1
|
Moloudi K, Abrahamse H, George BP. Application of liposomal nanoparticles of berberine in photodynamic therapy of A549 lung cancer spheroids. Biochem Biophys Rep 2024; 40:101877. [PMID: 39634336 PMCID: PMC11615602 DOI: 10.1016/j.bbrep.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Application of liposomes is a critical strategy in drug delivery and increase cellular uptake of drugs having low water solubility. Berberine (BBR) is a bioactive compound found in several plants, including Goldenseal, Barberry, and Oregon grape. It has garnered attention for its various health benefits, particularly in metabolic health and antimicrobial activity. However, one of the challenges associated with BBR is its water solubility. Moreover, BBR has photosensitizing potential via absorbance of light and generation of free radicals. Hence, to improve water solubility and bioavailability, one of the important strategies employed is using lipid-based carriers to enhance solubility. In this study we employed liposomes to deliver BBR in A549 lung cancer spheroid cells to enhance photodynamic therapy efficacies. Results from the EDS and UV-Vis spectroscopy revealed that the BBR had been loaded onto liposomes, with three peaks appearing between 250 and 450 nm. Morphology of Lipo@BBR nanocomplex was in wavy crest shape and the size was 56.99 ± 3.74 nm in SEM and TEM analysis, respectively. FTIR data illustrated that Lipo@BBR has four significant peaks at 1250, 1459, 1736, and 2907 cm-1. DLS data showed that Lipo@BBR has a negative surface charge with a -10.7 Zeta Potential (mV). Additionally, based on Zetasizer measurements, the size of Lipo@BBR complex was 82.7 ± 6.5. Cytotoxicity assay investigation with MTT assay presented that IC50 of Lipo@BBR in PDT was 10 ± 0.5 μg/mL that led to a volume reduction of the A549 spheroids after five sessions of PDT fractionation (total light dose was set at 25 J/cm2). qPCR and immunofluorescence results demonstrated that Lipo@BBR increases the BAX/BCL2 ratio in A549 spheroid cells, hence improving PDT efficiency. In conclusion, our results illustrated that safe dose of Lipo@BBR (10 ± 0.5 μg/mL) in PDT fractionation protocol can be one of the strategies to suppress the tumor volume and cell death proliferation. Authors recommend using Lipo@BBR nanocomplex in PDT fractionation as well as more in vivo investigation is warranted.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre (LRC), Faculty of Health Sciences, Doornfontein Campus, 2028, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre (LRC), Faculty of Health Sciences, Doornfontein Campus, 2028, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P. George
- Laser Research Centre (LRC), Faculty of Health Sciences, Doornfontein Campus, 2028, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Matzel T, Martin MW, Herr A, Wacker A, Richter C, Sreeramulu S, Schwalbe H. NMR characterization and ligand binding site of the stem-loop 2 motif from the Delta variant of SARS-CoV-2. RNA (NEW YORK, N.Y.) 2024; 30:779-794. [PMID: 38565242 PMCID: PMC11182009 DOI: 10.1261/rna.079902.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.
Collapse
Affiliation(s)
- Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Maria Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Alexander Herr
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Tamayo-Ordóñez YDJ, Rosas-García NM, Tamayo-Ordoñez FA, Ayil-Gutiérrez BA, Bello-López JM, Sosa-Santillán GDJ, Acosta-Cruz E, Anguebes-Franseschi F, Damas-Damas S, Domínguez-May AV, Córdova-Quiroz AV, Tamayo-Ordóñez MC. Genomic Evolution Strategy in SARS-CoV-2 Lineage B: Coevolution of Cis Elements. Curr Issues Mol Biol 2024; 46:5744-5776. [PMID: 38921015 PMCID: PMC11203041 DOI: 10.3390/cimb46060344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
In the SARS-CoV-2 lineage, RNA elements essential for its viral life cycle, including genome replication and gene expression, have been identified. Still, the precise structures and functions of these RNA regions in coronaviruses remain poorly understood. This lack of knowledge points out the need for further research to better understand these crucial aspects of viral biology and, in time, prepare for future outbreaks. In this research, the in silico analysis of the cis RNA structures that act in the alpha-, beta-, gamma-, and deltacoronavirus genera has provided a detailed view of the presence and adaptation of the structures of these elements in coronaviruses. The results emphasize the importance of these cis elements in viral biology and their variability between different viral variants. Some coronavirus variants in some groups, depending on the cis element (stem-loop1 and -2; pseudoknot stem-loop1 and -2, and s2m), exhibited functional adaptation. Additionally, the conformation flexibility of the s2m element in the SARS variants was determined, suggesting a coevolution of this element in this viral group. The variability in secondary structures suggests genomic adaptations that may be related to replication processes, genetic regulation, as well as the specific pathogenicity of each variant. The results suggest that RNA structures in coronaviruses can adapt and evolve toward different viral variants, which has important implications for viral adaptation, pathogenicity, and future therapeutic strategies.
