1
|
Vidyasagar GVC, Reddy PVJ, Ghouse MM, Venkateswarulu TC, Kishor PBK, Suravajhala P, Polavarapu R. Designing and expression of novel recombinant fusion protein for efficient antigen screening of SARS-CoV-2. AMB Express 2024; 14:80. [PMID: 38990364 PMCID: PMC11239635 DOI: 10.1186/s13568-024-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), claimed millions globally. After the report of the first incidence of the virus, variants emerged with each posing a unique threat than its predecessors. Though many advanced diagnostic assays like real-time PCR are available for screening of SARS-CoV-2, their applications are being hindered because of accessibility and cost. With the advent of rapid assays for antigenic screening of SARS-CoV-2 made diagnostics far easy as the assays are rapid, cost-effective and can be used at point-of-care settings. In the present study, a fusion construct was made utilising highly immunogenic B cell epitopes from the three important structural proteins of SARS-CoV-2. The protein was expressed; purified capture mAbs generated and rapid antigen assay was developed. Eight hundred and forty nasopharyngeal swab samples were screened for the evaluation of the developed assay which showed 37.14% positivity, 96.51% and 100% sensitivity and specificity respectively. The assay developed was supposed to identify SARS-CoV-2 wild-type as well as variants of concern and variants of importance in real-time conditions.
Collapse
Affiliation(s)
- G Vinaya Chandu Vidyasagar
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522 213, India
| | - P V Janardhan Reddy
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
| | - M Md Ghouse
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
| | - T C Venkateswarulu
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522 213, India
| | - P B Kavi Kishor
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Viswa Vidyapeetham, Clappana, 690525, Kerala, India.
| | | |
Collapse
|
2
|
Wu F, Jiang Y, Yang H, Ma L. Development of Detection Antibody Targeting the Linear Epitope in SARS-CoV-2 Nucleocapsid Protein with Ultra-High Sensitivity. Int J Mol Sci 2024; 25:4436. [PMID: 38674021 PMCID: PMC11050370 DOI: 10.3390/ijms25084436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Shenzhen Institute of Drug Control, Shenzhen 518057, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Hongtian Yang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Hwang C, Baek S, Song Y, Lee WJ, Park S. Wide-range and selective detection of SARS-CoV-2 DNA via surface modification of electrolyte-gated IGZO thin-film transistors. iScience 2024; 27:109061. [PMID: 38361625 PMCID: PMC10867417 DOI: 10.1016/j.isci.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The 2019 coronavirus pandemic resulted in a massive global healthcare crisis, highlighting the necessity to develop effective and reproducible platforms capable of rapidly and accurately detecting SARS-CoV-2. In this study, we developed an electrolyte-gated indium-gallium-zinc-oxide (IGZO) thin-film transistor with sequential surface modification to realize the low limit of detection (LoD <50 fM) and a wide detection range from 50 fM to 5 μM with good linearity (R2 = 0.9965), and recyclability. The surface chemical modification was achieved to anchor the single strand of SARS-CoV-2 DNA via selective hybridization. Moreover, the minute electrical signal change following the chemical modification was investigated by in-depth physicochemical analytical techniques. Finally, we demonstrate fully recyclable biosensors based on oxygen plasma treatment. Owing to its cost-effective fabrication, rapid detection at the single-molecule level, and low detection limit, the proposed biosensor can be used as a point-of-care platform to perform timely and effective SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Chuljin Hwang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Seokhyeon Baek
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yoonseok Song
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Won-June Lee
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
4
|
Tamura D, Morisawa Y, Mato T, Nunomiya S, Yoshihiro M, Maehara Y, Ito S, Ochiai Y, Yamagishi H, Tajima T, Yamagata T, Osaka H. Temporal Trend of the SARS-CoV-2 Omicron Variant and RSV in the Nasal Cavity and Accuracy of the Newly Developed Antigen-Detecting Rapid Diagnostic Test. Diagnostics (Basel) 2024; 14:119. [PMID: 38201428 PMCID: PMC10802845 DOI: 10.3390/diagnostics14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this work is to analyze the viral titers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) at the anterior nasal site (ANS) and nasopharyngeal site (NS), evaluate their virological dynamics, and validate the usefulness of a newly developed two-antigen-detecting rapid antigen diagnostic test (Ag-RDT) that simultaneously detects SARS-CoV-2 and RSV using clinical specimens. This study included 195 asymptomatic to severely ill patients. Overall, 668 specimens were collected simultaneously from the ANS and NS. The cycle threshold (Ct) values calculated from real-time polymerase chain reaction were used to analyze temporal changes in viral load and evaluate the sensitivity and specificity of the Ag-RDT. The mean Ct values for SARS-CoV-2-positive, ANS, and NS specimens were 28.8, 28.9, and 28.7, respectively. The mean Ct values for RSV-positive, ANS, and NS specimens were 28.7, 28.8, and 28.6, respectively. SARS-CoV-2 and RSV showed the same trend in viral load, although the viral load of NS was higher than that of ANS. The sensitivity and specificity of the newly developed Ag-RDT were excellent in specimens collected up to 10 days after the onset of SARS-CoV-2 infection and up to 6 days after the onset of RSV infection.
