1
|
Khalaf MS, Qasim AA, Jafar ZJ, Mohammad AT. Dental plaque caries related microorganism in relation to demographic factors among a group of Iraqi children. Folia Med (Plovdiv) 2024; 66:491-499. [PMID: 39257269 DOI: 10.3897/folmed.66.e127454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024] Open
Abstract
INTRODUCTION Streptococcusmutans and lactobacilli are most important bacteria in the pathogenesis of dental caries. Cariogenic microflora has been associated to the primary caregiver transmission and sugary diets.
Collapse
|
2
|
Khan MW, Cruz de Jesus V, Mittermuller BA, Sareen S, Lee V, Schroth RJ, Hu P, Chelikani P. Role of socioeconomic factors and interkingdom crosstalk in the dental plaque microbiome in early childhood caries. Cell Rep 2024; 43:114635. [PMID: 39154338 DOI: 10.1016/j.celrep.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Early childhood caries (ECC) is influenced by microbial and host factors, including social, behavioral, and oral health. In this cross-sectional study, we analyze interkingdom dynamics in the dental plaque microbiome and its association with host variables. We use 16S rRNA and ITS1 amplicon sequencing on samples collected from preschool children and analyze questionnaire data to examine the social determinants of oral health. The results indicate a significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis reveals that Candida dubliniensis is strongly correlated with both Neisseria bacilliformis and Prevotella veroralis in ECC. Additionally, ECC shows significant associations with host variables, including oral health status, age, place of residence, and mode of childbirth. This study provides empirical evidence associating the oral microbiome with socioeconomic and behavioral factors in relation to ECC, offering insights for developing targeted prevention strategies.
Collapse
Affiliation(s)
- Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shaan Sareen
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Lee
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J Schroth
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry, Western University, London, ON, Canada.
| | - Prashen Chelikani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Zhang Y, Liu F, Mo D, Jiang Y, Lin T, Deng S, Lan J, Qiu R. Ethnicity-based analysis of supragingival plaque composition and dental health behaviours in healthy subjects without caries. Heliyon 2024; 10:e35238. [PMID: 39170429 PMCID: PMC11336456 DOI: 10.1016/j.heliyon.2024.e35238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The primary objective of this study was to scrutinise the disparities in the diversity, structure, and function of the oral microbiome among caries-free children from the Zhuang and Han ethnic groups with a focus on the influence of ethnically distinct oral health behaviours on the composition of the oral microbiota. Methods A questionnaire survey was conducted to assess oral health behaviours and dental plaque samples were collected from 96 Zhuang and Han children aged 4-5 years living in Guangxi, southern China for high-throughput sequencing. PCR amplification was performed for sequencing of the V4 region of the 16S rDNA gene, and second-generation sequencing was performed using the Illumina MiSeq platform to compare and analyse the diversity, structure and function of the microbiota. Results Single-factor analysis revealed significant differences between the Zhuang and Han ethnic groups regarding juice consumption, the frequency of consuming sugar-sweetened food or beverages before bedtime, the age that individuals started toothbrushing, the frequency of toothbrushing and the frequency of parental assistance with toothbrushing (p < 0.001). The dominant phyla were Proteobacteria, Firmicutes, etc., and the dominant genera included Streptococcus and Neisseria. The dental plaques of the caries-free Zhuang and Han ethnic groups had similar core microbiomes, with no significant differences in the diversity and structure of the microbiota and no significant differences in the abundance of the dominant genera. In addition, no significant difference in metabolic function was observed between the Zhuang and Han ethnic groups. Conclusion The core oral microbiota was consistent in caries-free Zhuang and Han children. Despite differences in dietary habits and oral hygiene behaviours between the Zhuang and Han ethnic groups, with a high frequency of sugary food intake but better oral health behaviours in the Zhuang group, there were no significant differences in the diversity, structure and function of the oral microbiota of caries-free children in the Zhuang and Han ethnic groups.
Collapse
Affiliation(s)
| | | | - Dan Mo
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yiling Jiang
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tian Lin
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Sicheng Deng
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jue Lan
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Key Laboratory of Research and Application of Stomatological Equipment, Education Department of Guangxi Zhuang Autonomous Region, No.10 Shuangyong Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
4
|
Yamaki K, Tamahara T, Washio J, Sato T, Shimizu R, Yamada S. Intracanal microbiome profiles of two apical periodontitis cases in one patient: A comparison with saliva and plaque profiles. Clin Exp Dent Res 2024; 10:e862. [PMID: 38433294 PMCID: PMC10909803 DOI: 10.1002/cre2.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES To determine the characteristics of the endodontic microbiome. MATERIAL AND METHODS Saliva, plaque, and infected root canal wall dentin of two teeth suffering from apical periodontitis were harvested from a 58-year-old man. Bacterial DNA was extracted from each sample, and 16S rRNA gene analysis targeting the V3-V4 region was conducted on the Illumina MiSeq platform using QIIME2. The functional potential of the microbiomes was inferred using PICRUSt2. RESULTS The four microbiomes were different in structure and membership, yet the nine most abundant metabolic pathways were common among them. The two endodontic microbiomes were more anaerobic, rich in Firmicutes, and scarce in Actinobacteriota and Proteobacteria, compared with saliva and plaque microbiomes. Their profiles were dissimilar despite their clinical and radiographic similarities. CONCLUSIONS The endodontic microbiomes were anaerobic, rich in Firmicutes, scarce in Actinobacteriota and Proteobacteria, and considerably varied within an individual.