Collapse
Affiliation(s)
- Yahaira de J. Tamayo-Ordóñez
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamps, Mexico;
| | - Ninfa M. Rosas-García
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamps, Mexico;
| | - Francisco A. Tamayo-Ordoñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.T.-O.); (F.A.-F.); (S.D.-D.); (A.V.C.-Q.)
| | - Benjamín A. Ayil-Gutiérrez
- CONAHCYT—Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnología Vegetal, Reynosa 88710, Tamps, Mexico;
| | - Juan M. Bello-López
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico;
| | - Gerardo de J. Sosa-Santillán
- Laboratorio de Microbiología y Biosíntesis, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Erika Acosta-Cruz
- Laboratorio de Microbiología Molecular, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Francisco Anguebes-Franseschi
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.T.-O.); (F.A.-F.); (S.D.-D.); (A.V.C.-Q.)
| | - Siprian Damas-Damas
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.T.-O.); (F.A.-F.); (S.D.-D.); (A.V.C.-Q.)
| | - Angel V. Domínguez-May
- TecNM, Instituto Tecnológico Superior del Sur del Estado de Yucatán, Road Muna-Felipe Carrillo Puerto, Stretch Oxkutzcab-Akil Km 41+400, Oxkutzcab 97880, Yucatán, Mexico;
| | - Atl Victor Córdova-Quiroz
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.T.-O.); (F.A.-F.); (S.D.-D.); (A.V.C.-Q.)
| | - María Concepción Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
4
|
Ziesel A, Jabbari H. Unveiling hidden structural patterns in the SARS-CoV-2 genome: Computational insights and comparative analysis. PLoS One 2024; 19:e0298164. [PMID: 38574063 PMCID: PMC10994416 DOI: 10.1371/journal.pone.0298164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5' and 3' untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.
Collapse
Affiliation(s)
- Alison Ziesel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hosna Jabbari
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Cunningham CL, Frye CJ, Makowski JA, Kensinger AH, Shine M, Milback EJ, Lackey PE, Evanseck JD, Mihailescu MR. Effect of the SARS-CoV-2 Delta-associated G15U mutation on the s2m element dimerization and its interactions with miR-1307-3p. RNA (NEW YORK, N.Y.) 2023; 29:1754-1771. [PMID: 37604684 PMCID: PMC10578481 DOI: 10.1261/rna.079627.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
The s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a >99% correlation of a single nucleotide mutation at the 15th position (G15U) in Delta SARS-CoV-2. Based on 1H NMR spectroscopy assignments comparing the imino proton resonance region of s2m and the s2m G15U at 19°C, we show that the U15-A29 base pair closes, resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we show that the s2m G15U mutation drastically impacts the binding of host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on immune responses.
Collapse
Affiliation(s)
- Caylee L Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Caleb J Frye
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Joseph A Makowski
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Adam H Kensinger
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Morgan Shine
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, Pennsylvania 16172, USA
| | - Ella J Milback
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Patrick E Lackey
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, Pennsylvania 16172, USA
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Mihaela-Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| |
Collapse
|
6
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The Highly Conserved Stem-Loop II Motif Is Dispensable for SARS-CoV-2. J Virol 2023; 97:e0063523. [PMID: 37223945 PMCID: PMC10308922 DOI: 10.1128/jvi.00635-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B. Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A. Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser S, Gossert AD, Leitner A, Allain FHT. A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 2023; 51:4555-4571. [PMID: 36928389 PMCID: PMC10201421 DOI: 10.1093/nar/gkad195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.