Collapse
Affiliation(s)
- Daisuke Tamura
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan; (H.Y.)
| | - Yuji Morisawa
- Department of Infectious Disease, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan
| | - Takashi Mato
- Department of Emergency Center, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan
| | - Shin Nunomiya
- Department of Intensive Care Unit, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan
| | - Masaki Yoshihiro
- Research & Development Division, Sekisui Medical Co., Ltd., Chuo-ku, Tokyo 103-0027, Japan
| | - Yuta Maehara
- Research & Development Division, Sekisui Medical Co., Ltd., Chuo-ku, Tokyo 103-0027, Japan
| | - Shizuka Ito
- Research & Development Division, Sekisui Medical Co., Ltd., Chuo-ku, Tokyo 103-0027, Japan
| | - Yasushi Ochiai
- Research & Development Division, Sekisui Medical Co., Ltd., Chuo-ku, Tokyo 103-0027, Japan
| | - Hirokazu Yamagishi
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan; (H.Y.)
| | - Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan; (H.Y.)
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan; (H.Y.)
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke 329-0498, Japan; (H.Y.)
| |
Collapse
|
5
|
McGrath J, O'Doherty L, Conlon N, Dunne J, Brady G, Ibrahim A, McCormack W, Walsh C, Domegan L, Walsh S, Kenny C, Allen N, Fleming C, Bergin C. Point of care detection of SARS-CoV-2 antibodies and neutralisation capacity-lateral flow immunoassay evaluation compared to commercial assay to inform potential role in therapeutic and surveillance practices. Front Public Health 2023; 11:1245464. [PMID: 37841735 PMCID: PMC10569692 DOI: 10.3389/fpubh.2023.1245464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction As the COVID-19 pandemic moves towards endemic status, testing strategies are being de-escalated. A rapid and effective point of care test (POCT) assessment of SARS-CoV-2 immune responses can inform clinical decision-making and epidemiological monitoring of the disease. This cross-sectional seroprevalence study of anti-SARS-CoV-2 antibodies in Irish healthcare workers assessed how rapid anti-SARS-CoV-2 antibody testing can be compared to a standard laboratory assay, discusses its effectiveness in neutralisation assessment and its uses into the future of the pandemic. Methods A point of care lateral flow immunoassay (LFA) detecting anti-SARS-CoV-2 spike (S)-receptor binding domain (RBD) neutralising antibodies (Healgen SARS-CoV-2 neutralising Antibody Rapid Test Cassette) was compared to the Roche Elecsys/-S anti-SARS-CoV-2 antibody assays and an in vitro surrogate neutralisation assay. A correlation between anti-spike (S), anti-nucleocapsid (N) titres, and in vitro neutralisation was also assessed. Results 1,777 serology samples were tested using Roche Elecsys/-S anti-SARS-CoV-2 assays to detect total anti-N/S antibodies. 1,562 samples were tested using the POC LFA (including 50 negative controls), and 90 samples were tested using an in vitro ACE2-RBD binding inhibition surrogate neutralisation assay. The POCT demonstrated 97.7% sensitivity, 100% specificity, a positive predictive value (PPV) of 100%, and a negative predictive value (NPV) of 61% in comparison to the commercial assay. Anti-S antibody titres determined by the Roche assay stratified by the POC LFA result groups demonstrated statistically significant differences between the "Positive" and "Negative" LFA groups (p < 0.0001) and the "Weak Positive" and "Positive" LFA groups (p < 0.0001). No statistically significant difference in ACE2-RBD binding inhibition was demonstrated when stratified by the LFA POC results. A positive, statistically significant correlation was demonstrated between the in vitro pseudo-neutralisation assay results and anti-S antibody titres (rho 0.423, p < 0.001) and anti-N antibody titres (rho = 0.55, p < 0.0001). Conclusion High sensitivity, specificity, and PPV were demonstrated for the POC LFA for the detection of anti-S-RBD antibodies in comparison to the commercial assay. The LFA was not a reliable determinant of the neutralisation capacity of identified antibodies. POC LFA are useful tools in sero-epidemiology settings, pandemic preparedness and may act as supportive tools in treatment decisions through the rapid identification of anti-Spike antibodies.
