1
|
Su C, Wang S, Meng J, Zhan X. Enhanced phosphorus release from pig manure by co-fermentation with food waste. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03118-w. [PMID: 39671113 DOI: 10.1007/s00449-024-03118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Animal manure is considered to have great potential for phosphorus (P) recovery due to its high P content, while P recovery is limited by the transfer of P from the solid phase to the liquid phase. The conventional dissolution process by adding chemical acid reagents is not economically feasible for animal manure. This study used food waste (FW) as a co-substrate for the anaerobic fermentation of pig manure (PM) to achieve the release of P. The operational parameters were optimized, and the mechanisms of acidification and P release were further studied. The results showed FW promoted lactic acid production and rapid acidification. As FW increased from 0 to 80%, the concentrations of lactic acid rose from 0.12 ± 0.04 to 11.95 ± 1.37 g/L, with pH decreasing from 7.55 to 4.43. The ratio with FW/PM = 1:2 was the optimal condition, which led to the highest soluble phosphate concentration (350.39 ± 8.59 mg/L) in 72 h, with a TP release rate of 74.24 ± 1.81%. Multiple regression analyses established key relationships to predict pH changes in the reactor.
Collapse
Affiliation(s)
- Chang Su
- Civil Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Shun Wang
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610213, China
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Ryan Institute, University of Galway, Galway, Ireland
- SFI MaREI Research Centre, University of Galway, Galway, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
- Ryan Institute, University of Galway, Galway, Ireland.
- SFI MaREI Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Xiao Y, Yang L, Sun C, Li H. Efficient conversion from food waste to composite carbon source through rapid fermentation and ceramic membrane filtration. CHEMOSPHERE 2024; 367:143601. [PMID: 39442570 DOI: 10.1016/j.chemosphere.2024.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Anaerobic fermentation of food waste (FW) produces a broth rich in small-molecule organic substances, which has the potential as a composite carbon source for denitrification in wastewater treatment. In this study, the idea was tested by optimizing the fermentation process at different hydraulic residence time (HRT), refining fermentation broth through ceramic membrane filtration, and comparing the performance of fermentation filtrate and other commercial carbon sources. A short HRT of 3 days was a suitable fermentation condition with 88% polysaccharide degradation. Acetic acid contributed 40% of soluble chemical oxygen demand in the fermentation broth, followed by ethanol, propanol, lactic acid, and propionic acid, and the five products accounted for 80%. Ceramic membrane filtration can recover more than 70% of dissolved organic matter and more than 60% of small molecular organic matter and simultaneously remove 99% of SS, 41% of total nitrogen, and 62% of total phosphorus. At the rapid degradation stage, the denitrification rates reached 6.68-10.39 mg NOx--N/(g VSS·h), which was on par with commercial carbon sources. The short fermentation and the rapid membrane separation were integrated to create an efficient treatment system, which provided a feasible pathway to utilize FW combining wastewater treatment.
Collapse
Affiliation(s)
- Yongzhi Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiping Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Zhang L, Li H, Hu T, Du X, Zhou Y, Sun G, Liu J. The reduction of the carbon footprint of municipal solid waste management via source classification and supporting strategies: An analysis for the megacity of Shenzhen. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:145-155. [PMID: 39032437 DOI: 10.1016/j.wasman.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Municipal solid waste (MSW) management is a critical concern in megacities that depend heavily on external material and energy inputs but lack space for waste disposal. MSW treatment is a significant contributor to carbon emissions. The implementation of source classification improved the overall MSW management system and enhanced resource recovery from MSW. However, the precise contribution of source classification to carbon emissions reduction remains unclear. This study aimed to analyze the carbon emissions evolution in the MSW management of Shenzhen, a prototypical megacity in China, using data from 2006 to 2020 and employing carbon footprint assessment methodologies. The results demonstrated that source classification reduced the carbon emissions from 0.19-0.25 to 0.14-0.18 t CO2-eq/t MSW when considering the contribution of the urban environmental sanitation management department. The entire MSW management system becomes a carbon sink when considering recyclables collected by commercial enterprises. Although the source classification complicated the collection and transportation of MSW, the carbon offset effect of recycling food waste and recyclables was more significant than that of carbon emissions from collection and transport. Moreover, the landfill gas recovery rate critically influenced the carbon emissions of landfill-based MSW management systems. In contrast, the recovery of plastics was crucial for determining carbon emissions from incineration-based MSW management systems.