Collapse
Affiliation(s)
- Keiko Yamaki
- Division of Periodontology and Endodontology, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Toru Tamahara
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Takuichi Sato
- Division of Clinical Chemistry, Graduate School of Health SciencesNiigata UniversityNiigataJapan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Department of Molecular Hematology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Zhang JS, Huang S, Chen Z, Chu CH, Takahashi N, Yu OY. Application of omics technologies in cariology research: A critical review with bibliometric analysis. J Dent 2024; 141:104801. [PMID: 38097035 DOI: 10.1016/j.jdent.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES To review the application of omics technologies in the field of cariology research and provide critical insights into the emerging opportunities and challenges. DATA & SOURCES Publications on the application of omics technologies in cariology research up to December 2022 were sourced from online databases, including PubMed, Web of Science and Scopus. Two independent reviewers assessed the relevance of the publications to the objective of this review. STUDY SELECTION Studies that employed omics technologies to investigate dental caries were selected from the initial pool of identified publications. A total of 922 publications with one or more omics technologies adopted were included for comprehensive bibliographic analysis. (Meta)genomics (676/922, 73 %) is the predominant omics technology applied for cariology research in the included studies. Other applied omics technologies are metabolomics (108/922, 12 %), proteomics (105/922, 11 %), and transcriptomics (76/922, 8 %). CONCLUSION This study identified an emerging trend in the application of multiple omics technologies in cariology research. Omics technologies possess significant potential in developing strategies for the detection, staging evaluation, risk assessment, prevention, and management of dental caries. Despite the numerous challenges that lie ahead, the integration of multi-omics data obtained from individual biological samples, in conjunction with artificial intelligence technology, may offer potential avenues for further exploration in caries research. CLINICAL SIGNIFICANCE This review presented a comprehensive overview of the application of omics technologies in cariology research and discussed the advantages and challenges of using these methods to detect, assess, predict, prevent, and treat dental caries. It contributes to steering research for improved understanding of dental caries and advancing clinical translation of cariology research outcomes.
Collapse
Affiliation(s)
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zigui Chen
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China; Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
6
|
Adeoye J, Su YX. Artificial intelligence in salivary biomarker discovery and validation for oral diseases. Oral Dis 2024; 30:23-37. [PMID: 37335832 DOI: 10.1111/odi.14641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
Salivary biomarkers can improve the efficacy, efficiency, and timeliness of oral and maxillofacial disease diagnosis and monitoring. Oral and maxillofacial conditions in which salivary biomarkers have been utilized for disease-related outcomes include periodontal diseases, dental caries, oral cancer, temporomandibular joint dysfunction, and salivary gland diseases. However, given the equivocal accuracy of salivary biomarkers during validation, incorporating contemporary analytical techniques for biomarker selection and operationalization from the abundant multi-omics data available may help improve biomarker performance. Artificial intelligence represents one such advanced approach that may optimize the potential of salivary biomarkers to diagnose and manage oral and maxillofacial diseases. Therefore, this review summarized the role and current application of techniques based on artificial intelligence for salivary biomarker discovery and validation in oral and maxillofacial diseases.
Collapse
Affiliation(s)
- John Adeoye
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Zhang T, Li H, Ma S, Cao J, Liao H, Huang Q, Chen W. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl Environ Microbiol 2023; 89:e0060523. [PMID: 37800969 PMCID: PMC10617388 DOI: 10.1128/aem.00605-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
The long-read amplicon provides a species-level solution for the community. With the improvement of nanopore flowcells, the accuracy of Oxford Nanopore Technologies (ONT) R10.4.1 has been substantially enhanced, with an average of approximately 99%. To evaluate its effectiveness on amplicons, three types of microbiomes were analyzed by 16S ribosomal RNA (hereinafter referred to as "16S") amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1) in the current study. We showed the error rate, recall, precision, and bias index in the mock sample. The error rate of ONT R10.4.1 was greatly reduced, with a better recall in the case of the synthetic community. Meanwhile, in different types of environmental samples, ONT R10.4.1 analysis resulted in a composition similar to Pacbio data. We found that classification tools and databases influence ONT data. Based on these results, we conclude that the ONT R10.4.1 16S amplicon can also be used for application in environmental samples. IMPORTANCE The long-read amplicon supplies the community with a species-level solution. Due to the high error rate of nanopore sequencing early on, it has not been frequently used in 16S studies. Oxford Nanopore Technologies (ONT) introduced the R10.4.1 flowcell with Q20+ reagent to achieve more than 99% accuracy as sequencing technology advanced. However, there has been no published study on the performance of commercial PromethION sequencers with R10.4.1 flowcells on 16S sequencing or on the impact of accuracy improvement on taxonomy (R9.4.1 to R10.4.1) using 16S ONT data. In this study, three types of microbiomes were investigated by 16S ribosomal RNA (rRNA) amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1). In the mock sample, we displayed the error rate, recall, precision, and bias index. We observed that the error rate in ONT R10.4.1 is significantly lower, especially when deletions are involved. First and foremost, R10.4.1 and Pacific Bioscience platforms reveal a similar microbiome in environmental samples. This study shows that the R10.4.1 full-length 16S rRNA sequences allow for species identification of environmental microbiota.
