1
|
Guruge AG, Makki H, Troisi A. Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS. JOURNAL OF MATERIALS CHEMISTRY. C 2024:d4tc03066d. [PMID: 39465130 PMCID: PMC11497116 DOI: 10.1039/d4tc03066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
In various bioelectronic applications, conductive polymers come into contact with biological tissues, where water is the major component. In this study, we investigated the interface between the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and water, focusing on how the morphology of the PEDOT:PSS is altered by water permeation. We constructed well-equilibrated PEDOT:PSS-water systems in both PEDOT- and PSS-rich phases. Our findings show that water permeates into the polymer through a complex network of water channels, which exhibit a similar pore size distribution in both PEDOT- and PSS-rich phases, leading to similar water intake in these phases. Compared to the dry state of the polymer, water permeation leads to the formation of smaller, less ordered, and distantly located lamella crystallites, potentially resulting in reduced conductivity. Therefore, we argue that these structural changes from the dry state of the polymer to the wet state may be the origin of the significant conductivity reduction observed experimentally in PEDOT:PSS in water or PEDOT:PSS hydrogels.
Collapse
Affiliation(s)
- Amali G Guruge
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
2
|
Traberg WC, Uribe J, Druet V, Hama A, Moysidou C, Huerta M, McCoy R, Hayward D, Savva A, Genovese AMR, Pavagada S, Lu Z, Koklu A, Pappa A, Fitzgerald R, Inal S, Daniel S, Owens RM. Organic Electronic Platform for Real-Time Phenotypic Screening of Extracellular-Vesicle-Driven Breast Cancer Metastasis. Adv Healthc Mater 2023; 12:e2301194. [PMID: 37171457 PMCID: PMC11468090 DOI: 10.1002/adhm.202301194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.
Collapse
Affiliation(s)
- Walther C. Traberg
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Johana Uribe
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Victor Druet
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Adel Hama
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | | | - Miriam Huerta
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Daniel Hayward
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Amaury M. R. Genovese
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Suraj Pavagada
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Zixuan Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Anil Koklu
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Anna‐Maria Pappa
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Healthcare Innovation Engineering CenterKhalifa UniversityAbu DhabiPO Box 127788United Arab Emirates
- Department of Biomedical EngineeringKhalifa University of Science and TechnologyAbu DhabiPO Box 127788United Arab Emirates
| | - Rebecca Fitzgerald
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
3
|
Seok H, Son S, Jathar SB, Lee J, Kim T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:3118. [PMID: 36991829 PMCID: PMC10058286 DOI: 10.3390/s23063118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Memristors mimic synaptic functions in advanced electronics and image sensors, thereby enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann architecture. As computing operations based on von Neumann hardware rely on continuous memory transport between processing units and memory, fundamental limitations arise in terms of power consumption and integration density. In biological synapses, chemical stimulation induces information transfer from the pre- to the post-neuron. The memristor operates as resistive random-access memory (RRAM) and is incorporated into the hardware for neuromorphic computing. Hardware composed of synaptic memristor arrays is expected to lead to further breakthroughs owing to their biomimetic in-memory processing capabilities, low power consumption, and amenability to integration; these aspects satisfy the upcoming demands of artificial intelligence for higher computational loads. Among the tremendous efforts toward achieving human-brain-like electronics, layered 2D materials have demonstrated significant potential owing to their outstanding electronic and physical properties, facile integration with other materials, and low-power computing. This review discusses the memristive characteristics of various 2D materials (heterostructures, defect-engineered materials, and alloy materials) used in neuromorphic computing for image segregation or pattern recognition. Neuromorphic computing, the most powerful artificial networks for complicated image processing and recognition, represent a breakthrough in artificial intelligence owing to their enhanced performance and lower power consumption compared with von Neumann architectures. A hardware-implemented CNN with weight control based on synaptic memristor arrays is expected to be a promising candidate for future electronics in society, offering a solution based on non-von Neumann hardware. This emerging paradigm changes the computing algorithm using entirely hardware-connected edge computing and deep neural networks.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sagar Bhaurao Jathar
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaewon Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Batista A, Bellettini IC, Brondani PB. Pain and nociception bioinspiration for the development of a micellar-based screening test for antinociceptive drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
7
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
8
|
Qi J, Su G, Li Z. Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6759. [PMID: 34832161 PMCID: PMC8621303 DOI: 10.3390/ma14226759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
The gel is an ideal platform for fabricating materials for bio-related applications due to its good biocompatibility, adjustable mechanical strength, and flexible and diversified functionalization. In recent decades, gel-based luminescent conductive materials that possess additional luminescence and conductivity simultaneously advanced applications in biosensors and bioelectronics. Herein, a comprehensive overview of gel-based luminescent conductive materials is summarized in this review. Gel-based luminescent conductive materials are firstly outlined, highlighting their fabrication methods, network structures, and functions. Then, their applications in biosensors and bioelectronics fields are illustrated. Finally, challenges and future perspectives of this emerging field are discussed with the hope of inspire additional ideas.