Collapse
Affiliation(s)
- Giacomo Padroni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Antje C Wolter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Simon H Rüdisser
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Keep S, Dowgier G, Lulla V, Britton P, Oade M, Freimanis G, Tennakoon C, Jonassen CM, Tengs T, Bickerton E. Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions. J Virol 2023; 97:e0003823. [PMID: 36779761 PMCID: PMC10062133 DOI: 10.1128/jvi.00038-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | | | - Valeria Lulla
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | - Michael Oade
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
9
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The highly conserved stem-loop II motif is dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532878. [PMID: 36993345 PMCID: PMC10055069 DOI: 10.1101/2023.03.15.532878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| | - Adrianus CM Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Lead contact
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| |
Collapse
|
10
|
Cunningham CL, Frye CJ, Makowski JA, Kensinger AH, Shine M, Milback EJ, Lackey PE, Evanseck JD, Mihailescu MR. Effect of the SARS-CoV-2 Delta-associated G15U mutation on the s2m element dimerization and its interactions with miR-1307-3p. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528014. [PMID: 36798421 PMCID: PMC9934655 DOI: 10.1101/2023.02.10.528014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The stem loop 2 motif (s2m), a highly conserved 41-nucleotide hairpin structure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a greater than 99% correlation of a single nucleotide mutation at the 15 th position (G15U) in Delta SARS-CoV-2. Based on 1 H NMR assignments comparing the imino proton resonance region of s2m and the G15U at 19°C, we find that the U15-A29 base pair closes resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we find that the s2m G15U mutation drastically reduces the binding affinity of the host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on the immune response.
Collapse
|
11
|
Kensinger AH, Makowski JA, Pellegrene KA, Imperatore JA, Cunningham CL, Frye CJ, Lackey PE, Mihailescu MR, Evanseck JD. Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations. ACS PHYSICAL CHEMISTRY AU 2023; 3:30-43. [PMID: 36711027 PMCID: PMC9578647 DOI: 10.1021/acsphyschemau.2c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 μs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.
Collapse
Affiliation(s)
- Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Kendy A. Pellegrene
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joshua A. Imperatore
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| |
Collapse
|
12
|
Colson P, Delerce J, Marion-Paris E, Lagier JC, Levasseur A, Fournier PE, La Scola B, Raoult D. A 21L/BA.2-21K/BA.1 "MixOmicron" SARS-CoV-2 hybrid undetected by qPCR that screen for variant in routine diagnosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105360. [PMID: 36070806 PMCID: PMC9444252 DOI: 10.1016/j.meegid.2022.105360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023]
Abstract
Among the multiple SARS-CoV-2 variants identified since summer 2020, several have co-circulated, creating opportunities for coinfections and potentially genetic recombinations that are common in coronaviruses. Viral recombinants are indeed beginning to be reported more frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two such genomes were obtained in our institute from adults sampled in February 2022 in university hospitals of Marseille, southern France, by next-generation sequencing carried out with the Illumina or Nanopore technologies. The recombination site was located between nucleotides 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring positions was 271 and 1362 reads and mean prevalence of the majoritary nucleotide was 99.3 ± 2.2% and 98.8 ± 1.6%, respectively. Phylogeny generated trees with slightly different topologies according to whether genomes analyzed were depleted or not of the 3' tip. This 3' terminal end brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not detected by currently used qPCR that screen for variants in routine diagnosis. The present observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 variability by whole genome sequencing, and it could contribute to gain a better understanding of factors that lead to observed differences between epidemic potentials of the different variants.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France.
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Elise Marion-Paris
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone, Service de médecine du travail, 264 rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
13
|
Janowski AB, Jiang H, Fujii C, Owen MC, Bricker TL, Darling TL, Harastani HH, Seehra K, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Lulla V, Boon AC, Wang D. The highly conserved stem-loop II motif is important for the lifecycle of astroviruses but dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.30.486882. [PMID: 35547847 PMCID: PMC9094099 DOI: 10.1101/2022.04.30.486882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.
