1
|
Jeswani BM, Sharma S, Rathore SS, Nazir A, Bhatheja R, Kapoor K. PCSK9 Inhibitors: The Evolving Future. Health Sci Rep 2024; 7:e70174. [PMID: 39479289 PMCID: PMC11522611 DOI: 10.1002/hsr2.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction PCSK9 inhibitors are a novel class of medications that lower LDL cholesterol (LDL-C) by increasing LDL receptor activity, promoting clearance of LDL-C from the bloodstream. Over the years, PCSK9 inhibitors have been explored as adjunct therapies to statins or as monotherapy in high-risk cardiovascular patients. Aim This review aims to provide an updated perspective on PCSK9 inhibitors, assessing their clinical efficacy, safety, and significance, especially in light of recent clinical trials. Methods The review examines the role of PCSK9 in cholesterol regulation and summarizes the results of major cardiovascular trials, including FOURIER, SPIRE-1, SPIRE-2, and ODYSSEY Outcomes. It also discusses emerging treatments like small interfering RNA (siRNA) therapies and evaluates PCSK9 inhibitor effects on LDL-C and lipoprotein(a) levels. Results Clinical trials have shown PCSK9 inhibitors reduce LDL-C by up to 60%. In the FOURIER trial, evolocumab reduced LDL-C by 59% and major cardiovascular events by 15%-20%. The SPIRE-2 trial, despite early termination, showed a 21% risk reduction in the primary composite endpoint with bococizumab. The ODYSSEY Outcomes trial reported a 57% LDL-C reduction with alirocumab, alongside a 15% reduction in adverse events. Emerging treatments like Inclisiran offer long-term LDL-C control with fewer doses. PCSK9 inhibitors are generally well-tolerated, with the most common side effect being injection site reactions. Conclusion PCSK9 inhibitors significantly lower LDL-C and reduce cardiovascular events, offering promising therapies for high-risk patients, including those with familial hypercholesterolemia (FH) and those who cannot tolerate statins. Future research will focus on optimizing these inhibitors, integrating complementary therapies, and exploring gene-editing technologies to improve patient outcomes.
Collapse
Affiliation(s)
- Bijay Mukesh Jeswani
- Department of MedicineGCS Medical College, Hospital & Research CentreAhmedabadIndia
| | | | | | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Department of MedicineOli Health Magazine Organization, Research, and EducationKigaliRwanda
| | | | - Kapil Kapoor
- Cardiology, AdventHealth OrlandoOrlandoFloridaUSA
| |
Collapse
|
2
|
Mahmood T, Miles JR, Minnier J, Tavori H, DeBarber AE, Fazio S, Shapiro MD. Effect of PCSK9 inhibition on plasma levels of small dense low density lipoprotein-cholesterol and 7-ketocholesterol. J Clin Lipidol 2024; 18:e50-e58. [PMID: 37923663 PMCID: PMC10957330 DOI: 10.1016/j.jacl.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Oxidized forms of cholesterol (oxysterols) are implicated in atherogenesis and can accumulate in the body via direct absorption from food or through oxidative reactions of endogenous cholesterol, inducing the formation of LDL particles loaded with oxidized cholesterol. It remains unknown whether drastic reductions in LDL-cholesterol (LDL-C) are associated with changes in circulating oxysterols and whether small dense LDL (sdLDL) are more likely to carry these oxysterols and susceptible to the effects of PCSK9 inhibition (PCSK9i). OBJECTIVE We investigate the effect of LDL-C reduction accomplished via PCSK9i on changes in plasma levels of sdLDL-cholesterol (sdLDL-C) and a common, stable oxysterol, 7-ketocholesterol (7-KC), among 134 patients referred to our Preventive Cardiology clinic. METHODS Plasma lipid panel, sdLDL-C, and 7-KC measurements were obtained from patients before and after initiation of PCSK9i. RESULTS The intervention caused a significant lowering of LDL-C (-55.4 %). The changes in sdLDL-C levels (mean reduction 51.4 %) were highly correlated with the reductions in LDL-C levels (R = 0.829, p < 0.001). Interestingly, whereas changes in plasma free 7-KC levels with PCSK9i treatment were much smaller than (-6.6 %) and did not parallel those of LDL-C and sdLDL-C levels, they did significantly correlate with changes in triglycerides and very low-density lipoprotein-cholesterol (VLDL-C) levels (R = 0.219, p = 0.025). CONCLUSION Our findings suggest a non-preferential clearance of LDL subparticles as a consequence of LDL receptor upregulation caused by PCSK9 inhibition. Moreover, the lack of significant reduction in 7-KC with PCSK9i suggests that 7-KC may be in part carried by VLDL and lost during lipoprotein processing leading to LDL formation.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Joshua R Miles
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio); Oregon Health & Science University, OHSU-PSU School of Public Health, Portland, OR, USA (Dr Minnier)
| | - Hagai Tavori
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Andrea E DeBarber
- Oregon Health & Science University, University Shared Resources, Portland, OR, USA (Dr DeBarber)
| | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Michael D Shapiro
- Wake Forest University School of Medicine, Section on Cardiovascular Medicine, Center for Prevention of Cardiovascular Disease, Winston-Salem, NC, USA (Dr Shapiro).