Collapse
Affiliation(s)
- Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Silin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jian Cao
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Hao Liao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Catunda RQ, Altabtbaei K, Flores-Mir C, Febbraio M. Pre-treatment oral microbiome analysis and salivary Stephan curve kinetics in white spot lesion development in orthodontic patients wearing fixed appliances. A pilot study. BMC Oral Health 2023; 23:239. [PMID: 37095478 PMCID: PMC10127078 DOI: 10.1186/s12903-023-02917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND White spot lesions (WSLs) are a formidable challenge during orthodontic treatment, affecting patients regardless of oral hygiene. Multifactorial in nature, amongst potential contributors to their development are the microbiome and salivary pH. The aim of our pilot study is to determine if pre-treatment differences in salivary Stephan curve kinetics and salivary microbiome features correlate with WSL development in orthodontic patients with fixed appliances. We hypothesize that non-oral hygiene determined differences in saliva could be predictive of WSL formation in this patient population through analysis of salivary Stephan curve kinetics, and that these differences would further manifest as changes in the oral microbiome. METHODS In this prospective cohort study, twenty patients with initial simplified oral hygiene index scores of "good" that were planning to undergo orthodontic treatment with self-ligating fixed appliances for at least 12 months were enrolled. At pre-treatment stage, saliva was collected for microbiome analysis, and at 15-minute intervals after a sucrose rinse over 45 min for Stephan curve kinetics. RESULTS 50% of patients developed a mean 5.7 (SEM: 1.2) WSLs. There were no differences in saliva microbiome species richness, Shannon alpha diversity or beta diversity between the groups. Capnocytophaga sputigena exclusively and Prevotella melaninogenica predominantly were found in WSL patients, while Streptococcus australis was negatively correlated with WSL development. Streptococcus mitis and Streptococcus anginosus were primarily present in healthy patients. There was no evidence to support the primary hypothesis. CONCLUSIONS While there were no differences in salivary pH or restitution kinetics following a sucrose challenge and no global microbial differences in WSL developers, our data showed change in salivary pH at 5 min associated with an abundance of acid-producing bacteria in saliva. The results suggest salivary pH modulation as a management strategy to inhibit the abundance of caries initiators. Our study may have uncovered the earliest predecessors to WSL/caries development.
Collapse
Affiliation(s)
| | - Khaled Altabtbaei
- Division of Periodontology, School of Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Carlos Flores-Mir
- Division of Orthodontics School of Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Febbraio
- Division of Oral Biology, School of Dentistry, University of Alberta, 11361-87th Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
9
|
Song Z, Fang S, Guo T, Wen Y, Liu Q, Jin Z. Microbiome and metabolome associated with white spot lesions in patients treated with clear aligners. Front Cell Infect Microbiol 2023; 13:1119616. [PMID: 37082715 PMCID: PMC10111054 DOI: 10.3389/fcimb.2023.1119616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
White spot lesions (WSLs) have long been a noteworthy complication during orthodontic treatment. Recently, an increasing number of orthodontists have found that adolescents undergoing orthodontic treatment with clear aligners are at a higher risk of developing WSLs. The oral microbiota and metabolites are considered the etiologic and regulatory factors of WSLs, but the specific impact of clear aligners on the oral microbiota and metabolites is unknown. This study investigated the differences in the salivary microbiome and metabolome between adolescents with and without WSLs treated with clear aligners. Fifty-five adolescents (aged 11-18) with Invisalign appliances, 27 with and 28 without WSLs, were included. Saliva samples were analyzed using 16S rRNA gene sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); the data were further integrated for Spearman correlation analysis. The relative abundances of 14 taxa, including Actinobacteria, Actinomycetales, Rothia, Micrococcaceae, Subdoligranulum, Capnocytophaga, Azospira, Olsenella, Lachnoanaerobaculum, and Abiotrophia, were significantly higher in the WSL group than in the control group. Metabolomic analysis identified 27 potential biomarkers, and most were amino acids, including proline and glycine. The metabolites were implicated in 6 metabolic pathways, including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; and aminoacyl-tRNA biosynthesis. There was a correlation between the salivary microbial and metabolomic datasets, reflecting the impact of clear aligners on the metabolic activity of the oral flora. A concordant increase in the levels of Lachnoanaerobaculum, Rothia, Subdoligranulum and some amino acids had predictive value for WSL development. In summary, when adolescents undergo long-term clear aligner therapy with poor oral hygiene habits, clear aligners can disrupt the balance of the oral microecosystem and lead to oral microbiota dysbiosis, thereby increasing the risk of developing WSLs. Our findings might contribute to the understanding of the pathogenesis of WSLs and provide candidate biomarkers for the diagnosis and treatment of WSLs associated with clear aligners.