Collapse
|
14
|
Zhang J, Huang Y, Li L, Dong J, Kuang R, Liao M, Sun M. First Identification and Genetic Characterization of a Novel Duck Astrovirus in Ducklings in China. Front Vet Sci 2022; 9:873062. [PMID: 35464380 PMCID: PMC9024104 DOI: 10.3389/fvets.2022.873062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Four divergent groups of duck astroviruses (DAstVs) have been identified that infect domestic ducks. In March 2021, a fatal disease characterized by visceral urate deposition broke out in 5-day-old Beijing ducks on a commercial farm in Guangdong province, China. We identified a novel duck astrovirus from the ducklings suffering from gout disease. The complete genome sequence of this DAstV was obtained by virome sequencing and amplification. Phylogenetic analyses and pairwise comparisons demonstrated that this DAstV represented a novel group of avastrovirus. Thus, we designated this duck astrovirus as DAstV-5 JM strain. DAstV-5 JM shared genome sequence identities of 15–45% with other avastroviruses. Amino acid identities with proteins from other avastroviruses did not exceed 59% for ORF1a, 79% for ORF1b, and 60% for ORF2. The capsid region of JM shared genetic distances of 0.596 to 0.695 with the three official avastrovirus species. suggesting that JM could be classified as a novel genotype species in the Avastrovirus genus. Meanwhile, JM shares genetic distances of 0.402–0.662 with all the other known unassigned avastroviruses, revealing that it represents an additional unassigned avastrovirus. In summary, we determined that the DAstV-5 JM strain is a novel genotype species of avastrovirus.
Collapse
Affiliation(s)
- Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Ruihuan Kuang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- *Correspondence: Minhua Sun
| |
Collapse
|
15
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
16
|
Imperatore JA, Cunningham CL, Pellegrene KA, Brinson R, Marino J, Evanseck J, Mihailescu M. Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p. Nucleic Acids Res 2021; 50:1017-1032. [PMID: 34908151 PMCID: PMC8789046 DOI: 10.1093/nar/gkab1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.
Collapse
Affiliation(s)
- Joshua A Imperatore
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caylee L Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kendy A Pellegrene
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
17
|
No species-level losses of s2m suggests critical role in replication of SARS-related coronaviruses. Sci Rep 2021; 11:16145. [PMID: 34373516 PMCID: PMC8352927 DOI: 10.1038/s41598-021-95496-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022] Open
Abstract
The genetic element s2m has been acquired through horizontal transfer by many distantly related viruses, including the SARS-related coronaviruses. Here we show that s2m is evolutionarily conserved in these viruses. Though several lineages of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) devoid of the element can be found, these variants seem to have been short lived, indicating that they were less evolutionary fit than their s2m-containing counterparts. On a species-level, however, there do not appear to be any losses and this pattern strongly suggests that the s2m element is essential to virus replication in SARS-CoV-2 and related viruses. Further experiments are needed to elucidate the function of s2m.