| |
Collapse
|
3
|
Wilkens TL, Tranæs K, Eriksen JN, Dragsted LO. Moderate alcohol consumption and lipoprotein subfractions: a systematic review of intervention and observational studies. Nutr Rev 2022; 80:1311-1339. [PMID: 34957513 PMCID: PMC9308455 DOI: 10.1093/nutrit/nuab102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Moderate alcohol consumption is associated with decreased risk of cardiovascular disease (CVD) and improvement in cardiovascular risk markers, including lipoproteins and lipoprotein subfractions. OBJECTIVE To systematically review the relationship between moderate alcohol intake, lipoprotein subfractions, and related mechanisms. DATA SOURCES Following PRISMA, all human and ex vivo studies with an alcohol intake up to 60 g/d were included from 8 databases. DATA EXTRACTION A total of 17 478 studies were screened, and data were extracted from 37 intervention and 77 observational studies. RESULTS Alcohol intake was positively associated with all HDL subfractions. A few studies found lower levels of small LDLs, increased average LDL particle size, and nonlinear relationships to apolipoprotein B-containing lipoproteins. Cholesterol efflux capacity and paraoxonase activity were consistently increased. Several studies had unclear or high risk of bias, and heterogeneous laboratory methods restricted comparability between studies. CONCLUSIONS Up to 60 g/d alcohol can cause changes in lipoprotein subfractions and related mechanisms that could influence cardiovascular health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 98955.
Collapse
Affiliation(s)
- Trine L Wilkens
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Kaare Tranæs
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Jane N Eriksen
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Chae HS, Pel P, Cho J, Kim YM, An CY, Huh J, Choi YH, Kim J, Chin YW. Identification of neolignans with PCSK9 downregulatory and LDLR upregulatory activities from Penthorum chinense and the potential in cholesterol uptake by transcriptional regulation of LDLR via SREBP2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114265. [PMID: 34111537 DOI: 10.1016/j.jep.2021.114265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense has been used in East Asia for the treatment of cholecystitis, infectious hepatitis, jaundice and to treat liver problems. Recent evidences provided the potential for the clinical use of P. chinense in the treatment of metabolic disease. AIM OF THE STUDY Based on the traditional use and recent evidences, we investigated the effects of constituents from P. chinense with modulation on proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) expression, and the effect of the most active substance on cholesterol uptake, and genes relevant to lipid metabolism. MATERIALS AND METHODS The isolation of compounds from the BuOH-soluble extract of 80% methanol extract of P. chinense was conducted using chromatographic methods and the structures were established by interpreting spectroscopic data. Quantitative real time-PCR, and Western blot analysis were performed to monitor the regulatory activity on PCSK9 and LDLR expression. PCSK9-LDLR binding interaction was also tested. The cholesterol uptake in hepatocyte was measured using 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI)-labeled LDL cholesterol. Additionally, gene network analysis of LDLR and responses of its target proteins were carried out to discover genes germane to the effect of active compound on HepG2 cells. Moreover, we performed protein-protein interaction analysis via String and constructed the compound target network using Cytoscape. RESULTS Two new neolignans and 37 known compounds were characterized from P. chinense. Of the isolated compounds, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3), penthorin A (4) and methyl gallate (25) were found to suppress PCSK9 mRNA expression with IC50 values of 5.13, 15.56 and 11.66 μM, respectively. However, all the isolated compounds were found to be inactive in PCSK9-LDLR interaction assay. Additionally, a dibenzoxepine-type lignan analog, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) demonstrated to upregulate LDLR mRNA and protein expression via transcriptional factor sterol regulatory element-binding protein 2 (SREBP2). Furthermore, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) increase the LDL-cholesterol uptake in DiI-LDL assay. CONCLUSION (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) seemed to increase potentially cholesterol uptake via the downregulation of PCSK9 and the activation of LDLR in hepatocytes. Moreover, SREBP2 was found to play an important role in regulation of PCSK9 and LDLR by (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jinwoo Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea.
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Kanonidou C. Small dense low-density lipoprotein: Analytical review. Clin Chim Acta 2021; 520:172-178. [PMID: 34118239 DOI: 10.1016/j.cca.2021.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The causal relationship between low-density lipoprotein (LDL) and atherosclerotic cardiovascular disease (CVD) has been firmly substantiated. LDL consists of a heterogeneous group of particles with different physicochemical and metabolic properties. Among them, small dense LDL (sdLDL) particles are considered an emerging CVD risk factor and a promising CVD risk biomarker. This paper reviews published analytical and calculation-based methods for sdLDL determination in plasma, present their principles, strengths, and weaknesses, and examine the challenges arising from method comparison. METHODS A literature survey was conducted using the PubMed database. Subject headings and keywords facilitated the search strategy. Titles and abstracts were initially assessed, and the full-text article of the pre-selected ones was reviewed. RESULTS A range of methods is currently available for the analysis of LDL subfractions and the measurement of sdLDL particle size, number, and cholesterol concentration. Ultracentrifugation (UC), vertical auto profile, gradient gel electrophoresis (GGE), nuclear magnetic resonance (NMR) spectroscopy, high-performance liquid chromatography, ion mobility analysis, and a homogeneous assay are the most prevalent. To date, there is no "gold standard". UC and GGE are the most established techniques, albeit significantly sophisticated. NMR and the homogeneous assay are options with potential clinical use as they yield results rapidly and can be high-throughput. None of the proposed equations for the calculated sdLDL determination has been sufficiently validated to serve as a clinical tool. CONCLUSIONS Many analytical procedures have been developed for the study of sdLDL particles. Their use remains largely restricted to research laboratories since their analytical and clinical performance, along with the clinical- and cost-effectiveness of sdLDL determination have not been fully established.