Collapse
Affiliation(s)
- Jiajin Qi
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Lee H, Won Y, Oh JH. Neuromorphic bioelectronics based on semiconducting polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- HaeRang Lee
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul South Korea
| | - Yousang Won
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul South Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University Seoul South Korea
| |
Collapse
|
10
|
Hicks JM, Yao YC, Barber S, Neate N, Watts JA, Noy A, Rawson FJ. Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102517. [PMID: 34269516 DOI: 10.1002/smll.202102517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, the ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aims to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, it is shown that by using membrane inserted carbon nanotube porins (CNTPs) that can act as bipolar nanoelectrodes, one can control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. It is shown that bipolar electrochemical reaction via gold reduction at the nanotubes can be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. The authors provide new mechanistic insight into this newly describe phenomena at the nanoscale. The results presented give rise to a new method using CNTPs to modulate cell behavior via wireless control of membrane electron transfer.
Collapse
Affiliation(s)
- Jacqueline M Hicks
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yun-Chiao Yao
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Sydney Barber
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
- United States Naval Academy, Annapolis, 21402, USA
| | - Nigel Neate
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie A Watts
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aleksandr Noy
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Frankie J Rawson
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
Jayaram AK, Pappa AM, Ghosh S, Manzer ZA, Traberg WC, Knowles TPJ, Daniel S, Owens RM. Biomembranes in bioelectronic sensing. Trends Biotechnol 2021; 40:107-123. [PMID: 34229865 DOI: 10.1016/j.tibtech.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Cell membranes are integral to the functioning of the cell and are therefore key to drive fundamental understanding of biological processes for downstream applications. Here, we review the current state-of-the-art with respect to biomembrane systems and electronic substrates, with a view of how the field has evolved towards creating biomimetic conditions and improving detection sensitivity. Of particular interest are conducting polymers, a class of electroactive polymers, which have the potential to create the next step-change for bioelectronics devices. Lastly, we discuss the impact these types of devices could have for biomedical applications.
Collapse
Affiliation(s)
- A K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - A M Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - S Ghosh
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - Z A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - W C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - T P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - S Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - R M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK.
| |
Collapse
|
12
|
Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron 2020; 170:112620. [DOI: 10.1016/j.bios.2020.112620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
13
|
Promsuwan K, Meng L, Suklim P, Limbut W, Thavarungkul P, Kanatharana P, Mak WC. Bio-PEDOT: Modulating Carboxyl Moieties in Poly(3,4-ethylenedioxythiophene) for Enzyme-Coupled Bioelectronic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39841-39849. [PMID: 32805895 DOI: 10.1021/acsami.0c10270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Modulation of chemical functional groups on conducting polymers (CPs) provides an effective way to tailor the physicochemical properties and electrochemical performance of CPs, as well as serves as a functional interface for stable integration of CPs with biomolecules for organic bioelectronics (OBEs). Herein, we introduced a facile approach to modulate the carboxylate functional groups on the PEDOT interface through a systematic evaluation on the effect of a series of carboxylate-containing molecules as counterion dopant integrated into the PEDOT backbone, including acetate as monocarboxylate (mono-COO-), malate as dicarboxylate (di-COO-), citrate as tricarboxylate (tri-COO-), and poly(acrylamide-co-acrylate) as polycarboxylate (poly-COO-) bearing different amounts of molecular carboxylate moieties to create tunable PEDOT:COO- interfaces with improved polymerization efficiency. We demonstrated the modulation of PEDOT:COO- interfaces with various granulated morphologies from 0.33 to 0.11 μm, tunable surface carboxylate densities from 0.56 to 3.6 μM cm-2, and with improved electrochemical kinetics and cycling stability. We further demonstrated the effective and stable coupling of an enzyme model lactate dehydrogenase (LDH) with the optimized PEDOT:poly-COO- interface via simple covalent chemistry to develop biofunctionalized PEDOT (Bio-PEDOT) as a lactate biosensor. The biosensing mechanism is driven by a sequential bioelectrochemical signal transduction between the bio-organic LDH and organic PEDOT toward the concept of all-polymer-based OBEs with a high sensitivity of 8.38 μA mM-1 cm-2 and good reproducibility. Moreover, we utilized the LDH-PEDOT biosensor for the detection of lactate in spiked serum samples with a high recovery value of 91-96% and relatively small RSD in the range of 2.1-3.1%. Our findings provide a new insight into the design and optimization of functional CPs, leading to the development of new OBEs for sensing, biosensing, bioengineering, and biofuel cell applications.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Phachara Suklim
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