Collapse
Affiliation(s)
- Zhixin Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Shishu Fang
- Department of Stomatology, General Hospital of Southern Theater Command of the Chinese People’s Liberation Army, Guangzhou, China
| | - Tao Guo
- Department of Orthodontics, TaiKang Shanghai Bybo Dental Hospital, Shanghai, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
- *Correspondence: Qian Liu, ; Zuolin Jin,
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
- *Correspondence: Qian Liu, ; Zuolin Jin,
| |
Collapse
|
10
|
Liu QY, Liao Y, Wu YX, Diao H, Du Y, Chen YW, Xie JR, Xue WQ, He YQ, Wang TM, Zheng XH, Jia WH. The Oral Microbiome as Mediator between Oral Hygiene and Its Impact on Nasopharyngeal Carcinoma. Microorganisms 2023; 11:microorganisms11030719. [PMID: 36985292 PMCID: PMC10058307 DOI: 10.3390/microorganisms11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case–control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52–4.25) and OR = 1.54 (1.02–2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.
Collapse
Affiliation(s)
- Qiao-Yun Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Ru Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-020-87342327
| |
Collapse
|
11
|
Yang H, Ma Y, Xie X, Wang H, Li X, Fang D, Bai Y. Candida albicans enriched in orthodontic derived white spot lesions and shaped focal supragingival bacteriome. Front Microbiol 2023; 14:1084850. [PMID: 36760510 PMCID: PMC9902512 DOI: 10.3389/fmicb.2023.1084850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
White spot lesions (WSLs) are common enamel infectious diseases in fixed orthodontic treatment, which might attribute to the dysbiosis of oral microbiome. However, the correlation of Candida albicans with oral bacteriome in WSLs still remains unrevealed. This study investigated the carriage of C. albicans and how it shaped the bacterial community in disease or healthy supragingival plaque, to explore the potential role of interkingdom interaction in orthodontic WSLs. In this study, 31 patients with WSLs (WSLs) and 23 healthy patients (Health) undergoing fixed orthodontic treatment were enrolled. The supragingival microbiota in both groups were determined using 16S rRNA gene sequencing. Colonization and abundance of C. albicans in the plaque were determined via culture-dependent and -independent methods. Among WSLs patients, the correlation of C. albicans and bacteriome was analyzed under QIIME2-based bioinformatics and Spearman's correlation coefficient. The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: SRP404186). Significant differences in microbial diversity as well as composition were observed between WSLs and Health groups. Leptotrichia remarkably enriched in the WSLs group, while Neisseria and Cardiobacterium significantly enriched in the Health group. In addition, 45% of WSLs patients were C. albicans carriers but none in patients without WSLs. Among all WSLs patients, beta diversity and microbial composition were distinguished between C. albicans carriers and non-carriers. In C. albicans carriers, Corynebacterium matruchotii and Streptococcus mutans significantly enriched whereas Saccharibacteria_TM7_G-1 significantly depleted. The abundance of C. albicans was positively associated with bacteria such as Streptococcus mutans, while the negative correlation was detected between C. albicans and several bacteria such as Cardiobacterium hominis and Streptococcus sanguinis. Our study elucidated the distinguished supragingival plaque microbiome between orthodontic patients with and without WSLs. C. albicans frequently existed and enriched in orthodontic derived WSLs. The carriage of C. albicans shape plaque bacterial community in demineralized lesions and might play roles in WSLs pathogenesis.
Collapse
|
12
|
Li K, Wang J, Du N, Sun Y, Sun Q, Yin W, Li H, Meng L, Liu X. Salivary microbiome and metabolome analysis of severe early childhood caries. BMC Oral Health 2023; 23:30. [PMID: 36658579 PMCID: PMC9850820 DOI: 10.1186/s12903-023-02722-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabolites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accordingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of dental caries. METHODS We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation with the clinical caries status. RESULTS There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further, metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with dental caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism, ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might be jointly applied as biomarkers (area under the curve = 0.734). Furthermore, the caries status was correlated with microorganisms and metabolites. Additionally, Spearman's correlation analysis of differential microorganisms and metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with differential metabolites. CONCLUSION This study identified different microbial communities and metabolic profiles in saliva, which may be closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detection, and treatment.