Collapse
|
18
|
Yeh TY, Contreras GP. Viral transmission and evolution dynamics of SARS-CoV-2 in shipboard quarantine. Bull World Health Organ 2021; 99:486-495. [PMID: 34248221 PMCID: PMC8243027 DOI: 10.2471/blt.20.255752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To examine transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in shipboard quarantine of the Diamond Princess cruise ship. METHODS We obtained the full SARS-CoV-2 genome sequences of 28 samples from the Global Initiative on Sharing All Influenza Data database. The samples were collected between 10 and 25 February 2020 and came for individuals who had been tested for SARS-CoV-2 during the quarantine on the cruise ship. These samples were later sequenced in either Japan or the United States of America. We analysed evolution dynamics of SARS-CoV-2 using computational tools of phylogenetics, natural selection pressure and genetic linkage. FINDINGS The SARS-CoV-2 outbreak in the cruise most likely originated from either a single person infected with a virus variant identical to the WIV04 isolates, or simultaneously with another primary case infected with a virus containing the 11083G > T mutation. We identified a total of 24 new viral mutations across 64.2% (18/28) of samples, and the virus evolved into at least five subgroups. Increased positive selection of SARS-CoV-2 were statistically significant during the quarantine (Tajima's D: -2.03, P < 0.01; Fu and Li's D: -2.66, P < 0.01; and Zeng's E: -2.37, P < 0.01). Linkage disequilibrium analysis confirmed that ribonucleic acid (RNA) recombination with the11083G > T mutation also contributed to the increase of mutations among the viral progeny. CONCLUSION The findings indicate that the 11083G > T mutation of SARS-CoV-2 spread during shipboard quarantine and arose through de novo RNA recombination under positive selection pressure.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Auxergen Inc., Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, United States of America
| | - Gregory P Contreras
- Auxergen Inc., Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, United States of America
| |
Collapse
|
19
|
Lulla V, Wandel MP, Bandyra KJ, Ulferts R, Wu M, Dendooven T, Yang X, Doyle N, Oerum S, Beale R, O’Rourke SM, Randow F, Maier HJ, Scott W, Ding Y, Firth AE, Bloznelyte K, Luisi BF. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. J Virol 2021; 95:e0066321. [PMID: 33963053 PMCID: PMC8223950 DOI: 10.1128/jvi.00663-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.
Collapse
Affiliation(s)
- Valeria Lulla
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Mary Wu
- The Francis Crick Institute, London, United Kingdom
| | - Tom Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Nicole Doyle
- Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Stephanie Oerum
- CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique, Paris, France
| | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
| | - Sara M. O’Rourke
- University of California at Santa Cruz, Santa Cruz, California, USA
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - William Scott
- University of California at Santa Cruz, Santa Cruz, California, USA
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Kotryna Bloznelyte
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Farkas C, Mella A, Turgeon M, Haigh JJ. A Novel SARS-CoV-2 Viral Sequence Bioinformatic Pipeline Has Found Genetic Evidence That the Viral 3' Untranslated Region (UTR) Is Evolving and Generating Increased Viral Diversity. Front Microbiol 2021; 12:665041. [PMID: 34234758 PMCID: PMC8256173 DOI: 10.3389/fmicb.2021.665041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
An unprecedented amount of SARS-CoV-2 sequencing has been performed, however, novel bioinformatic tools to cope with and process these large datasets is needed. Here, we have devised a bioinformatic pipeline that inputs SARS-CoV-2 genome sequencing in FASTA/FASTQ format and outputs a single Variant Calling Format file that can be processed to obtain variant annotations and perform downstream population genetic testing. As proof of concept, we have analyzed over 229,000 SARS-CoV-2 viral sequences up until November 30, 2020. We have identified over 39,000 variants worldwide with increased polymorphisms, spanning the ORF3a gene as well as the 3' untranslated (UTR) regions, specifically in the conserved stem loop region of SARS-CoV-2 which is accumulating greater observed viral diversity relative to chance variation. Our analysis pipeline has also discovered the existence of SARS-CoV-2 hypermutation with low frequency (less than in 2% of genomes) likely arising through host immune responses and not due to sequencing errors. Among annotated non-sense variants with a population frequency over 1%, recurrent inactivation of the ORF8 gene was found. This was found to be present in the newly identified B.1.1.7 SARS-CoV-2 lineage that originated in the United Kingdom. Almost all VOC-containing genomes possess one stop codon in ORF8 gene (Q27∗), however, 13% of these genomes also contains another stop codon (K68∗), suggesting that ORF8 loss does not interfere with SARS-CoV-2 spread and may play a role in its increased virulence. We have developed this computational pipeline to assist researchers in the rapid analysis and characterization of SARS-CoV-2 variation.
