1
|
McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH, Dercle L. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol 2024; 34:5829-5841. [PMID: 38355986 DOI: 10.1007/s00330-024-10637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.
Collapse
Affiliation(s)
- Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Delphine L Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
2
|
Peisen F, Gerken A, Hering A, Dahm I, Nikolaou K, Gatidis S, Eigentler TK, Amaral T, Moltz JH, Othman AE. Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors? Cancers (Basel) 2024; 16:2669. [PMID: 39123397 PMCID: PMC11312160 DOI: 10.3390/cancers16152669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether reducing the number of segmented metastases per patient affects predictive capacity. METHODS The total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months; and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus clinical parameters. RESULTS The whole-tumour-load delta radiomics model performed best for BOR (AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months (AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model, statistical significance was not reached. CONCLUSIONS The findings indicate that delta radiomics may offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could be advantageous.
Collapse
Affiliation(s)
- Felix Peisen
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.)
| | - Annika Gerken
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Alessa Hering
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
- Diagnostic Image Analysis Group, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Isabel Dahm
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Faculty of Medicine, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.)
- Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tuebingen, Germany
| | - Thomas K. Eigentler
- Center of Dermato-Oncology, Department of Dermatology, Eberhard Karls University, Tuebingen University Hospital, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Luisenstraße 2, 10117 Berlin, Germany
| | - Teresa Amaral
- Center of Dermato-Oncology, Department of Dermatology, Eberhard Karls University, Tuebingen University Hospital, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
| | - Jan H. Moltz
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Ahmed E. Othman
- Institute of Neuroradiology, Johannes Gutenberg University Hospital Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| |
Collapse
|
3
|
Li J, Dan K, Ai J. Machine learning in the prediction of immunotherapy response and prognosis of melanoma: a systematic review and meta-analysis. Front Immunol 2024; 15:1281940. [PMID: 38835779 PMCID: PMC11148209 DOI: 10.3389/fimmu.2024.1281940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Background The emergence of immunotherapy has changed the treatment modality for melanoma and prolonged the survival of many patients. However, a handful of patients remain unresponsive to immunotherapy and effective tools for early identification of this patient population are still lacking. Researchers have developed machine learning algorithms for predicting immunotherapy response in melanoma, but their predictive accuracy has been inconsistent. Therefore, the present systematic review and meta-analysis was performed to comprehensively evaluate the predictive accuracy of machine learning in melanoma response to immunotherapy. Methods Relevant studies were searched in PubMed, Web of Sciences, Cochrane Library, and Embase from their inception to July 30, 2022. The risk of bias and applicability of the included studies were assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Meta-analysis was performed on R4.2.0. Results A total of 36 studies consisting of 30 cohort studies and 6 case-control studies were included. These studies were mainly published between 2019 and 2022 and encompassed 75 models. The outcome measures of this study were progression-free survival (PFS), overall survival (OS), and treatment response. The pooled c-index was 0.728 (95%CI: 0.629-0.828) for PFS in the training set, 0.760 (95%CI: 0.728-0.792) and 0.819 (95%CI: 0.757-0.880) for treatment response in the training and validation sets, respectively, and 0.746 (95%CI: 0.721-0.771) and 0.700 (95%CI: 0.677-0.724) for OS in the training and validation sets, respectively. Conclusion Machine learning has considerable predictive accuracy in melanoma immunotherapy response and prognosis, especially in the former. However, due to the lack of external validation and the scarcity of certain types of models, further studies are warranted.
Collapse
Affiliation(s)
- Juan Li
- Department of Dermatology, Chongqing Dangdai Plastic Surgery Hospital, Chongqing, China
| | - Kena Dan
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Ai
- Department of Dermatology, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| |
Collapse
|
4
|
McGale JP, Howell HJ, Beddok A, Tordjman M, Sun R, Chen D, Wu AM, Assi T, Ammari S, Dercle L. Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy. Pharmaceuticals (Basel) 2024; 17:210. [PMID: 38399425 PMCID: PMC10892847 DOI: 10.3390/ph17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.