Collapse
Affiliation(s)
- Kai Li
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jinmei Wang
- grid.256883.20000 0004 1760 8442Department of Prosthodontics, Hospital of Stomatology Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Ning Du
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yanjie Sun
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Qi Sun
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yin
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Huiying Li
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lingqiang Meng
- grid.256883.20000 0004 1760 8442Department of Prosthodontics, Hospital of Stomatology Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Xuecong Liu
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Fungal composition in saliva and plaque in children with caries: Differences and influencing factors. MEDICINE IN MICROECOLOGY 2023. [DOI: 10.1016/j.medmic.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Pascual J, Mira Otal J, Torrent-Silla D, Porcar M, Vilanova C, Vivancos Cuadras F. A mouthwash formulated with o-cymen-5-ol and zinc chloride specifically targets potential pathogens without impairing the native oral microbiome in healthy individuals. J Oral Microbiol 2023; 15:2185962. [PMID: 36891194 PMCID: PMC9987754 DOI: 10.1080/20002297.2023.2185962] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background Many antimicrobial compounds in mouthwashes can have a negative impact on the oral microbiome. O-cymen-5-ol, a compound derived from a phytochemical, has a targeted mode of action and is being used as an alternative. However, its effect on the native oral microbiome is unknown. Aim To assess the effect of a mouthwash formulated with o-cymen-5-ol and zinc chloride on the oral microbiome of healthy individuals. Methods A mouthwash formulated with o-cymen-5-ol and zinc chloride was administered to a cohort of 51 volunteers for 14 days, while another cohort of 49 volunteers received a placebo. The evolution of the oral microbiome in both groups was analysed using a metataxonomic approach. Results Analysis of the oral microbiome showed that the mouthwash selectively targeted potential oral pathogens while maintaining the integrity of the rest of the microbiome. Specifically, the relative abundance of several potentially pathogenic bacterial taxa, namely Fusobacteriota, Prevotella, Actinomyces, Granulicatella, Abiotrophia, Lautropia, Lachnoanaerobaculum, Eubacterium (nodatum group) and Absconditabacteriales (SR1) decreased, while the growth of Rothia, a nitrate-reducing bacterium beneficial for blood pressure, was stimulated. Conclusions The use of o-cymen-5-ol and zinc chloride as antimicrobial agents in oral mouthwashes is a valuable alternative to classical antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology I2SysBio (University of Valencia - CSIC), Paterna, Spain
| | | | | |
Collapse
|
15
|
Korona-Glowniak I, Skawinska-Bednarczyk A, Wrobel R, Pietrak J, Tkacz-Ciebiera I, Maslanko-Switala M, Krawczyk D, Bakiera A, Borek A, Malm A, Mielnik-Blaszczak M. Streptococcus sobrinus as a Predominant Oral Bacteria Related to the Occurrence of Dental Caries in Polish Children at 12 Years Old. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215005. [PMID: 36429724 PMCID: PMC9690266 DOI: 10.3390/ijerph192215005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/31/2023]
Abstract
Dental caries is listed by the WHO as one of the major non-communicable diseases that need to be prevented and treated. The aim of the study was to evaluate the prevalence and severity of caries expressed as the Decayed, Missing and Filled Permanent Teeth (DMFT) index in 12-year-old Polish children and to verify bacterial species related to the occurrence of dental caries. Quantitative real-time PCR analysis of DNA isolated from saliva samples was performed to detect 8 cariogenic and periopathogenic bacterial strains. A total of 118 Polish children were enrolled in the study. They had low mean DMFT scores of 1.58 ± 1.98. The prevalence of dental caries in the children tested was low (53.4%), with a tendency to decrease compared to previous oral surveys. Bacterial abundance of other species in the dental caries and caries-free groups did not differ; however, periopathogenic Prevotella pallens, Fusobacterium nucleatum along with cariogenic Streptococcus mutans and Lactobacillus fermentum were significantly strongly correlated in the caries-active subjects. The prevalence of S. sobrinus was significantly higher in children with dental caries (p = 0.023) and correlated with higher DMFT. It may temporarily play an important role in the initiation of the cariogenic process or in its enhancement due to an ecological imbalance in dental microbiota.
