. Herein, we discuss conventional therapies that target cardiometabolic risk factors which have the potential to improve hepatic injury, and summarize emerging therapies that target hepatic receptors, fibrosis, and fatty acid oxidation in patients with MASLD. Given the relationship between hepatic injury which leads to MASLD, insulin resistance, and ultimately atherogenic dyslipidemia our review uniquely delves into the effects of conventional and emerging therapies for MASLD on plasma lipid parameters.
Collapse
Affiliation(s)
- Madison Nguyen
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Amon Asgharpour
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Dave L. Dixon
- Department of Pharmacotherapy and Outcome Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Anurag Mehta
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| |
Collapse
|
9
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Gupta A, Dixit R, Prakash A. Non-invasive hepatic fat quantification: Can multi-echo Dixon help? Radiol Bras 2024; 57:e20230125. [PMID: 38993969 PMCID: PMC11235074 DOI: 10.1590/0100-3984.2023.0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 07/13/2024] Open
Abstract
Objective To evaluate the diagnostic accuracy of multi-echo Dixon magnetic resonance imaging (MRI) in hepatic fat quantification, in comparison with that of magnetic resonance spectroscopy (MRS), on 3.0-T MRI. Materials and Methods Fifty-five adults with no known liver disease underwent MRI in a 3.0-T scanner for determination of the hepatic fat fraction, with two techniques: multi-echo Dixon, in a manually drawn region of interest (ROI) and in the entire liver parenchyma (automated segmentation); and MRS. The diagnostic accuracy and cutoff value for multi-echo Dixon were determined, with MRS being used as the reference standard. Results The mean fat fraction obtained by multi-echo Dixon in the manually drawn ROI and in the entire liver was 5.2 ± 5.8% and 6.6 ± 5.2%, respectively, whereas the mean hepatic fat fraction obtained by MRS was 5.7 ± 6.4%. A very strong positive correlation and good agreement were observed between MRS and multi-echo Dixon, for the ROI (r = 0.988, r2 = 0.978, p < 0.001) and for the entire liver parenchyma (r = 0.960, r2 = 0.922, p < 0.001). A moderate positive correlation was observed between the hepatic fat fraction and body mass index of the participants, regardless of the fat estimation technique employed. Conclusion For hepatic fat quantification, multi-echo Dixon MRI demonstrated a very strong positive correlation and good agreement with MRS (often considered the gold-standard noninvasive technique). Because multi-echo Dixon MRI is more readily available than is MRS, it can be used as a rapid tool for hepatic fat quantification, especially when the hepatic fat distribution is not homogeneous.
Collapse
Affiliation(s)
- Akarshi Gupta
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| | - Rashmi Dixit
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| | - Anjali Prakash
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| |
Collapse
|
11
|
Buitinga M, Veeraiah P, Haans F, Schrauwen-Hinderling VB. Ectopic lipid deposition in muscle and liver, quantified by proton magnetic resonance spectroscopy. Obesity (Silver Spring) 2023; 31:2447-2459. [PMID: 37667838 DOI: 10.1002/oby.23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Advances in the development of noninvasive imaging techniques have spurred investigations into ectopic lipid deposition in the liver and muscle and its implications in the development of metabolic diseases such as type 2 diabetes. Computed tomography and ultrasound have been applied in the past, though magnetic resonance-based methods are currently considered the gold standard as they allow more accurate quantitative detection of ectopic lipid stores. This review focuses on methodological considerations of magnetic resonance-based methods to image hepatic and muscle fat fractions, and it emphasizes anatomical and morphological aspects and how these may influence data acquisition, analysis, and interpretation.