Collapse
Affiliation(s)
- Jeremy P. McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Harrison J. Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
| | - Mickael Tordjman
- Department of Radiology, Hôtel Dieu Hospital, APHP, 75014 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Delphine Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Anna M. Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Tarek Assi
- International Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| |
Collapse
|
5
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
McGale J, Hama J, Yeh R, Vercellino L, Sun R, Lopci E, Ammari S, Dercle L. Artificial Intelligence and Radiomics: Clinical Applications for Patients with Advanced Melanoma Treated with Immunotherapy. Diagnostics (Basel) 2023; 13:3065. [PMID: 37835808 PMCID: PMC10573034 DOI: 10.3390/diagnostics13193065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Immunotherapy has greatly improved the outcomes of patients with metastatic melanoma. However, it has also led to new patterns of response and progression, creating an unmet need for better biomarkers to identify patients likely to achieve a lasting clinical benefit or experience immune-related adverse events. In this study, we performed a focused literature survey covering the application of artificial intelligence (AI; in the form of radiomics, machine learning, and deep learning) to patients diagnosed with melanoma and treated with immunotherapy, reviewing 12 studies relevant to the topic published up to early 2022. The most commonly investigated imaging modality was CT imaging in isolation (n = 9, 75.0%), while patient cohorts were most frequently recruited retrospectively and from single institutions (n = 7, 58.3%). Most studies concerned the development of AI tools to assist in prognostication (n = 5, 41.7%) or the prediction of treatment response (n = 6, 50.0%). Validation methods were disparate, with two studies (16.7%) performing no validation and equal numbers using cross-validation (n = 3, 25%), a validation set (n = 3, 25%), or a test set (n = 3, 25%). Only one study used both validation and test sets (n = 1, 8.3%). Overall, promising results have been observed for the application of AI to immunotherapy-treated melanoma. Further improvement and eventual integration into clinical practice may be achieved through the implementation of rigorous validation using heterogeneous, prospective patient cohorts.
Collapse
Affiliation(s)
- Jeremy McGale
- Department of Radiology, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jakob Hama
- Queens Hospital Center, Icahn School of Medicine at Mt. Sinai, Queens, NY 10029, USA
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laetitia Vercellino
- Nuclear Medicine Department, INSERM UMR S942, Hôpital Saint-Louis, Assistance-Publique, Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
7
|
Wang X, Jiang Y, Chen H, Zhang T, Han Z, Chen C, Yuan Q, Xiong W, Wang W, Li G, Heng PA, Li R. Cancer immunotherapy response prediction from multi-modal clinical and image data using semi-supervised deep learning. Radiother Oncol 2023; 186:109793. [PMID: 37414254 DOI: 10.1016/j.radonc.2023.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND PURPOSE Immunotherapy is a standard treatment for many tumor types. However, only a small proportion of patients derive clinical benefit and reliable predictive biomarkers of immunotherapy response are lacking. Although deep learning has made substantial progress in improving cancer detection and diagnosis, there is limited success on the prediction of treatment response. Here, we aim to predict immunotherapy response of gastric cancer patients using routinely available clinical and image data. MATERIALS AND METHODS We present a multi-modal deep learning radiomics approach to predict immunotherapy response using both clinical data and computed tomography images. The model was trained using 168 advanced gastric cancer patients treated with immunotherapy. To overcome limitations of small training data, we leverage an additional dataset of 2,029 patients who did not receive immunotherapy in a semi-supervised framework to learn intrinsic imaging phenotypes of the disease. We evaluated model performance in two independent cohorts of 81 patients treated with immunotherapy. RESULTS The deep learning model achieved area under receiver operating characteristics curve (AUC) of 0.791 (95% CI 0.633-0.950) and 0.812 (95% CI 0.669-0.956) for predicting immunotherapy response in the internal and external validation cohorts. When combined with PD-L1 expression, the integrative model further improved the AUC by 4-7% in absolute terms. CONCLUSION The deep learning model achieved promising performance for predicting immunotherapy response from routine clinical and image data. The proposed multi-modal approach is general and can incorporate other relevant information to further improve prediction of immunotherapy response.
Collapse
Affiliation(s)
- Xi Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; Zhejiang Lab, Hangzhou, China
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA.