Collapse
Affiliation(s)
- Lei Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tao Hu
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Xinrui Du
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Yingjun Zhou
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Guofen Sun
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Jianguo Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Makepa DC, Chihobo CH. Barriers to commercial deployment of biorefineries: A multi-faceted review of obstacles across the innovation chain. Heliyon 2024; 10:e32649. [PMID: 39183827 PMCID: PMC11341323 DOI: 10.1016/j.heliyon.2024.e32649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
Realizing integrated biorefineries producing multiple fuels, chemicals and materials from sustainable biomass feedstocks holds promise for transitioning industries onto low-carbon trajectories. However, widespread commercial implementation remains elusive despite two decades of technological advancements. This review synthesizes current literature to provide a comprehensive analysis of key multi-dimensional barriers inhibiting the scale-up of biorefineries. The review discusses the technical challenges around biomass conversion processes. Economic viability concerns such as high capital costs and lack of market competitiveness are also assessed. The review also evaluates the regulatory and policy complexities that poses risks and uncertainties in the scaling up of biorefineries. Socio-political acceptance hurdles including community engagement and public perception are also reviewed. The interconnected nature of these challenges is emphasized and strategies are recommended to enable full potential realization, covering areas such as enhanced stakeholder collaboration, advanced process intensification, supportive policy frameworks, innovative financing models and strategic marketing initiatives. International pilots and cross-sectoral knowledge exchange are highlighted as priority enablers. In conclusion, this review synthesizes insights from extensive demonstration efforts to identify priorities and pathways for accelerating the global commercial transition towards sustainable biorefinery implementation. It aims to inform strategic decision-making and collaborative actions amongst stakeholders in research, industry and policy domains.
Collapse
Affiliation(s)
- Denzel Christopher Makepa
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Chido Hermes Chihobo
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| |
Collapse
|
5
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
6
|
Camargo FP, Lourenço V, Rodrigues CV, Sabatini CA, Adorno MAT, Silva EL, Varesche MBA. Bio-CH 4 yield of swine manure and food waste optimized by co-substrate proportions diluted in domestic sewage and pH interactions using the response surface approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119308. [PMID: 37883832 DOI: 10.1016/j.jenvman.2023.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This research aimed at evaluating optimal conditions to obtain value-added metabolites, such as bio-CH4, by co-digesting swine manure and food waste diluted in domestic sewage. The assays were carried out in batches using the statistical methods of Rotational Central Composite Design (RCCD) and Surface Response to evaluate the ranges of food waste (1.30-9.70 gTS.L-1), pH (6.16-7.84) and granular Upflow Anaerobic Sludge Blanket sludge as inoculum (2.32-5.68 gTS.L-1), besides about 250 mL of swine manure in 500 mL Duran flasks. According to the RCCD matrix, bio-CH4 yields among 600.6 ± 60.1 and 2790.0 ± 112.0 mL CH4 gTS.L-1 were observed, besides the maximum CH4 production rate between 0.4 ± 0.5 and 49.7 ± 2.0 mL CH4 h-1 and λ between ≤0.0 and 299.3 ± 4.5 h. In the validation assay, the optimal conditions of 9.98 gTS.L-1 of food waste, pH adjusted to 8.0 and 2.20 gTS.L-1 of inoculum were considered, and the bio-CH4 yield obtained (5640.79 ± 242.98 mL CH4 gTS.L-1 or also 5201.83 ± 224.07 mL CH4 gTVS.L-1) was 11.3 times higher than in assays before optimization (499.3 ± 16.0 mL CH4 gTS.L-1) with 5 gTS.L-1 of food waste, 3 gTS.L-1 of inoculum and pH 7.0. Besides, the results observed about the energetic balance of the control and validation assays highlight the importance of process optimization, as this condition was the only one with energy supply higher than the energy required for its operation, exceeding max consumption sevenfold. Based on the most dominant microorganisms (Methanosaeta, 31.06%) and the metabolic inference of the validation assay, it could be inferred that the acetoclastic methanogenesis was the predominant pathway to CH4 production.