14
|
Lee T, Kim S, Kim J, Park SC, Yoon J, Park C, Sohn H, Ahn JH, Min J. Recent Advances in Biomolecule-Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3520. [PMID: 32784985 PMCID: PMC7475838 DOI: 10.3390/ma13163520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
With the acceleration of the Fourth Industrial Revolution, the development of information and communications technology requires innovative information storage devices and processing devices with low power and ultrahigh stability. Accordingly, bioelectronic devices have gained considerable attention as a promising alternative to silicon-based devices because of their various applications, including human-body-attached devices, biomaterial-based computation systems, and biomaterial-nanomaterial hybrid-based charge storage devices. Nanomaterial-based charge storage devices have witnessed considerable development owing to their similarity to conventional charge storage devices and their ease of applicability. The introduction of a biomaterial-to-nanomaterial-based system using a combination of biomolecules and nanostructures provides outstanding electrochemical, electrical, and optical properties that can be applied to the fabrication of charge storage devices. Here, we describe the recent advances in charge storage devices containing a biomolecule and nanoparticle heterolayer including (1) electrical resistive charge storage devices, (2) electrochemical biomemory devices, (3) field-effect transistors, and (4) biomemristors. Progress in biomolecule-nanomaterial heterolayer-based charge storage devices will lead to unprecedented opportunities for the integration of information and communications technology, biotechnology, and nanotechnology for the Fourth Industrial Revolution.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Soomin Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Sang-Chan Park
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
15
|
Abstract
Integration of materials acts as a bridge between the electronic and biological worlds, which has revolutionized the development of bioelectronic devices. This review highlights the rapidly emerging field of switchable interface and its bioelectronics applications. This review article highlights the role and importance of two-dimensional (2D) materials, especially graphene, in the field of bioelectronics. Because of the excellent electrical, optical, and mechanical properties graphene have promising application in the field of bioelectronics. The easy integration, biocompatibility, mechanical flexibility, and conformity add impact in its use for the fabrication of bioelectronic devices. In addition, the switchable behavior of this material adds an impact on the study of natural biochemical processes. In general, the behavior of the interfacial materials can be tuned with modest changes in the bioelectronics interface systems. It is also believed that switchable behavior of materials responds to a major change at the nanoscale level by regulating the behavior of the stimuli-responsive interface architecture.
Collapse
|
16
|
Grupi A, Ashur I, Degani-Katzav N, Yudovich S, Shapira Z, Marzouq A, Morgenstein L, Mandel Y, Weiss S. Interfacing the Cell with "Biomimetic Membrane Proteins". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903006. [PMID: 31765076 DOI: 10.1002/smll.201903006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins mediate a myriad of cellular processes and are the target of many therapeutic drugs. Enhancement and extension of the functional scope of membrane proteins can be realized by membrane incorporation of engineered nanoparticles designed for specific diagnostic and therapeutic applications. In contrast to hydrophobic insertion of small amphiphilic molecules, delivery and membrane incorporation of particles on the nanometric scale poses a crucial barrier for technological development. In this perspective, the transformative potential of biomimetic membrane proteins (BMPs), current state of the art, and the barriers that need to be overcome in order to advance the field are discussed.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Idan Ashur
- Agricultural Research Organization, The Volcani Center, Institute of Agricultural Engineering, Rishon LeZion, 7505101, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adan Marzouq
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lion Morgenstein
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yossi Mandel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Richter-Dahlfors A, Melican K. A Cinematic View of Tissue Microbiology in the Live Infected Host. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0007-2019. [PMID: 31152520 PMCID: PMC11026076 DOI: 10.1128/microbiolspec.bai-0007-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Tissue microbiology allows for the study of bacterial infection in the most clinically relevant microenvironment, the living host. Advancements in techniques and technology have facilitated the development of novel ways of studying infection. Many of these advancements have come from outside the field of microbiology. In this article, we outline the progression from bacteriology through cellular microbiology to tissue microbiology, highlighting seminal studies along the way. We outline the enormous potential but also some of the challenges of the tissue microbiology approach. We focus on the role of emerging technologies in the continual development of infectious disease research and highlight future possibilities in our ongoing quest to understand host-pathogen interaction.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
18
|
Löffler S, Antypas H, Choong FX, Nilsson KPR, Richter-Dahlfors A. Conjugated Oligo- and Polymers for Bacterial Sensing. Front Chem 2019; 7:265. [PMID: 31058140 PMCID: PMC6482434 DOI: 10.3389/fchem.2019.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022] Open
Abstract
Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.