Collapse
Affiliation(s)
- Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Rafal Wrobel
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Pietrak
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | | | | | - Dorota Krawczyk
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adrian Bakiera
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Borek
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
16
|
D’Agostino S, Ferrara E, Valentini G, Stoica SA, Dolci M. Exploring Oral Microbiome in Healthy Infants and Children: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11403. [PMID: 36141674 PMCID: PMC9517473 DOI: 10.3390/ijerph191811403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in the development of next-generation sequencing (NGS) technologies, such as the 16S rRNA gene sequencing, have enabled significant progress in characterizing the architecture of the oral microbiome. Understanding the taxonomic and functional components of the oral microbiome, especially during early childhood development, is becoming critical for identifying the interactions and adaptations of bacterial communities to dynamic conditions that may lead to the dysfunction of the host environment, thereby contributing to the onset and/or progression of a wide range of pathological conditions. We aimed to provide a comprehensive overview of the most recent evidence from studies of the oral microbiome of infants and young children, focusing on the development of oral microbiome in the window of birth to 18 years, focusing on infants. A systematic literature search was conducted in PubMed, Scopus, WOS, and the WHO clinical trial website for relevant articles published between 2006 to 2022 to identify studies that examined genome-wide transcriptome of the oral microbiome in birth, early childhood, and adolescence performed via 16s rRNA sequence analysis. In addition, the references of selected articles were screened for other relevant studies. This systematic review was performed in accordance PRISMA guidelines. Data extraction and quality assessment were independently conducted by two authors, and a third author resolved discrepancies. Overall, 34 studies were included in this systematic review. Due to a considerable heterogeneity in study population, design, and outcome measures, a formal meta-analysis was not carried out. The current evidence indicates that a core microbiome is present in newborns, and it is stable in species number. Disparity about delivery mode influence are found. Further investigations are needed.
Collapse
Affiliation(s)
- Silvia D’Agostino
- Department of Interdisciplinary Medicine, University A. Moro, 70124 Bari, Italy
| | - Elisabetta Ferrara
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Giulia Valentini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Sorana Andreea Stoica
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Marco Dolci
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| |
Collapse
|
17
|
Prat M, Guenezan J, Drugeon B, Burucoa C, Mimoz O, Pichon M. Impact of Skin Disinfection on Cutaneous Microbiota, before and after Peripheral Venous Catheter Insertion. Antibiotics (Basel) 2022; 11:antibiotics11091209. [PMID: 36139988 PMCID: PMC9495181 DOI: 10.3390/antibiotics11091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction. Patients with invasive medical devices are at high risk for infection. Skin colonization is the initial stage of these infections, leading to the recommendation of practices requiring disinfection using antiseptics. Microbial communities playing a major role in skin health could be impacted by antiseptic procedures. Aim. To characterize and compare the bacterial communities of skin samples from patients before an antisepsis procedure, and after removal of the medical device itself, according to the nature of the antiseptic molecule (povidone iodine or chlorhexidine). Methods. The study focused on alterations in bacterial communities depending on the nature of the antiseptic procedure and type of intravascular device. After amplification of 16S rDNA, libraries (n = 498 samples) were sequenced using MiSeq platform. Results. Using an in-house pipeline (QIIME2 modules), while no alteration in skin microbiota diversity was associated with antiseptic procedure or PVC type, according to culture results (p < 0.05), alterations were at times associated with restricted diversity and higher dissimilarity (p < 0.05). Antiseptic procedures and PVC types were associated with the modification of specific bacterial representations with modulation of the Bacillota/Bacteroidota (Firmicutes/Bacteroidetes) ratio (modulation of C. acnes, Prevotella, Lagierella, and Actinomyces spp.) (p < 0.05). At baseline, the microbiota shows certain bacteria that are significantly associated with future PVC colonization and/or bacteremia (p < 0.05). All of these modulations were associated with altered expression of metabolic pathways (p < 0.05). Discussion. Finally, this work highlights the need to optimize the management of patients requiring intravascular devices, possibly by modulating the skin microbiota.