Collapse
Affiliation(s)
- Franciele P Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Vitor Lourenço
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Carolina Aparecida Sabatini
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Ciftcioglu-Gozuacik B, Sen G, Goze S, Ozbey-Unal B, Balcik C, Karagunduz A, Keskinler B. Evaluation of volatile fatty acids and ammonia recovery approach from landfill leachate using pilot-scale mechanical vapor recompression. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118720. [PMID: 37536140 DOI: 10.1016/j.jenvman.2023.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Treatment of landfill leachate is still a current problem due to the high treatment costs in addition to the difficulty of meeting the discharge criteria. However, there is a more important issue that should be underlined; it is also valuable compounds that leachate contains. Conventional methods used for treatment of leachate such as membrane filtration, advanced oxidation processes, biological processes and their combinations have largely focused on treatment. However, the recovery of ammonia and volatile organic acids (VFA) in leachate is a promising approach both to overcome high treatment costs and to sustainably manage leachate. In this study, leachate treatment potential was investigated by mechanical vapor recompression (MVR) process, which offers an operational opportunity to recover high value-added products from leachate while providing an effective treatment for wastewater. Optimum operating conditions for the pilot-scale MVR process have been determined by laboratory-scale studies. VFAs were recovered as organic acid salts from the pilot-scale MVR distillate, while ammonia recovery was accomplished as ammonium sulfate from a highly contaminated concentrate stream. VFA and ammonia recovery rates were 89% and 99%, respectively. The treatment cost of leachate with MVR process was calculated according to the data obtained in pilot scale MVR studies considering the operating cost, chemical cost and economical contribution of value-added products. The results showed that the integrated MVR-crystallization process, all treatment costs are covered, with a net gain of 3.8 USD/m3. Consequently, MVR integrated crystallization process offers an economical and sustainable solution for the treatment of leachate by recovering valuable products.
Collapse
Affiliation(s)
| | - Gulisah Sen
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Siyar Goze
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Bahar Ozbey-Unal
- Institute of Earth and Marine Sciences, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Cigdem Balcik
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey.
| |
Collapse
|
8
|
Mao B, Zhang B. Combining ABE fermentation and anaerobic digestion to treat with lipid extracted algae for enhanced bioenergy production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162691. [PMID: 36898333 DOI: 10.1016/j.scitotenv.2023.162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
As a downstream process output, biobutanol can be produced via acetone, butanol, and ethanol (ABE) fermentation from lipid-extracted algae (LEA), but the leftover residue has not been treated for additional value. In current study, LEA were acid hydrolyzed to extract glucose into the hydrolysate, which was then used for ABE fermentation to produce butanol. In the meantime, anaerobic digestion was performed on the hydrolysis residue to produce methane and release nutrients for algae recultivation. To optimize butanol and methane production, several carbon or nitrogen supplements were applied. The results showed that the hydrolysate produced a high butanol concentration of 8.5 g/L with bean cake supplemented, and the residue co-digested with wastepaper had a higher methane production compared to the direct anaerobic digestion of LEA. The causes of the enhanced performances were discussed. The digestates were reused for algae recultivation and were proved to be effective for algae and oil reproduction. The combined process of ABE fermentation and anaerobic digestion was thus proved a promising technique to treat LEA for economic benefit.
Collapse
Affiliation(s)
- Bifei Mao
- Department of Chemistry, Biology and Materials, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Bingcong Zhang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
9
|
Greses S, De Bernardini N, Treu L, Campanaro S, González-Fernández C. Genome-centric metagenomics revealed the effect of pH on the microbiome involved in short-chain fatty acids and ethanol production. BIORESOURCE TECHNOLOGY 2023; 377:128920. [PMID: 36934910 DOI: 10.1016/j.biortech.2023.128920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Added-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C. The initial pH of 6.5 promoted a microbial community involved in acetate, butyrate and ethanol production, mediated by Bifidobacterium subtile IE007 and Eubacteriaceae IE027 as main species. A slight pH decrease to 6.1 shaped microbial functions that resulted in caproate and H2 production, increasing the relevance of Eubacteriaceae IE037 role. This study elucidated the strong pH effect on product outputs when minimal variations take place in AF.