Collapse
Affiliation(s)
- Susanne Löffler
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Haris Antypas
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | | | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Lee MY, Lee HR, Park CH, Han SG, Oh JH. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics. Acc Chem Res 2018; 51:2829-2838. [PMID: 30403337 DOI: 10.1021/acs.accounts.8b00465] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for "point-of-care" testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person's health condition. In this respect, sensor applications based on an organic-transistor platform have various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability). This Account covers recent progress in organic transistor-based chemical sensors that detect various chemical species in the human body or the surrounding environment, which will be the core elements of wearable electronic devices. There has been considerable effort to develop high-performance chemical sensors based on organic-transistor platforms through material design and device engineering. Various experimental approaches have been adopted to develop chemical sensors with high sensitivity, selectivity, and stability, including the synthesis of new materials, structural engineering, surface functionalization, and device engineering. In this Account, we first provide a brief introduction to the operating principles of transistor-based chemical sensors. Then we summarize the progress in the fabrication of transistor-based chemical sensors that detect chemical species from the human body (e.g., molecules in sweat, saliva, urine, tears, etc.). We then highlight examples of chemical sensors for detecting harmful chemicals in the environment surrounding the user (e.g., nitrogen oxides, sulfur dioxide, volatile organic compounds, liquid-phase organic solvents, and heavy metal ions). Finally, we conclude this Account with a perspective on the wearable bioelectronics, especially focusing on organic electronic materials and devices.
Collapse
Affiliation(s)
- Moo Yeol Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hae Rang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Cheol Hee Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seul Gi Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
20
|
Feron K, Lim R, Sherwood C, Keynes A, Brichta A, Dastoor PC. Organic Bioelectronics: Materials and Biocompatibility. Int J Mol Sci 2018; 19:E2382. [PMID: 30104515 PMCID: PMC6121695 DOI: 10.3390/ijms19082382] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Organic electronic materials have been considered for a wide-range of technological applications. More recently these organic (semi)conductors (encompassing both conducting and semi-conducting organic electronic materials) have received increasing attention as materials for bioelectronic applications. Biological tissues typically comprise soft, elastic, carbon-based macromolecules and polymers, and communication in these biological systems is usually mediated via mixed electronic and ionic conduction. In contrast to hard inorganic semiconductors, whose primary charge carriers are electrons and holes, organic (semi)conductors uniquely match the mechanical and conduction properties of biotic tissue. Here, we review the biocompatibility of organic electronic materials and their implementation in bioelectronic applications.
Collapse
Affiliation(s)
- Krishna Feron
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Rebecca Lim
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Connor Sherwood
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Angela Keynes
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Alan Brichta
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Paul C Dastoor
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| |
Collapse
|
21
|
Xi Y, Li DS, Newbloom GM, Tatum WK, O'Donnell M, Luscombe CK, Pozzo LD. Sonocrystallization of conjugated polymers with ultrasound fields. SOFT MATTER 2018; 14:4963-4976. [PMID: 29850739 PMCID: PMC6013402 DOI: 10.1039/c8sm00905h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ultrasound acoustic waves are demonstrated to assemble poly-3-hexylthiophene (P3HT) chains into nanofibers after they are fully dissolved in what are commonly considered to be 'good' solvents. In the absence of ultrasound, the polymer remains fully dissolved and does not self-assemble for weeks. UV-vis spectroscopy, ultra-small angle X-ray scattering (USAXS) and small angle neutron scattering (SANS) are used to characterize the induced assembly process and to quantify the fraction of polymer that forms nanofibers. It is determined that the solvent type, insonation time, and aging periods are all important factors affecting the structure and final concentration of fibers. The effect of changing polymer regio-regularity, alkyl chain length, and side chain to thiophene ratio are also explored. High intensity focused ultrasound (HIFU) fields of variable intensity are utilized to reveal the physical mechanisms leading to nanofiber formation, which is strongly correlated to cavitation events in the solvent. This in situ HIFU cell, which is designed for simultaneous scattering analysis, is also used to probe for structural changes occurring over multiple length scales using USAXS and SANS. The proposed acoustic assembly mechanism suggests that, even when dispersed in 'good' solvents such as bromobenzene, dichlorobenzene and chloroform, P3HT chains are still not in a thermodynamically stable state. Instead, they are stabilized by local energy barriers that slow down and effectively prevent crystallization. Ultrasound fields are found to provide enough mechanical energy to overcome these barriers, triggering the formation of small crystalline nuclei that subsequently seed the growth of larger nanofibers.