| |
Collapse
|
8
|
Dirks I, Keyaerts M, Dirven I, Neyns B, Vandemeulebroucke J. Development and Validation of a Predictive Model for Metastatic Melanoma Patients Treated with Pembrolizumab Based on Automated Analysis of Whole-Body [ 18F]FDG PET/CT Imaging and Clinical Features. Cancers (Basel) 2023; 15:4083. [PMID: 37627111 PMCID: PMC10452475 DOI: 10.3390/cancers15164083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Antibodies that inhibit the programmed cell death protein 1 (PD-1) receptor offer a significant survival benefit, potentially cure (i.e., durable disease-free survival following treatment discontinuation), a substantial proportion of patients with advanced melanoma. Most patients however fail to respond to such treatment or acquire resistance. Previously, we reported that baseline total metabolic tumour volume (TMTV) determined by whole-body [18F]FDG PET/CT was independently correlated with survival and able to predict the futility of treatment. Manual delineation of [18F]FDG-avid lesions is however labour intensive and not suitable for routine use. A predictive survival model is proposed based on automated analysis of baseline, whole-body [18F]FDG images. METHODS Lesions were segmented on [18F]FDG PET/CT using a deep-learning approach and derived features were investigated through Kaplan-Meier survival estimates with univariate logrank test and Cox regression analyses. Selected parameters were evaluated in multivariate Cox survival regressors. RESULTS In the development set of 69 patients, overall survival prediction based on TMTV, lactate dehydrogenase levels and presence of brain metastases achieved an area under the curve of 0.78 at one year, 0.70 at two years. No statistically significant difference was observed with respect to using manually segmented lesions. Internal validation on 31 patients yielded scores of 0.76 for one year and 0.74 for two years. CONCLUSIONS Automatically extracted TMTV based on whole-body [18F]FDG PET/CT can aid in building predictive models that can support therapeutic decisions in patients treated with immune-checkpoint blockade.
Collapse
Affiliation(s)
- Ine Dirks
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- IMEC, 3001 Leuven, Belgium
| | - Marleen Keyaerts
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
| | - Iris Dirven
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (I.D.); (B.N.)
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (I.D.); (B.N.)
| | - Jef Vandemeulebroucke
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- IMEC, 3001 Leuven, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| |
Collapse
|
9
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Imaging More than Skin-Deep: Radiologic and Dermatologic Presentations of Systemic Disorders. Diagnostics (Basel) 2022; 12:diagnostics12082011. [PMID: 36010360 PMCID: PMC9407377 DOI: 10.3390/diagnostics12082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Cutaneous manifestations of systemic diseases are diverse and sometimes precede more serious diseases and symptomatology. Similarly, radiologic imaging plays a key role in early diagnosis and determination of the extent of systemic involvement. Simultaneous awareness of skin and imaging manifestations can help the radiologist to narrow down differential diagnosis even if imaging findings are nonspecific. Aims: To improve diagnostic accuracy and patient care, it is important that clinicians and radiologists be familiar with both cutaneous and radiologic features of various systemic disorders. This article reviews cutaneous manifestations and imaging findings of commonly encountered systemic diseases. Conclusions: Familiarity with the most disease-specific skin lesions help the radiologist pinpoint a specific diagnosis and consequently, in preventing unnecessary invasive workups and contributing to improved patient care.
Collapse
|
11
|
Filippi L, Bianconi F, Schillaci O, Spanu A, Palumbo B. The Role and Potential of 18F-FDG PET/CT in Malignant Melanoma: Prognostication, Monitoring Response to Targeted and Immunotherapy, and Radiomics. Diagnostics (Basel) 2022; 12:929. [PMID: 35453977 PMCID: PMC9028862 DOI: 10.3390/diagnostics12040929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Abstract
Novel therapeutic approaches, consisting of immune check-point inhibitors (ICIs) and molecularly targeted therapy, have thoroughly changed the clinical management of malignant melanoma (MM), the most frequent and deadly skin cancer. Since only 30-40% of MM patients respond to ICIs, imaging biomarkers suitable for the pre-therapeutic stratification and response assessment are warmly welcome. In this scenario, positron emission computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) has been successfully utilized for advanced MM staging and therapy response evaluation. Furthermore, several PET-derived parameters (SUVmax, MTV, TLG) were particularly impactful for the prognostic evaluation of patients submitted to targeted and immunotherapy. In this review, we performed a web-based and desktop research on the clinical applications of 18F-FDG PET/CT in MM, with a particular emphasis on the various metabolic criteria developed for interpreting PET/CT scan in patients undergoing immunotherapy or targeted therapy or a combination of both. Furthermore, the emerging role of radiomics, a quantitative approach to medical imaging applying analysis methodology derived by the field of artificial intelligence, was examined in the peculiar context, putting a particular emphasis on the potential of this discipline to support clinicians in the delicate process of building patient-tailored pathways of care.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Francesco Bianconi
- Department of Engineering, Università Degli Studi di Perugia, Via Goffredo Duranti 93, 06135 Perugia, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|