Collapse
Affiliation(s)
- Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain.
| | - Nicola De Bernardini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid 47011, Spain
| |
Collapse
|
10
|
Guo Y, Li C, Zhao H, Wang X, Gao M, Sun X, Wang Q. The Performance of Ultrafiltration Process to Further Refine Lactic Acid from the Pre-Microfiltered Broth of Kitchen Waste Fermentation. MEMBRANES 2023; 13:330. [PMID: 36984717 PMCID: PMC10051411 DOI: 10.3390/membranes13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lactic acid (LA) is an important chemical material facing rapid demand in recent years. The oriented fermentation of kitchen waste is a promising route for economic LA production. However, the refinement of LA from fermentation broth is a spiny issue. In this study, the performance of ultrafiltration (UF) process for the refinement of LA from the pre-microfiltered broth of kitchen waste fermentation was first investigated. The results showed that with 50 KDa polyethersulfone membrane, under the optimum pressure of 120 KPa, the pH of 6.0, and the backflushing mode with the deionized water for 3 min, the best performance was achieved with the chroma removal efficiency, turbidity removal efficiency, protein removal efficiency and total sugar removal efficiency of 54.3%, 89.8%, 71.7% and 58.5%, respectively, and LA recovery efficiency was 93.6%. The results indicated that the UF process could further effectively refine the pre-microfiltered broth of kitchen waste fermentation, and the combination of microfiltration and UF process is ideal for achieving desirable LA refinement performance. This study verified the feasibility of UF process in LA refinement from pre-microfiltered broth of kitchen waste fermentation, and based on the results, the further exploration of proper post-process to treat UF filtrate for obtaining LA product with higher quality should be explored in the future.
Collapse
Affiliation(s)
- Yan Guo
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenglong Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hongjun Zhao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaona Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
11
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
12
|
Crognale S, Massimi A, Sbicego M, Braguglia CM, Gallipoli A, Gazzola G, Gianico A, Tonanzi B, Di Pippo F, Rossetti S. Ecology of food waste chain-elongating microbiome. Front Bioeng Biotechnol 2023; 11:1157243. [PMID: 37113665 PMCID: PMC10126515 DOI: 10.3389/fbioe.2023.1157243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial chain elongation has emerged as a valuable bioprocess for obtaining marketable products, such as medium chain fatty acids usable in several industrial applications, from organic waste. The understanding of the microbiology and microbial ecology in these systems is crucial to apply these microbiomes in reliable production processes controlling microbial pathways to promote favourable metabolic processes, which will in turn increase product specificity and yields. In this research, the dynamics, cooperation/competition and potentialities of bacterial communities involved in the long-term lactate-based chain elongation process from food waste extract were evaluated under different operating conditions by DNA/RNA amplicon sequencing and functional profile prediction. The feeding strategies and the applied organic loading rates strongly affected the microbial community composition. The use of food waste extract promoted the selection of primary fermenters (i.e., Olsenella, Lactobacillus) responsible for the in situ production of electron donors (i.e., lactate). The discontinuous feeding and the organic loading rate 15 gCOD L-1 d-1 selected the best performing microbiome in which microbes coexist and cooperate to complete the chain elongation process. Both at DNA and RNA level, this microbiome was composed by the lactate producer Olsenella, the short chain fatty acids producers Anaerostipes, Clostridium sensu stricto 7, C. sensu stricto 12, Corynebacterium, Erysipelotrichaceae UCG-004, F0332, Leuconostoc, and the chain elongator Caproiciproducens. This microbiome also showed the highest predicted abundance of short-chain acyl-CoA dehydrogenase, the functional enzyme responsible for the chain elongation process. The combined approach herein used allowed to study the microbial ecology of chain elongation process from food waste by identifying the main functional groups, establishing the presence of potential biotic interactions within the microbiomes, and predicting metabolic potentialities. This study provided pivotal indications for the selection of high-performance microbiome involved in caproate production from food waste that can serve as a basis for further improving system performance and engineering the process scale-up.