Collapse
Affiliation(s)
- Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Pandichelvam Veeraiah
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Scannexus (Ultra-High Field Imaging Center), Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences (FHML), Maastricht, The Netherlands
| | - Florian Haans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Institute for Clinical Diabetology, German Diabetes Center and Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Wu S, Wang Y, Song Y, Hu H, Jing L, Zhu W. Application of magnetic resonance imaging-related techniques in the diagnosis of sepsis-associated encephalopathy: present status and prospect. Front Neurosci 2023; 17:1152630. [PMID: 37304016 PMCID: PMC10248056 DOI: 10.3389/fnins.2023.1152630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to diffuse brain dysfunction secondary to systemic infection without central nervous system infection. The early diagnosis of SAE remains a major clinical problem, and its diagnosis is still exclusionary. Magnetic resonance imaging (MRI) related techniques, such as magnetic resonance spectroscopy (MRS), molecular MRI (mMRI), arterial spin-labeling (ASL), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI), currently provide new options for the early identification of SAE. This review collected clinical and basic research and case reports related to SAE and MRI-related techniques in recent years, summarized and analyzed the basic principles and applications of MRI technology in diagnosing SAE, and provided a basis for diagnosing SAE by MRI-related techniques.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongjie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M. Imaging Methods Applicable in the Diagnostics of Alzheimer's Disease, Considering the Involvement of Insulin Resistance. Int J Mol Sci 2023; 24:3325. [PMID: 36834741 PMCID: PMC9958721 DOI: 10.3390/ijms24043325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease and the most frequently diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in recent studies, linkages between the development and onset of AD and the liver and/or pancreas have been established. Aside from standard radiological and nuclear neuroimaging methods and clinically fewer common methods of magnetic resonance, this article also discusses the use of new suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver and pancreas. Studying these changes might be of great clinical importance because of their possible involvement in AD pathogenesis during the prodromal phase of the disease.
Collapse
Affiliation(s)
- Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Ema Kantorova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 813 67 Bratislava, Slovakia
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
14
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Lessons on Drug Development: A Literature Review of Challenges Faced in Nonalcoholic Fatty Liver Disease (NAFLD) Clinical Trials. Int J Mol Sci 2022; 24:ijms24010158. [PMID: 36613602 PMCID: PMC9820446 DOI: 10.3390/ijms24010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups-hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.
Collapse
|
16
|
McHenry S, Zong X, Shi M, Fritz CD, Pedersen KS, Peterson LR, Lee JK, Fields RC, Davidson NO, Cao Y. Risk of nonalcoholic fatty liver disease and associations with gastrointestinal cancers. Hepatol Commun 2022; 6:3299-3310. [PMID: 36221229 PMCID: PMC9701484 DOI: 10.1002/hep4.2073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome may contribute to the rising incidence of multiple gastrointestinal (GI) cancers in recent birth cohorts. However, other than hepatocellular carcinoma, the association between nonalcoholic fatty liver disease (NAFLD) and risk of non-liver GI cancers is unexplored. We prospectively examined the associations of NAFLD risk with GI cancers among 319,290 participants in the UK Biobank (2006-2019). Baseline risk for NAFLD was estimated using the Dallas Steatosis Index, a validated prediction tool. Multivariable Cox models were used to estimate relative risks (RRs) and 95% confidence intervals (CIs) according to NAFLD risk categories: low (<20%), intermediate (20%-49%), and high (≥50%). We also examined the associations by age of cancer diagnosis (earlier onset [<60] vs. ≥60). A total of 273 incident liver cancer and 4789 non-liver GI cancer cases were diagnosed. Compared with individuals at low risk for NAFLD, those at high risk had 2.41-fold risk of liver cancer (RR = 2.41, 95% CI: 1.73-3.35) and 23% increased risk of non-liver GI cancers (RR = 1.23, 95% CI: 1.14-1.32) (all ptrend < 0.001). Stronger associations were observed for men and individuals who were obese (all pinteraction < 0.05). NAFLD-associated elevated risk was stronger for earlier-onset cancers. For each 25% increase in NAFLD risk, the RRs for earlier-onset cancers were 1.32 (95% CI: 1.05-1.66) for esophageal cancer, 1.35 (95% CI: 1.06-1.72) for gastric cancer, 1.34 (95% CI: 1.09-1.65) for pancreatic cancer, and 1.10 (95% CI: 1.01-1.20) for colorectal cancer. Conclusion: NAFLD risk was associated with an increased risk of liver and most GI cancers, especially those of earlier onset.
