1
|
Zhu W, Han L, He L, Peng W, Li Y, Tian W, Qi H, Wei S, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression. Respir Res 2025; 26:71. [PMID: 40022153 PMCID: PMC11871738 DOI: 10.1186/s12931-025-03126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition, with its severity inversely related to the levels of Club cell 10 kDa secretory protein (CC10). The gene Lsm2, involved in RNA metabolism and cell proliferation, has an unclear role in COPD development. METHODS An in vitro COPD model was developed by stimulating 16HBE cells with cigarette smoke extract (CSE). To establish an in vivo COPD model, mice with defective Lsm2 gene expression in lung or club cells were exposed to cigarette smoke for 3 months. Multiplexed immunohistochemistry (mIHC) was employed to identify the specific cells where Lsm2 gene expression is predominant. RNA sequencing and single-nucleus RNA sequencing were conducted to investigate the role of Lsm2 in the pathogenesis of COPD. RESULTS In this study, we found that cigarette smoke extract increases Lsm2 expression, and knocking down Lsm2 in 16HBE cells significantly reduces cell viability in vitro. mIHC showed that Lsm2 is primarily expressed in Club cells. Knockout of Lsm2, either in the lungs or specifically in Club cells, exacerbated lung injury and inflammation caused by cigarette smoke exposure in vivo. Single-nucleus RNA sequencing analysis revealed that Club cell-specific knockout of Lsm2 leads to a reduction in the Club cell population, particularly those expressing Chia1+/Crb1+. This decrease in Club cells subsequently reduces the number of ciliated epithelial cells. CONCLUSION Knocking out Lsm2 in Club cells results in a significant decrease in Club cell numbers, which subsequently leads to a reduction in ciliated epithelial cells. This increased lung vulnerability to cigarette smoke and accelerating the progression of COPD. Our findings highlight that Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Li
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weibin Tian
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Shuoyan Wei
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
2
|
Devilliers MA, Saber Cherif L, Petit LMG, Lalun N, Bonnomet A, Durlach A, Delepine G, Polette M, Perotin J, Deslée G, Dormoy V. Peribronchial Inflammatory Cell Assessment in COPD Lung Tissues. J Cell Mol Med 2024; 28:e70229. [PMID: 39580785 PMCID: PMC11586007 DOI: 10.1111/jcmm.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Maëva A. Devilliers
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
| | - Lynda Saber Cherif
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
| | - Laure M. G. Petit
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
| | - Nathalie Lalun
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
| | - Arnaud Bonnomet
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- PICT Platform, University of Reims Champagne‐Ardenne (URCA)ReimsFrance
| | - Anne Durlach
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- Department of BiopathologyUniversity Hospital of ReimsReimsFrance
| | - Gonzague Delepine
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- Department of Thoracic SurgeryUniversity Hospital of ReimsReimsFrance
| | - Myriam Polette
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- Department of BiopathologyUniversity Hospital of ReimsReimsFrance
| | - Jeanne‐Marie Perotin
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- Department of Respiratory DiseasesUniversity Hospital of ReimsReimsFrance
| | - Gaëtan Deslée
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
- Department of Respiratory DiseasesUniversity Hospital of ReimsReimsFrance
| | - Valérian Dormoy
- University of Reims Champagne‐Ardenne (URCA), Inserm UMR‐S 1250, SFR Cap‐SantéReimsFrance
| |
Collapse
|
3
|
Mori A, Vermeer M, van den Broek LJ, Heijmans J, Nicolas A, Bouwhuis J, Burton T, Matsumura K, Ohashi K, Ito S, Kramer B. High-throughput Bronchus-on-a-Chip system for modeling the human bronchus. Sci Rep 2024; 14:26248. [PMID: 39482373 PMCID: PMC11528030 DOI: 10.1038/s41598-024-77665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Airway inflammation, a protective response in the human body, can disrupt normal organ function when chronic, as seen in chronic obstructive pulmonary disease (COPD) and asthma. Chronic bronchitis induces goblet cell hyperplasia and metaplasia, obstructing airflow. Traditional animal testing is often replaced by in vitro three-dimensional cultures of human epithelial cells to assess chronic cell responses. However, these cells are cultured horizontally, differing from the tubular structure of the human airway and failing to accurately reproduce airway stenosis. To address this, we developed the Bronchus-on-a-Chip (BoC) system. The BoC uses a novel microfluidic design in a standard laboratory plate, embedding 62 chips in one plate. Human bronchial epithelial cells were cultured against a collagen extracellular matrix for up to 35 days. Characterization included barrier integrity assays, microscopy, and histological examination. Cells successfully cultured in a tubular structure, with the apical side air-lifted. Epithelial cells differentiated into basal, ciliated, and secretory cells, mimicking human bronchial epithelium. Upon exposure to inducers of goblet cell hyperplasia and metaplasia, the BoC system showed mucus hyperproduction, replicating chronic epithelial responses. This BoC system enhances in vitro testing for bronchial inflammation, providing a more human-relevant and high-throughput method.