Collapse
Affiliation(s)
- Carlos Farkas
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andy Mella
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Maxime Turgeon
- Department of Statistics, University of Manitoba, Winnipeg, MB, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Andrews RJ, O’Leary CA, Tompkins VS, Peterson JM, Haniff H, Williams C, Disney MD, Moss WN. A map of the SARS-CoV-2 RNA structurome. NAR Genom Bioinform 2021; 3:lqab043. [PMID: 34046592 PMCID: PMC8140738 DOI: 10.1093/nargab/lqab043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/06/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 has exploded throughout the human population. To facilitate efforts to gain insights into SARS-CoV-2 biology and to target the virus therapeutically, it is essential to have a roadmap of likely functional regions embedded in its RNA genome. In this report, we used a bioinformatics approach, ScanFold, to deduce the local RNA structural landscape of the SARS-CoV-2 genome with the highest likelihood of being functional. We recapitulate previously-known elements of RNA structure and provide a model for the folding of an essential frameshift signal. Our results find that SARS-CoV-2 is greatly enriched in unusually stable and likely evolutionarily ordered RNA structure, which provides a large reservoir of potential drug targets for RNA-binding small molecules. Results are enhanced via the re-analyses of publicly-available genome-wide biochemical structure probing datasets that are broadly in agreement with our models. Additionally, ScanFold was updated to incorporate experimental data as constraints in the analysis to facilitate comparisons between ScanFold and other RNA modelling approaches. Ultimately, ScanFold was able to identify eight highly structured/conserved motifs in SARS-CoV-2 that agree with experimental data, without explicitly using these data. All results are made available via a public database (the RNAStructuromeDB: https://structurome.bb.iastate.edu/sars-cov-2) and model comparisons are readily viewable at https://structurome.bb.iastate.edu/sars-cov-2-global-model-comparisons.
Collapse
Affiliation(s)
- Ryan J Andrews
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Van S Tompkins
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jake M Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Chiara M, Horner DS, Gissi C, Pesole G. Comparative Genomics Reveals Early Emergence and Biased Spatiotemporal Distribution of SARS-CoV-2. Mol Biol Evol 2021; 38:2547-2565. [PMID: 33605421 PMCID: PMC7928790 DOI: 10.1093/molbev/msab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effective systems for the analysis of molecular data are fundamental for monitoring the spread of infectious diseases and studying pathogen evolution. The rapid identification of emerging viral strains, and/or genetic variants potentially associated with novel phenotypic features is one of the most important objectives of genomic surveillance of human pathogens and represents one of the first lines of defense for the control of their spread. During the COVID 19 pandemic, several taxonomic frameworks have been proposed for the classification of SARS-Cov-2 isolates. These systems, which are typically based on phylogenetic approaches, represent essential tools for epidemiological studies as well as contributing to the study of the origin of the outbreak. Here, we propose an alternative, reproducible, and transparent phenetic method to study changes in SARS-CoV-2 genomic diversity over time. We suggest that our approach can complement other systems and facilitate the identification of biologically relevant variants in the viral genome. To demonstrate the validity of our approach, we present comparative genomic analyses of more than 175,000 genomes. Our method delineates 22 distinct SARS-CoV-2 haplogroups, which, based on the distribution of high-frequency genetic variants, fall into four major macrohaplogroups. We highlight biased spatiotemporal distributions of SARS-CoV-2 genetic profiles and show that seven of the 22 haplogroups (and of all of the four haplogroup clusters) showed a broad geographic distribution within China by the time the outbreak was widely recognized—suggesting early emergence and widespread cryptic circulation of the virus well before its isolation in January 2020. General patterns of genomic variability are remarkably similar within all major SARS-CoV-2 haplogroups, with UTRs consistently exhibiting the greatest variability, with s2m, a conserved secondary structure element of unknown function in the 3′-UTR of the viral genome showing evidence of a functional shift. Although several polymorphic sites that are specific to one or more haplogroups were predicted to be under positive or negative selection, overall our analyses suggest that the emergence of novel types is unlikely to be driven by convergent evolution and independent fixation of advantageous substitutions, or by selection of recombined strains. In the absence of extensive clinical metadata for most available genome sequences, and in the context of extensive geographic and temporal biases in the sampling, many questions regarding the evolution and clinical characteristics of SARS-CoV-2 isolates remain open. However, our data indicate that the approach outlined here can be usefully employed in the identification of candidate SARS-CoV-2 genetic variants of clinical and epidemiological importance.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Carmela Gissi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari,Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari,Italy