Collapse
Affiliation(s)
- Scott McHenry
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Xiaoyu Zong
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt. LouisMissouriUSA
| | - Mengyao Shi
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt. LouisMissouriUSA
- Brown SchoolWashington University in St. LouisSt. LouisMissouriUSA
| | - Cassandra D.L Fritz
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Katrina S. Pedersen
- Division of Oncology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Linda R. Peterson
- Cardiovascular Division, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Jeffrey K. Lee
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCaliforniaUSA
- Department of GastroenterologyKaiser Permanente Northern CaliforniaSan FranciscoCaliforniaUSA
| | - Ryan C. Fields
- Department of SurgeryWashington University School of MedicineSt. LouisMissouriUSA
- Alvin J. Siteman Cancer CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Yin Cao
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt. LouisMissouriUSA
- Alvin J. Siteman Cancer CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
17
|
Kim JW, Lee CH, Yang Z, Kim BH, Lee YS, Kim KA. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis. Quant Imaging Med Surg 2022; 12:5251-5262. [PMID: 36330193 PMCID: PMC9622443 DOI: 10.21037/qims-22-393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 07/26/2023]
Abstract
BACKGROUND The grade of hepatic steatosis is assessed semi-quantitatively and graded as a discrete value. However, the proton density fat fraction (PDFF) measured by magnetic resonance imaging (MRI) and FF measured by MR spectroscopy (FFMRS) are continuous values. Therefore, a quantitative histopathologic method may be needed. This study aimed to (I) provide a spectrum of values of MRI-PDFF, FFMRS, and FFs measured by two different histopathologic methods [artificial intelligence (AI) and pathologist], (II) to evaluate the correlation among them, and (III) to evaluate the diagnostic performance of MRI-PDFF and MRS for grading hepatic steatosis. METHODS Forty-seven patients who underwent liver biopsy and MRI for nonalcoholic steatohepatitis (NASH) evaluation were included. The agreement between MRI-PDFF and MRS was evaluated through Bland-Altman analysis. Correlations among MRI-PDFF, MRS, and two different histopathologic methods were assessed using Pearson correlation coefficient (r). The diagnostic performance of MRI-PDFF and MRS was assessed using receiver operating characteristic curve analyses and the area under the curve (AUC) were obtained. RESULTS The means±standard deviation of MRI-PDFF, FFMRS, FF measured by pathologist (FFpathologist), and FF measured by AI (FFAI) were 12.04±6.37, 14.01±6.16, 34.26±19.69, and 6.79±4.37 (%), respectively. Bland-Altman bias [mean of MRS - (MRI-PDFF) differences] was 2.06%. MRI-PDFF and MRS had a very strong correlation (r=0.983, P<0.001). The two different histopathologic methods also showed a very strong correlation (r=0.872, P<0.001). Both MRI-PDFF and MRS demonstrated a strong correlation with FFpathologist (r=0.701, P<0.001 and r=0.709, P<0.001, respectively) and with FFAI (r=0.700, P<0.001 and r=0.690, P<0.001, respectively). The AUCs of MRI-PDFF for grading ≥S2 and ≥S3 were 0.846 and 0.855, respectively. The AUCs of MRS for grading ≥S2 and ≥S3 were 0.860 and 0.878, respectively. CONCLUSIONS Since MRS and MRI-PDFF demonstrated a strong correlation with each other and with the two different histopathologic methods, they can be used as an alternative noninvasive reference standard in nonalcoholic fatty liver disease (NAFLD) patients. However, these preliminary results should be interpreted with caution until they are validated in further studies.
Collapse
Affiliation(s)
- Jeong Woo Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chang Hee Lee
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Zepa Yang
- Biomedical Research Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyeong Ah Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Relationship between liver fat content and lifestyle factors in adults with metabolic syndrome. Sci Rep 2022; 12:17428. [PMID: 36261605 PMCID: PMC9581946 DOI: 10.1038/s41598-022-22361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the associations between liver fat content (LFC), sedentary behaviour (SB), physical activity (PA), fitness, diet, body composition, and cardiometabolic risk factors in adults with metabolic syndrome. A total of 44 sedentary adults (mean age 58 [SD 7] years; 25 women) with overweight or obesity participated. LFC was assessed with magnetic resonance spectroscopy and imaging, SB and PA with hip-worn accelerometers (26 [SD 3] days), fitness by maximal bicycle ergometry, body composition by air displacement plethysmography and nutrient intake by 4-day food diaries. LFC was not independently associated with SB, PA or fitness. Adjusted for sex and age, LFC was associated with body fat%, body mass index, waist circumference, triglycerides, alanine aminotransferase, and with insulin resistance markers. There was and inverse association between LFC and daily protein intake, which persisted after further adjusment with body fat%. LFC is positively associated with body adiposity and cardiometabolic risk factors, and inversely with daily protein intake. SB, habitual PA or fitness are not independent modulators of LFC. However, as PA is an essential component of healthy lifestyle, it may contribute to liver health indirectly through its effects on body composition in adults with metabolic syndrome.