Collapse
Affiliation(s)
- Akina Mori
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | | | | | | | - Arnaud Nicolas
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Josse Bouwhuis
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Todd Burton
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Kazushi Matsumura
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kazuhiro Ohashi
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Bart Kramer
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| |
Collapse
|
4
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
5
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Tulen CBM, van de Wetering C, Schiffers CHJ, Weltjens E, Benedikter BJ, Leermakers PA, Boukhaled JH, Drittij MJ, Schmeck BT, Reynaert NL, Opperhuizen A, van Schooten FJ, Remels AHV. Alterations in the molecular control of mitochondrial turnover in COPD lung and airway epithelial cells. Sci Rep 2024; 14:4821. [PMID: 38413800 PMCID: PMC10899608 DOI: 10.1038/s41598-024-55335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.
Collapse
Affiliation(s)
- Christy B M Tulen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Cheryl van de Wetering
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Caspar H J Schiffers
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ellen Weltjens
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Birke J Benedikter
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute for Lung Research, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Pieter A Leermakers
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Juliana H Boukhaled
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Marie-José Drittij
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Bernd T Schmeck
- Institute for Lung Research, Philipps-University Marburg, Marburg, Germany
- Department for Respiratory and Critical Care Medicine, Clinic for Respiratory Infections, University Medical Center Marburg, Marburg, Germany
- German Centers for Lung Research (DZL) and for Infectious Disease Research (DZIF), SYNMIKRO Center for Synthetic Microbiology, Philipps-University Marburg, 35037, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Niki L Reynaert
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Primary Lung Culture (PLUC) Facility, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands
| | - Alexander H V Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Universiteitssingel 50, 6629 ER, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. Cell Death Dis 2024; 15:81. [PMID: 38253523 PMCID: PMC10803754 DOI: 10.1038/s41419-024-06440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA, 92093, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | | | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Petit LMG, Belgacemi R, Ancel J, Saber Cherif L, Polette M, Perotin JM, Spassky N, Pilette C, Al Alam D, Deslée G, Dormoy V. Airway ciliated cells in adult lung homeostasis and COPD. Eur Respir Rev 2023; 32:230106. [PMID: 38056888 PMCID: PMC10698550 DOI: 10.1183/16000617.0106-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/07/2023] [Indexed: 12/08/2023] Open
Abstract
Cilia are organelles emanating from the cell surface, consisting of an axoneme of microtubules that extends from a basal body derived from the centrioles. They are either isolated and nonmotile (primary cilia), or grouped and motile (motile cilia). Cilia are at the centre of fundamental sensory processes and are involved in a wide range of human disorders. Pulmonary cilia include motile cilia lining the epithelial cells of the conductive airways to orchestrate mucociliary clearance, and primary cilia found on nondifferentiated epithelial and mesenchymal cells acting as sensors and cell cycle keepers. Whereas cilia are essential along the airways, their regulatory molecular mechanisms remain poorly understood, resulting in a lack of therapeutic strategies targeting their structure or functions. This review summarises the current knowledge on cilia in the context of lung homeostasis and COPD to provide a comprehensive overview of the (patho)biology of cilia in respiratory medicine with a particular emphasis on COPD.