| |
Collapse
|
23
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
24
|
Lagan Tregaskis P, Devaney R, Smyth VJ. The First Whole Genome Sequence and Characterisation of Avian Nephritis Virus Genotype 3. Viruses 2021; 13:v13020235. [PMID: 33546203 PMCID: PMC7913312 DOI: 10.3390/v13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Avian nephritis virus (ANV) is classified in the Avastroviridae family with disease associations with nephritis, uneven flock growth and runting stunting syndrome (RSS) in chicken and turkey flocks, and other avian species. The whole genome of ANV genotype 3 (ANV-3) of 6959 nucleotides including the untranslated 5′ and 3′ regions and polyadenylated tail was detected in a metagenomic virome investigation of RSS-affected chicken broiler flocks. This report characterises the ANV-3 genome, identifying partially overlapping open reading frames (ORFs), ORF1a and ORF1b, and an opposing secondary pseudoknot prior to a ribosomal frameshift stemloop structure, with a separate ORF2, whilst observing conserved astrovirus motifs. Phylogenetic analysis of the Avastroviridae whole genome and ORF2 capsid polyprotein classified the first complete whole genome of ANV-3 within Avastroviridae genogroup 2.
Collapse
|
25
|
Aldhumani AH, Hossain MI, Fairchild EA, Boesger H, Marino EC, Myers M, Hines JV. RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif. Biochem Biophys Res Commun 2021; 545:75-80. [PMID: 33545635 PMCID: PMC7834705 DOI: 10.1016/j.bbrc.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022]
Abstract
Antiviral drug discovery continues to be an essential complement to vaccine development for overcoming the global pandemic caused by SARS-CoV-2. The genomic RNA of SARS-CoV-2 contains structural elements important for viral replication and/or pathogenesis making them potential therapeutic targets. Here we report on the stem-loop II motif, a highly conserved noncoding RNA element. Based on our homology model we determined that the G to U transversion in the SARS-CoV-2 stem-loop II motif (S2MG35U) forms a C–U base-pair isosteric to the C-G base-pair in the early 2000’s SARS-CoV (S2M). In addition, chemo-enzymatic probing and molecular dynamics simulations indicate the S2MG35U conformational profile is altered compared to S2M in the apical loop region. We explored S2MG35U as a potential drug target by docking a library of FDA approved drugs. Enzymatic probing of the best docking ligands (aminoglycosides and polymyxins) indicated that polymyxin binding alters the conformational profile and/or secondary structure of the RNA. The SARS-CoV-2 stem-loop II motif conformational differences due to nucleotide transversion and ligand binding are highly significant and provide insight for future drug discovery efforts since the conformation of noncoding RNA elements affects their function.
Collapse
Affiliation(s)
- Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Emily A Fairchild
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Emily C Marino
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States.
| |
Collapse
|
26
|
Tengs T, Delwiche CF, Monceyron Jonassen C. A genetic element in the SARS-CoV-2 genome is shared with multiple insect species. J Gen Virol 2021; 102. [PMID: 33427605 PMCID: PMC8515862 DOI: 10.1099/jgv.0.001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.
Collapse
Affiliation(s)
- Torstein Tengs
- Section of Molecular Toxicology, Department of Environmental Health, Norwegian Institute of Public Health, Norway
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
27
|
Dimonaco NJ, Salavati M, Shih BB. Computational Analysis of SARS-CoV-2 and SARS-Like Coronavirus Diversity in Human, Bat and Pangolin Populations. Viruses 2020; 13:E49. [PMID: 33396801 PMCID: PMC7823979 DOI: 10.3390/v13010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international "CoronaHack" in April 2020, we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2; n = 163), bat (bat-CoV; n = 215) and pangolin (pangolin-CoV; n = 7) available in public repositories. We have also noted the pangolin-CoV isolate MP789 to bare stronger resemblance to SARS-CoV-2 than other pangolin-CoV. Following de novo gene annotation prediction, analyses of gene-gene similarity network, codon usage bias and variant discovery were undertaken. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Last, we have characterised several high impact variants (in-frame insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and may be highlighting loci of potential functional relevance.