Collapse
Affiliation(s)
- Manon Prat
- CHU Poitiers, Bacteriology Laboratory, Infectious Agents Department, 86021 Poitiers, France
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Jeremy Guenezan
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
| | - Bertrand Drugeon
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Christophe Burucoa
- CHU Poitiers, Bacteriology Laboratory, Infectious Agents Department, 86021 Poitiers, France
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Olivier Mimoz
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
| | - Maxime Pichon
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-(0)5-4944-4143
| |
Collapse
|
18
|
Miao Z, Du W, Xiao C, Su C, Gou W, Shen L, Zhang J, Fu Y, Jiang Z, Wang Z, Jia X, Zheng JS, Wang H. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med 2022; 20:204. [PMID: 35701845 PMCID: PMC9199182 DOI: 10.1186/s12916-022-02402-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The interplay among the plant-based dietary pattern, gut microbiota, and cardiometabolic health is still unclear, and evidence from large prospective cohorts is rare. We aimed to examine the association of long-term and short-term plant-based dietary patterns with gut microbiota and to assess the prospective association of the identified microbial features with cardiometabolic biomarkers. METHODS Using a population-based prospective cohort study: the China Health and Nutrition Survey, we included 3096 participants from 15 provinces/megacities across China. We created an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). The average PDIs were calculated using repeat food frequency questionnaires collected in 2011 and 2015 to represent a long-term dietary pattern. Short-term dietary pattern was estimated using 3-day 24-h dietary recalls collected in 2015. Fecal samples were collected in 2015 and measured using 16S rRNA sequencing. We investigated the association of long-term and short-term plant-based dietary patterns with gut microbial diversity, taxonomies, and functional pathways using linear mixed models. Furthermore, we assessed the prospective associations between the identified gut microbiome signatures and cardiometabolic biomarkers (measured in 2018) using linear regression. RESULTS We found a significant association of short-term hPDI with microbial alpha-diversity. Both long-term and short-term plant-based diet indices were correlated with microbial overall structure, whereas long-term estimates explained more variance. Long-term and short-term PDIs were differently associated with microbial taxonomic composition, yet only microbes related to long-term estimates showed association with future cardiometabolic biomarkers. Higher long-term PDI was associated with the lower relative abundance of Peptostreptococcus, while this microbe was positively correlated with the high-sensitivity C-reactive protein and inversely associated with high-density lipoprotein cholesterol. CONCLUSIONS We found shared and distinct gut microbial signatures of long-term and short-term plant-based dietary patterns. The identified microbial genera may provide insights into the protective role of long-term plant-based dietary pattern for cardiometabolic health, and replication in large independent cohorts is needed.
Collapse
Affiliation(s)
- Zelei Miao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
| | - Wenwen Du
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Congmei Xiao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Chang Su
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Wanglong Gou
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Luqi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiguo Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhihong Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Xiaofang Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, China.
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Huijun Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China.
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China.
| |
Collapse
|
19
|
Study of oral microbiota diversity among groups of families originally from different countries. Saudi J Biol Sci 2022; 29:103317. [PMID: 35677897 PMCID: PMC9168616 DOI: 10.1016/j.sjbs.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
The diversity of oral microbiota is affected by diets habits, gender, age, ethnic group, and environment. The acquisition of oral microbiota and the role of family on oral microbiota development is poorly understood. This study aims to characterize and compare the oral bacterial microbiota among families using 16S rRNA gene sequencing. This work was conducted in Jeddah city from 2020 to 2021, in which four families composed of 20 members of different ethnicity and lifestyle were recruited. After the collection of saliva samples, the DNA was extracted and processed for 16S rRNA gene metagenomics sequencing. Among 378 OUTs generated, 39 (10.3%) were unique in group A, 13 (3.4%) unique in group B, and 11 (2.9%) were unique in groups C and D. We observed a significant variation at the level of top abundance phylum (14), families (23), genera (24), and species (22) of bacteria among family members. Within family groups, different bacterial species were reported to be more dominant among certain family members than the other; Prevotella melaninogenica, Prevotella histicola and Haemophilus parainfluenzae, Veillonella atypica, Porphyromonas pasteri and Haemophilus pittmaniae were more dominant in parents of some families than the other family member. In summary, this study highlights the precise and perceptible association of oral microbial between family members. Our findings documented the clustering of certain bacterial species in family groups, supporting the role of community in the development of oral microbiota.
Collapse
|
20
|
Ma R, Hou R, Guo JL, Zhang XY, Cao SJ, Huang XB, Wu R, Wen YP, Zhao Q, Du SY, Lin JC, Bai Y, Yan QG, Qi DW. The Plaque Microbiota Community of Giant Panda (Ailuropoda melanoleuca) Cubs With Dental Caries. Front Cell Infect Microbiol 2022; 12:866410. [PMID: 35573790 PMCID: PMC9097603 DOI: 10.3389/fcimb.2022.866410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Dental caries severely hinders efficient access to adequate energy in wildlife. Different food supplies will develop characteristic plaque, and the microorganisms of these plaque are closely related to dental health. Here, plaque samples from panda cubs with caries and caries-free were collected for 16S rRNA high-throughput sequencing. All sequences clustered into 337 operational taxonomic units (OTUs; 97% identity), representing 268 independent species belonging to 189 genera, 98 families, 51 orders, 24 classes, and 13 phyla. Two groups shared 218 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in plaques with caries exceeded that of caries-free. The dominant phyla of plaque microbiota included Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria. The dominant genera included unclassified Neisseriaceae, Actinobacillus, Lautropia, Neisseria, Porhyromonas, unclassified Pasteurellaceae, Moraxella, Streptococcus, Bergeywlla and Capnocytophaga. β diversity analysis showed that the plaque microbial community structure was different between two groups. Using LEfSe analysis, 19 differentially abundant taxa were identified as potential biomarkers. Finally, function predictions analysis showed All the energy related metabolic pathways on KEGG level 2 were enriched in caries-active group. Consistent with the mainstream caries-causing narrative, our results illuminate the lack of information regarding the oral microflora composition and function within giant panda cubs.