Collapse
Affiliation(s)
- Laure M G Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Charles Pilette
- Université Catholique de Louvain (UCL), Institute of Experimental and Clinical Research - Pole of Pneumology, ENT, Dermatology and Pulmonology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
9
|
Egenod T, Deslee G, Degano B. [Bronchoscopic COPD treatments]. Rev Mal Respir 2023; 40:820-833. [PMID: 37684196 DOI: 10.1016/j.rmr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/18/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is associated with disabling respiratory symptoms including dyspnea, frequent exacerbations and chronic bronchitis. The currently available pharmacological and non-pharmacological therapies have limited efficacy, necessitating the development of interventional strategies, many of them endoscopic. STATE OF THE ART Endoscopic lung volume reduction has markedly increased over recent years, principally as regards the endobronchial valves currently used in routine care. Indeed, multiple randomized trials have demonstrated a significant clinical benefit in a selected population identifiable due to the absence of interlobar collateral ventilation. Other endoscopic volume reduction techniques (polymers, thermal vapor, spirals) shall require additional studies before being considered as options in routine care. Targeted lung denervation (TLD) has aroused interest as a means of reducing exacerbations in the early phases of relevant studies. Endobronchial techniques (bronchoscopic cryospray, bronchial rheoplasty) are still at a very early stage of development, which is aimed at reducing the symptoms of chronic bronchitis. OUTLOOK Aside from endobronchial valves, which are currently employed in routine care, all the above-mentioned endoscopic techniques require additional studies in order to determine their benefit/risk balance and to identify the population that would benefit the most. CONCLUSIONS Endoscopic treatments constitute a major avenue of research and innovation in the therapeutic management of COPD. Inclusion of patients in disease registries and clinical trials remains essential, the objective being to gauge the interest of these treatments and their future role in everyday COPD management.
Collapse
Affiliation(s)
- T Egenod
- Alpes, Inserm 1300, Grenoble, France.
| | - G Deslee
- Service de pneumologie, hôpital universitaire Dupuytren, Limoges, France
| | - B Degano
- Service de pneumologie, hôpital Maison Blanche, Inserm UMRS-1250, université Reims Champagne Ardenne, Reims, France
| |
Collapse
|
10
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551992. [PMID: 37577572 PMCID: PMC10418160 DOI: 10.1101/2023.08.04.551992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J. Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA 92093
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | | | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
11
|
Awatade NT, Reid AT, Nichol KS, Budden KF, Veerati PC, Pathinayake PS, Grainge CL, Hansbro PM, Wark PAB. Comparison of commercially available differentiation media on cell morphology, function, and anti-viral responses in conditionally reprogrammed human bronchial epithelial cells. Sci Rep 2023; 13:11200. [PMID: 37433796 DOI: 10.1038/s41598-023-37828-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Primary air liquid interface (ALI) cultures of bronchial epithelial cells are used extensively to model airway responses. A recent advance is the development of conditional reprogramming that enhances proliferative capability. Several different media and protocols are utilized, yet even subtle differences may influence cellular responses. We compared the morphology and functional responses, including innate immune responses to rhinovirus infection in conditionally reprogrammed primary bronchial epithelial cells (pBECs) differentiated using two commonly used culture media. pBECs collected from healthy donors (n = 5) were CR using g-irradiated 3T3 fibroblasts and Rho Kinase inhibitor. CRpBECs were differentiated at ALI in either PneumaCult (PN-ALI) or bronchial epithelial growth medium (BEGM)-based differentiation media (BEBM:DMEM, 50:50, Lonza)-(AB-ALI) for 28 days. Transepithelial electrical resistance (TEER), immunofluorescence, histology, cilia activity, ion channel function, and expression of cell markers were analyzed. Viral RNA was assessed by RT-qPCR and anti-viral proteins quantified by LEGENDplex following Rhinovirus-A1b infection. CRpBECs differentiated in PneumaCult were smaller and had a lower TEER and cilia beat frequency compared to BEGM media. PneumaCult media cultures exhibited increased FOXJ1 expression, more ciliated cells with a larger active area, increased intracellular mucins, and increased calcium-activated chloride channel current. However, there were no significant changes in viral RNA or host antiviral responses. There are distinct structural and functional differences in pBECs cultured in the two commonly used ALI differentiation media. Such factors need to be taken into consideration when designing CRpBECs ALI experiments for specific research questions.