Collapse
Affiliation(s)
- Yuyin Xi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dong W, Wang Y, Zhou Y, Bai Y, Ju Z, Guo J, Gu G, Bai K, Ouyang G, Chen S, Zhang Q, Huang Y. Soft human–machine interfaces: design, sensing and stimulation. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0060-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Asgarifar S, Inácio PMC, Mestre ALG, Gomes HL. Ultrasensitive bioelectronic devices based on conducting polymers for electrophysiology studies. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0481-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Facile synthesis of highly processable and water dispersible polypyrrole and poly(3,4-ethylenedioxythiophene) microspheres for enhanced supercapacitive performance. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Gomez-Carretero S, Nybom R, Richter-Dahlfors A. Electroenhanced Antimicrobial Coating Based on Conjugated Polymers with Covalently Coupled Silver Nanoparticles Prevents Staphylococcus aureus Biofilm Formation. Adv Healthc Mater 2017; 6. [PMID: 28805046 DOI: 10.1002/adhm.201700435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Indexed: 11/11/2022]
Abstract
The incidence of hospital-acquired infections is to a large extent due to device-associated infections. Bacterial attachment and biofilm formation on surfaces of medical devices often act as seeding points of infection. To prevent such infections, coatings based on silver nanoparticles (AgNPs) are often applied, however with varying clinical success. Here, the traditional AgNP-based antibacterial technology is reimagined, now forming the base for an electroenhanced antimicrobial coating. To integrate AgNPs in an electrically conducting polymer layer, a simple, yet effective chemical strategy based on poly(hydroxymethyl 3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) and (3-aminopropyl)triethoxysilane is designed. The resultant PEDOT-MeOH:PSS-AgNP composite presents a consistent coating of covalently linked AgNPs, as shown by scanning electron microscopy and surface plasmon resonance analysis. The efficacy of the coatings, with and without electrical addressing, is then tested against Staphylococcus aureus, a major colonizer of medical implants. Using custom-designed culturing devices, a nearly complete prevention of biofilm growth is obtained in AgNP composite devices addressed with a square wave voltage input. It is concluded that this electroenhancement of the bactericidal effect of the coupled AgNPs offers a novel, efficient solution against biofilm colonization of medical implants.
Collapse
Affiliation(s)
- Salvador Gomez-Carretero
- Swedish Medical Nanoscience Center; Department of Neuroscience; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Rolf Nybom
- Department of Neuroscience; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center; Department of Neuroscience; Karolinska Institutet; 171 77 Stockholm Sweden
| |
Collapse
|
26
|
Gomez-Carretero S, Libberton B, Svennersten K, Persson K, Jager E, Berggren M, Rhen M, Richter-Dahlfors A. Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. NPJ Biofilms Microbiomes 2017; 3:19. [PMID: 28883986 PMCID: PMC5583241 DOI: 10.1038/s41522-017-0027-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.
Collapse
Affiliation(s)
- Salvador Gomez-Carretero
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ben Libberton
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Karl Svennersten
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kristin Persson
- Laboratory of Organic Electronics, Department of Science and Technology, ITN, Linköping University, S-601 74 Norrköping, Sweden
| | - Edwin Jager
- Sensor and Actuator Systems (SAS), Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, ITN, Linköping University, S-601 74 Norrköping, Sweden
| | - Mikael Rhen
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Hsiao YS, Liao YH, Chen HL, Chen P, Chen FC. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9275-9284. [PMID: 26999636 DOI: 10.1021/acsami.6b00916] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Department of Materials Engineering, Ming Chi University of Technology , 84 Gunjuan Road, Taishan, New Taipei City 243 Taiwan
| | - Yan-Hao Liao
- Department of Photonics, National Chiao Tung University , 1001 University Road, Hsinchu 30010 Taiwan
| | - Huan-Lin Chen
- Department of Materials Engineering, Ming Chi University of Technology , 84 Gunjuan Road, Taishan, New Taipei City 243 Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica , 128 Sec. 2, Academia Road, Taipei 11529 Taiwan
| | - Fang-Chung Chen
- Department of Photonics, National Chiao Tung University , 1001 University Road, Hsinchu 30010 Taiwan
| |
Collapse
|