Collapse
Affiliation(s)
- Nicholas J. Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY3 3FL, UK
| | - Mazdak Salavati
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Barbara B. Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
28
|
Ryder SP, Morgan BR, Massi F. Analysis of Rapidly Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577650 DOI: 10.1101/2020.05.27.120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two cohorts of SARS-CoV-2 genomic sequences to identify rapidly emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, twenty variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5'UTR, including a set of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-stable molecular switch in the 3'UTR. Finally, five variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M stem loop, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. This analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences, as rapidly emerging variations in these regions could lead to drug resistance.
Collapse
|
29
|
Yeh TY, Contreras GP. Emerging viral mutants in Australia suggest RNA recombination event in the SARS-CoV-2 genome. Med J Aust 2020; 213:44-44.e1. [PMID: 32506536 PMCID: PMC7300921 DOI: 10.5694/mja2.50657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting-Yu Yeh
- Institute of Marine and Environmental Technology, Baltimore, MD, United States.,Auxergen, Baltimore, MD, United States.,GreenWave Bioscience, Baltimore, MD, United States
| | - Gregory P Contreras
- Institute of Marine and Environmental Technology, Baltimore, MD, United States.,Auxergen, Baltimore, MD, United States
| |
Collapse
|
30
|
Andrews RJ, Peterson JM, Haniff HS, Chen J, Williams C, Grefe M, Disney MD, Moss WN. An in silico map of the SARS-CoV-2 RNA Structurome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.17.045161. [PMID: 32511381 PMCID: PMC7263510 DOI: 10.1101/2020.04.17.045161] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SARS-CoV-2 is a positive-sense single-stranded RNA virus that has exploded throughout the global human population. This pandemic coronavirus strain has taken scientists and public health researchers by surprise and knowledge of its basic biology (e.g. structure/function relationships in its genomic, messenger and template RNAs) and modes for therapeutic intervention lag behind that of other human pathogens. In this report we used a recently-developed bioinformatics approach, ScanFold, to deduce the RNA structural landscape of the SARS-CoV-2 transcriptome. We recapitulate known elements of RNA structure and provide a model for the folding of an essential frameshift signal. Our results find that the SARS-CoV-2 is greatly enriched in unusually stable and likely evolutionarily ordered RNA structure, which provides a huge reservoir of potential drug targets for RNA-binding small molecules. Our results also predict regions that are accessible for intermolecular interactions, which can aid in the design of antisense therapeutics. All results are made available via a public database (the RNAStructuromeDB) where they may hopefully drive drug discovery efforts to inhibit SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America
| | - Jake M. Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America
| | - Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America
| | - Jonathan Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America
| | - Christopher Williams
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America
| | - Maison Grefe
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
31
|
Reuter G, Pankovics P, Boros Á. Nonsuppurative (Aseptic) Meningoencephalomyelitis Associated with Neurovirulent Astrovirus Infections in Humans and Animals. Clin Microbiol Rev 2018; 31:e00040-18. [PMID: 30158300 PMCID: PMC6148189 DOI: 10.1128/cmr.00040-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Astroviruses are thought to be enteric pathogens. Since 2010, a certain group of astroviruses has increasingly been recognized, using up-to-date random amplification and high-throughput next-generation sequencing (NGS) methods, as potential neurovirulent (Ni) pathogens of severe central nervous system (CNS) infections, causing encephalitis, meningoencephalitis, and meningoencephalomyelitis. To date, neurovirulent astrovirus cases or epidemics have been reported for humans and domesticated mammals, including mink, bovines, ovines, and swine. This comprehensive review summarizes the virology, epidemiology, pathology, diagnosis, therapy, and future perspective related to neurovirulent astroviruses in humans and mammals, based on a total of 30 relevant articles available in PubMed (searched by use of the terms "astrovirus/encephalitis" and "astrovirus/meningitis" on 2 March 2018). A paradigm shift should be considered based on the increasing knowledge of the causality-effect association between neurotropic astroviruses and CNS infection, and attention should be drawn to the role of astroviruses in unknown CNS diseases.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|