Collapse
Affiliation(s)
- Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jun-Liang Guo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Xiu-Yue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - San-Jie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Bo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sen-Yan Du
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ju-Chun Lin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yu Bai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Dun-Wu Qi, ; Qi-Gui Yan,
| | - Dun-Wu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- *Correspondence: Dun-Wu Qi, ; Qi-Gui Yan,
| |
Collapse
|
21
|
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease - A causative relationship? Periodontol 2000 2022; 89:59-82. [PMID: 35244967 PMCID: PMC9314828 DOI: 10.1111/prd.12429] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low‐level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post‐mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in‐vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease‐related alterations. In animal models, recurring applications of P gingivalis or its components increased pro‐inflammatory mediators and β‐amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Private Dental Practice, Straubing, Germany
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Zhang Y, Fang J, Yang J, Gao X, Dong L, Zheng X, Sun L, Xia B, Zhao N, Ma Z, Wang Y. Streptococcus mutans-associated bacteria in dental plaque of severe early childhood caries. J Oral Microbiol 2022; 14:2046309. [PMID: 35251525 PMCID: PMC8896182 DOI: 10.1080/20002297.2022.2046309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Streptococcus mutans (S. mutans) is a potential pathogenic bacteria of dental caries. However, the level of S. mutans is low in some children with severe early childhood caries (SECC) Aim To evaluate the effect of S. mutans level on dental microbiome and cariogenesis. Methods The oral microbiota was compared between caries-free group (CF) and SECC group.16S rRNA gene sequencing was used for S. mutans level bacterial community analysis. The candidate bacteria that were closely related with S. mutans abundance were identified and confirmed by absolute quantitative real-time PCR in clinical dental plaque samples from CF and SECC groups. Results Through in-depth analysis of dental plaque microorganism, Leptotrichia, Selenomonas and Prevotella_7 were found in the S. mutans-low group (p < 0.05) and Porphyromonas, Selenomonas_3 were found in the S. mutans-high group (p < 0.05). Through quantitative real-time PCR, Leptotrichia, Selenomonas and Prevotella_7 were identified as the potential biomarkers of SECC when S. mutans was at a low level. Conclusion Leptotrichia, Selenomonas and Prevotella_7 are identified as potential biomarkers in SECC with a low abundance or without S. mutans. Our study may shed light on the understanding of caries occurrence in SECC with low abundance of S. mutans. Abbreviations S. mutans, Streptococcus mutans; CF, caries-free; SECC, severe early childhood caries; ECC, early childhood caries; rRNA, ribosome RNA; qPCR, Quantitative real-time PCR; OTUs, operational taxonomic units; ANOVA, analysis of variance; LDA, Linear discriminant analysis; LEfSe, Linear discriminant analysis effect size; COG, Groups of proteins; NMDS, Non-MetricMulti-Dimensional Scaling; IL-1β, interleukin −1β; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10.
Collapse
Affiliation(s)
- Yixin Zhang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiakun Fang
- Office of Operations Management, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingyi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolei Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liying Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liangjie Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
23
|
Phuangkaew T, Booranabunyat N, Kiatkamjornwong S, Thanyasrisung P, Hoven VP. Amphiphilic quaternized chitosan: Synthesis, characterization, and anti-cariogenic biofilm property. Carbohydr Polym 2022; 277:118882. [PMID: 34893285 DOI: 10.1016/j.carbpol.2021.118882] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Hydrophobized chitosan derivatives, hexyl chitosan (HCS), dodecyl chitosan (DCS), and phthaloyl chitosan (PhCS) of approximately 30 and 50% degree of substitution (%DS) reacted with glycidyltrimethylammonium chloride (GTMAC) to incorporate hydrophilic positively charged groups of N-[(2-hydroxyl-3-trimethylammonium)propyl] and yielded amphiphilic quaternized chitosan derivatives. They can assemble into spherical nanoparticles with a hydrodynamic diameter of ~100-300 nm and positive ζ-potential values (+15 to +56). Their anti-biofilm efficacy was evaluated against the dental caries pathogen, Streptococcus mutans. Among all derivatives, the one having 30%DS of hexyl group and prepared by reacting with 1 mol equivalent of GTMAC (H30CS-GTMAC) showed the best performance in terms of its aqueous solubility, the lowest minimum inhibitory concentration (138 μg/mL) and the minimum bactericidal concentration (275 μg/mL) which are superior to the unmodified chitosan. Its equivalent anti-biofilm efficacy to that of chlorhexidine suggests that it can be a greener antibacterial agent for oral care formulations.
Collapse
Affiliation(s)
- Tinnakorn Phuangkaew
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nadda Booranabunyat
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Suda Kiatkamjornwong
- FRST, Academy of Science, Office of the Royal Society, Sanam Suea Pa, Khet Dusit, Bangkok 10300, Thailand; Office of Research Affairs, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|