Collapse
|
19
|
Guo H, Tikhomirov AB, Mitchell A, Alwayn IPJ, Zeng H, Hewitt KC. Real-time assessment of liver fat content using a filter-based Raman system operating under ambient light through lock-in amplification. BIOMEDICAL OPTICS EXPRESS 2022; 13:5231-5245. [PMID: 36425639 PMCID: PMC9664892 DOI: 10.1364/boe.467849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
During liver procurement, surgeons mostly rely on their subjective visual inspection of the liver to assess the degree of fatty infiltration, for which misclassification is common. We developed a Raman system, which consists of a 1064 nm laser, a handheld probe, optical filters, photodiodes, and a lock-in amplifier for real-time assessment of liver fat contents. The system performs consistently in normal and strong ambient light, and the excitation incident light penetrates at least 1 mm into duck fat phantoms and duck liver samples. The signal intensity is linearly correlated with MRI-calibrated fat contents of the phantoms and the liver samples.
Collapse
Affiliation(s)
- Hao Guo
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Medical Physics, Nova Scotia Health Authority, 5820 University Avenue Halifax, NS B3H 1V7, Canada
| | - Alexey B. Tikhomirov
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Alexandria Mitchell
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Medical Physics, Nova Scotia Health Authority, 5820 University Avenue Halifax, NS B3H 1V7, Canada
| | - Ian Patrick Joseph Alwayn
- Department of Surgery, Leiden University Medical Center (LUMC) Transplant Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Kevin C. Hewitt
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.
AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.
METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https://www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review.
RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.
CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
21
|
Htun KT, Pan J, Pasanta D, Tungjai M, Udomtanakunchai C, Petcharoen T, Chamta N, Kosicharoen S, Chukua K, Lai C, Kothan S. Advanced Molecular Imaging (MRI/MRS/ 1H NMR) for Metabolic Information in Young Adults with Health Risk Obesity. Life (Basel) 2021; 11:life11101035. [PMID: 34685406 PMCID: PMC8541404 DOI: 10.3390/life11101035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. METHODS The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. RESULTS A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, p < 0.001), and high-density lipoprotein cholesterol (r = -0.484, p < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, p < 0.001) and for fasting blood sugar (r = 0.333, p < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. CONCLUSIONS This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults.
Collapse
Affiliation(s)
- Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (J.P.); (S.K.); Tel.: +86-13583101188 (J.P.); +66-5394-9213 (S.K.)
| | - Duanghathai Pasanta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Montree Tungjai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Chatchanok Udomtanakunchai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Thanaporn Petcharoen
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Nattacha Chamta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Supak Kosicharoen
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Kiattisak Chukua
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
| | - Christopher Lai
- Health and Social Sciences, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore;
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.H.); (D.P.); (M.T.); (C.U.); (T.P.); (N.C.); (S.K.); (K.C.)
- Correspondence: (J.P.); (S.K.); Tel.: +86-13583101188 (J.P.); +66-5394-9213 (S.K.)
| |
Collapse
|
22
|
Pasanta D, Htun KT, Pan J, Tungjai M, Kaewjaeng S, Chancharunee S, Tima S, Kim HJ, Kæwkhao J, Kothan S. Waist Circumference and BMI Are Strongly Correlated with MRI-Derived Fat Compartments in Young Adults. Life (Basel) 2021; 11:life11070643. [PMID: 34357015 PMCID: PMC8306297 DOI: 10.3390/life11070643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Young adulthood is increasingly considered as a vulnerable age group for significant weight gain, and it is apparent that there is an increasing number of new cases of metabolic syndrome developing among this population. This study included 60 young adult volunteers (18-26 years old). All participants obtained a calculated total abdominal fat percentage, subcutaneous fat percentage, and visceral fat percentage using a semiautomatic segmentation technique from T1-weighted magnetic resonance imaging (MRI) images of the abdomen. The results show strongest correlation between abdominal fat and BMI (r = 0.824) followed by subcutaneous fat (r = 0.768), and visceral fat (r = 0.633) respectively, (p < 0.001 for all, after having been adjusted for age and gender). Among anthropometric measurements, waist circumference showed strong correlation with all fat compartments (r = 0.737 for abdominal, r = 0.707 for subcutaneous fat, and r = 0.512 for visceral fat; p < 0.001 for all). The results obtained from examining the blood revealed that there was a moderate positive correlation relationship between all fat compartments with triglyceride, high-density lipoprotein, and fasting glucose levels (p < 0.05 for all). This study suggests that both BMI and waist circumference could be used to assess the fat compartments and treatment targets to reduce the risk of metabolic disorders and health risks in the young adult population.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Montree Tungjai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Siriprapa Kaewjaeng
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Sirirat Chancharunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Hong Joo Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea;
| | - Jakrapong Kæwkhao
- Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand;
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
- Correspondence: ; Tel.: +66-53949213
| |
Collapse
|