Collapse
Affiliation(s)
- Christina Kanonidou
- Department of Clinical Biochemistry, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
6
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
7
|
Komiya I, Yamamoto A, Sunakawa S, Wakugami T. Pemafibrate decreases triglycerides and small, dense LDL, but increases LDL-C depending on baseline triglycerides and LDL-C in type 2 diabetes patients with hypertriglyceridemia: an observational study. Lipids Health Dis 2021; 20:17. [PMID: 33610176 PMCID: PMC7897372 DOI: 10.1186/s12944-021-01434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pemafibrate, a selective PPARα modulator, has the beneficial effects on serum triglycerides (TGs) and very low density lipoprotein (VLDL), especially in patients with diabetes mellitus or metabolic syndrome. However, its effect on the low density lipoprotein cholesterol (LDL-C) levels is still undefined. LDL-C increased in some cases together with a decrease in TGs, and the profile of lipids, especially LDL-C, during pemafibrate administration was evaluated. Methods Pemafibrate was administered to type 2 diabetes patients with hypertriglyceridemia. Fifty-one type 2 diabetes patients (mean age 62 ± 13 years) with a high rate of hypertension and no renal insufficiency were analyzed. Pemafibrate 0.2 mg (0.1 mg twice daily) was administered, and serum lipids were monitored every 4–8 weeks from 8 weeks before administration to 24 weeks after administration. LDL-C was measured by the direct method. Lipoprotein fractions were measured by electrophoresis (polyacrylamide gel, PAG), and LDL-migration index (LDL-MI) was calculated to estimate small, dense LDL. Results Pemafibrate reduced serum TGs, midband and VLDL fractions by PAG. Pemafibrate increased LDL-C levels from baseline by 5.3% (− 3.8–19.1, IQR). Patients were divided into 2 groups: LDL-C increase of > 5.3% (group I, n = 25) and < 5.3% (group NI, n = 26) after pemafibrate. Compared to group NI, group I had lower LDL-C (2.53 [1.96–3.26] vs. 3.36 [3.05–3.72] mmol/L, P = 0.0009), higher TGs (3.71 [2.62–6.69] vs. 3.25 [2.64–3.80] mmol/L), lower LDL by PAG (34.2 [14.5, SD] vs. 46.4% [6.5], P = 0.0011), higher VLDL by PAG (28.2 [10.8] vs. 22.0% [5.2], P = 0.0234), and higher LDL-MI (0.421 [0.391–0.450] vs. 0.354 [0.341–0.396], P < 0.0001) at baseline. Pemafibrate decreased LDL-MI in group I, and the differences between the groups disappeared. These results showed contradictory effects of pemafibrate on LDL-C levels, and these effects were dependent on the baseline levels of LDL-C and TGs. Conclusions Pemafibrate significantly reduced TGs, VLDL, midband, and small, dense LDL, but increased LDL-C in diabetes patients with higher baseline TGs and lower baseline LDL-C. Even if pre-dose LDL-C remains in the normal range, pemafibrate improves LDL composition and may reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Ichiro Komiya
- Department of Internal Medicine, Okinawa Medical Hospital, 2310 Tsuhako-Nishihara, Sashiki, Nanjo, Okinawa, 9011414, Japan. .,Department of Diabetes and Endocrinology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan.
| | - Akira Yamamoto
- Department of Cardiology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan
| | - Suguru Sunakawa
- Department of Diabetes and Endocrinology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan
| | - Tamio Wakugami
- Department of Internal Medicine, Okinawa Medical Hospital, 2310 Tsuhako-Nishihara, Sashiki, Nanjo, Okinawa, 9011414, Japan
| |
Collapse
|
8
|
Kjellmo CA, Pop G, Lappegård KT, Hovland A. Intensive lipid lowering therapy reduces large, but not small, dense low-density lipoprotein particles measured by gel electrophoresis, in elderly patients with atrial fibrillation. Eur J Prev Cardiol 2019; 26:2017-2018. [PMID: 31032636 DOI: 10.1177/2047487319845966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christian A Kjellmo
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Department of Clinical Medicine, University of Tromsø, Norway
| | - Gheorghe Pop
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Knut T Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Department of Clinical Medicine, University of Tromsø, Norway
| | - Anders Hovland
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Department of Clinical Medicine, University of Tromsø, Norway
| |
Collapse
|