Collapse
Affiliation(s)
- Jonathan McGrath
- Department of Genitourinary Medicine and Infectious Diseases (GUIDe), St. James's Hospital, Dublin, Ireland
| | - Laura O'Doherty
- Department of Genitourinary Medicine and Infectious Diseases (GUIDe), St. James's Hospital, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Jean Dunne
- Department of Immunology, St. James's Hospital, Dublin, Ireland
| | - Gareth Brady
- Trinity College, Trinity Health Kidney Centre, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Aya Ibrahim
- Department of Immunology, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - William McCormack
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Cathal Walsh
- Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | - Lisa Domegan
- Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | | | - Claire Kenny
- Department of Infectious Diseases, University Hospital Galway, Galway, Ireland
| | - Niamh Allen
- Department of Genitourinary Medicine and Infectious Diseases (GUIDe), St. James's Hospital, Dublin, Ireland
| | - Catherine Fleming
- Department of Infectious Diseases, University Hospital Galway, Galway, Ireland
| | - Colm Bergin
- Department of Genitourinary Medicine and Infectious Diseases (GUIDe), St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
6
|
Lovison OA, Grigaitė R, Volpato FCZ, Iles JK, Lacey J, Barreto F, Pandiri SR, Balzan LDLR, Cantarelli VV, Barth AL, Iles RK, Martins AF. Validation of a MALDI-TOF MS Method for SARS-CoV-2 Detection on the Bruker Biotyper and Nasopharyngeal Swabs: A Brazil-UK Collaborative Study. Diagnostics (Basel) 2023; 13:diagnostics13081470. [PMID: 37189571 DOI: 10.3390/diagnostics13081470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/17/2023] Open
Abstract
We developed a MALDI-TOF mass spectrometry method for the detection of the SARS-CoV-2 virus in saliva-gargle samples using Shimadzu MALDI-TOF mass spectrometers in the UK. This was validated in the USA to CLIA-LDT standards for asymptomatic infection detection remotely via sharing protocols, shipping key reagents, video conferencing, and data exchange. In Brazil, more so than in the UK and USA, there is a need to develop non-PCR-dependent, rapid, and affordable SARS-CoV-2 infection screening tests that also identify variant SARS-CoV-2 and other virus infections. In addition, travel restrictions necessitated remote collaboration with validation on the available clinical MALDI-TOF-the Bruker Biotyper (microflex® LT/SH)-and on nasopharyngeal swab samples, as salivary gargle samples were not available. The Bruker Biotyper was shown to be almost log103 more sensitive at the detection of high molecular weight spike proteins. A protocol for saline swab soaks out was developed, and duplicate swab samples collected in Brazil were analyzed by MALDI-TOF MS. The swab collected sample spectra that varied from that of saliva-gargle in three additional mass peaks in the mass region expected for IgG heavy chains and human serum albumin. A subset of clinical samples with additional high mass, probably spike-related proteins, were also found. Further, spectral data comparisons and analysis, subjected to machine learning algorithms in order to resolve RT-qPCR positive from RT-qPCR negative swab samples, showed 56-62% sensitivity, 87-91% specificity, and a 78% agreement with RT-qPCR scoring for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Otávio A Lovison
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90160-093, RS, Brazil
| | | | - Fabiana C Z Volpato
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Jason K Iles
- Map Sciences Ltd., The iLab, Priory Park, Bedford MK44 3RZ, UK
| | - Jon Lacey
- Map Sciences Ltd., The iLab, Priory Park, Bedford MK44 3RZ, UK
| | - Fabiano Barreto
- Laboratório Federal de Defesa Agropecuária, Porto Alegre 91780-580, RS, Brazil
| | - Sai R Pandiri
- Map Sciences Ltd., The iLab, Priory Park, Bedford MK44 3RZ, UK
| | | | - Vlademir V Cantarelli
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| | - Afonso Luis Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Ray K Iles
- Map Sciences Ltd., The iLab, Priory Park, Bedford MK44 3RZ, UK
| | - Andreza F Martins
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90160-093, RS, Brazil
| |
Collapse
|
7
|
Spicuzza L, Campagna D, Di Maria C, Sciacca E, Mancuso S, Vancheri C, Sambataro G. An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023; 9:375-401. [PMID: 37091823 PMCID: PMC10113162 DOI: 10.3934/microbiol.2023020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Eftimov T, Genova-Kalou P, Dyankov G, Bock WJ, Mankov V, Shoar Ghaffari S, Veselinov P, Arapova A, Makouei S. Capabilities of Double-Resonance LPG and SPR Methods for Hypersensitive Detection of SARS-CoV-2 Structural Proteins: A Comparative Study. BIOSENSORS 2023; 13:318. [PMID: 36979530 PMCID: PMC10046782 DOI: 10.3390/bios13030318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.
Collapse
Affiliation(s)
- Tinko Eftimov
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
| | - Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria
| | - Georgi Dyankov
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Wojtek J. Bock
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Sanaz Shoar Ghaffari
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Petar Veselinov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Alla Arapova
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Somayeh Makouei
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|