Collapse
Affiliation(s)
- Nikhil T Awatade
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia.
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
| | - Kristy S Nichol
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Kurtis F Budden
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Peter A B Wark
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia.
- Asthma and Breathing Research Program, Hunter Medical Research Institute University of Newcastle, New Lambton Heights, NSW, Australia.
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia.
| |
Collapse
|
12
|
Luczka-Majérus E, Bonnomet A, Germain A, Lalun N, Kileztky C, Perotin JM, Deslée G, Delepine G, Polette M, Dormoy V, Coraux C. Ciliogenesis is intrinsically altered in COPD small airways. Eur Respir J 2022; 60:2200791. [PMID: 36396143 PMCID: PMC9772502 DOI: 10.1183/13993003.00791-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
COPD is characterised by a progressive and irreversible airflow limitation due to airway obstruction and emphysema [1]. We and others showed that bronchial epithelial remodelling in COPD is characterised by alteration of ciliogenesis and cilia function [2, 3], as well as a dysregulation of non-motile primary cilia (PC) [4]. In COPD, the main site of obstruction is in the small airways [5]. Considering that COPD is foremost a small airway disease (SAD) [6–8], we investigated the differentiation of bronchiolar epithelium in COPD, focusing on motile and primary ciliogenesis. An alteration of primary and motile ciliogenesis is detected in mild/moderate COPD small airways and could be at the origin of the initiation of epithelial remodelling http://bit.ly/3Tz3JDj
Collapse
Affiliation(s)
- Emilie Luczka-Majérus
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Arnaud Bonnomet
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- PICT Platform, University of Reims Champagne-Ardenne (URCA), Reims, France
| | - Adeline Germain
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Nathalie Lalun
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Claire Kileztky
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Jeanne-Marie Perotin
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Dept of Respiratory Diseases, University Hospital of Reims, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Dept of Respiratory Diseases, University Hospital of Reims, Reims, France
| | - Gonzague Delepine
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Dept of Cardio-Thoracic Surgery, University Hospital of Reims, Reims, France
| | - Myriam Polette
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Dept of Biopathology, University Hospital of Reims, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Christelle Coraux
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| |
Collapse
|
13
|
Germain A, Perotin JM, Delepine G, Polette M, Deslée G, Dormoy V. Whole-Exome Sequencing of Bronchial Epithelial Cells Reveals a Genetic Print of Airway Remodelling in COPD. Biomedicines 2022; 10:biomedicines10071714. [PMID: 35885019 PMCID: PMC9313052 DOI: 10.3390/biomedicines10071714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The remodelling of the airways is a hallmark of chronic obstructive pulmonary disease, but it is highly heterogeneous and erratically distributed in the airways. To assess the genetic print of remodelling in chronic obstructive pulmonary disease (COPD), we performed a comparative whole-exome sequencing analysis on microdissected bronchial epithelia. Lung resections from four non-COPD and three COPD subjects (ex-smokers and current smokers) were formalin-fixed paraffin-embedded (FFPE). Non-remodelled and remodelled bronchial epithelia were isolated by laser microdissection. Genomic DNA was captured and sequenced. The comparative quantitative analysis identified a list of 109 genes as having variants in remodelled epithelia and 160 genes as having copy number alterations in remodelled epithelia, mainly in COPD patients. The functional analysis highlighted cilia-associated processes. Therefore, bronchial-remodelled epithelia appeared genetically more altered than non-remodelled epithelia. Characterizing the unique molecular print of airway remodelling in respiratory diseases may help uncover additional factors contributing to epithelial dysfunctions, ultimately providing additional targetable proteins to correct epithelial remodelling and improve lung function.
Collapse
Affiliation(s)
- Adeline Germain
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
| | - Jeanne-Marie Perotin
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
- Service de Pneumologie, CHU Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gonzague Delepine
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
- Service de Chirurgie Thoracique, CHU Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Myriam Polette
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
- Laboratoire de Biopathologie, CHU Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
- Service de Pneumologie, CHU Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm, P3Cell UMR-S1250, Université de Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (A.G.); (J.-M.P.); (G.D.); (M.P.); (G.D.)
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28
| |
Collapse
|