Collapse
|
13
|
He ZW, Zou ZS, Ren YX, Tang CC, Zhou AJ, Liu W, Wang L, Li Z, Wang A. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158420. [PMID: 36049687 DOI: 10.1016/j.scitotenv.2022.158420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
14
|
Kumar V, Sharma N, Umesh M, Selvaraj M, Al-Shehri BM, Chakraborty P, Duhan L, Sharma S, Pasrija R, Awasthi MK, Lakkaboyana SR, Andler R, Bhatnagar A, Maitra SS. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. BIORESOURCE TECHNOLOGY 2022; 362:127790. [PMID: 35973569 DOI: 10.1016/j.biortech.2022.127790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/27/2023]
Abstract
Modernization and industrialization has undoubtedly revolutionized the food and agro-industrial sector leading to the drastic increase in their productivity and marketing thereby accelerating the amount of agro-industrial food waste generated. In the past few decades the potential of these agro-industrial food waste to serve as bio refineries for the extraction of commercially viable products like organic acids, biochemical and biofuels was largely discussed and explored over the conventional method of disposing in landfills. The sustainable development of such strategies largely depends on understanding the techno economic challenges and planning for future strategies to overcome these hurdles. This review work presents a comprehensive outlook on the complex nature of agro-industrial food waste and pretreatment methods for their valorization into commercially viable products along with the challenges in the commercialization of food waste bio refineries that need critical attention to popularize the concept of circular bio economy.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Neha Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed To Be) University, Bengaluru, Karnataka, India
| | - Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Punjab, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Siva Ramakrishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | | |
Collapse
|
15
|
Gazzola G, Maria Braguglia C, Crognale S, Gallipoli A, Mininni G, Piemonte V, Rossetti S, Tonanzi B, Gianico A. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:328-338. [PMID: 35907330 DOI: 10.1016/j.wasman.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
New technologies development and renewable source exploitation are key tools to realize the European Green Deal and to boost the bio-based economy. In this context, fermentation of organic residues as food waste is an efficient method to obtain marketable products such as carboxylic acids widely applied in industrial production. Under favourable thermodynamic conditions, short chain fatty acids deriving from primary fermentation could be biologically converted into medium-chain fatty acids as caproate via chain elongation (CE) process, by using ethanol or lactate as electron donors. This study evaluates the effectivity of producing caproate from Food Waste extract rich in organics with in situ electron donor production. The test carried out at OLR 15 gCOD L-1d-1 showed high Volatile Fatty Acids (from acetic to caproic acid) yields (0.37 g g-1CODfed), with a maximum caproate concentration of 8 g L-1. The associated microbiome was composed by lactate-producing bacteria (Corynebacterium, Lactobacillus, and Olsenella) and by chain elongators (Clostridiaceae and Caproiciproducens). By stressing the system with OLR increase up to 20 gCOD L-1d-1, the CE process was inhibited by the high concentration of caproate (low occurrence of Clostridiaceae and Caproiciproducens). Nevertheless, after few days of stop-feeding regime imposed to the system, the microbiome restored its capability to proceed with lactate-based CE pathways. Different batch tests carried out with the inhibited biomass at increasing initial caproate concentration confirmed its impact on lactate utilization kinetics.
Collapse
Affiliation(s)
- Giulio Gazzola
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Agata Gallipoli
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Giuseppe Mininni
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Vincenzo Piemonte
- Faculty of Engineering, University Campus Bio-Medico, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Barbara Tonanzi
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Andrea Gianico
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy.
| |
Collapse
|
16
|
Chenebault C, Moscoviz R, Trably E, Escudié R, Percheron B. Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. BIORESOURCE TECHNOLOGY 2022; 354:127230. [PMID: 35483530 DOI: 10.1016/j.biortech.2022.127230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, the production of lactic acid from food waste in industrially relevant conditions was investigated. Laboratory assays were first performed in batch conditions to determine the suitable operational parameters for an efficient lactic acid production. The use of compost as inoculum, the regulation of temperature at 35 °C and pH at 5 enhanced the development of Lactobacillus sp. resulting in the production of 70 g/L of lactic acid with a selectivity of 89% over the other carboxylic acids. Those parameters were then applied at pilot scale in successive fed-batch fermentations. The subsequent high concentration (68 g/L), yield (0.38 g/gTS) and selectivity (77%) in lactic acid demonstrated the applicability of the process. To integrate the process into a complete value chain, fermentation residues were then converted into biogas through anaerobic digestion. Lastly, the experiment was successfully replicated using commercial and municipal waste collected in France.
Collapse
Affiliation(s)
| | - Roman Moscoviz
- Suez, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | - Eric Trably
- LBE, INRAE, Univ Montpellier, 102 Avenue des Etangs, Narbonne F-11100, France
| | - Renaud Escudié
- LBE, INRAE, Univ Montpellier, 102 Avenue des Etangs, Narbonne F-11100, France
| | | |
Collapse
|
17
|
Yang L, Chen L, Li H, Deng Z, Liu J. Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114312. [PMID: 34942551 DOI: 10.1016/j.jenvman.2021.114312] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
It is promising to recover lactic acid (LA) from fermentation of food waste (FW). In this study, pH and temperatures were investigated comprehensively to find their effects on LA fermentation, and microbial analyses were used to take insight to the variation of LA production. The results showed that mesophilic fermentation benefited hydrolysis and acidification, leading to a high yield of LA, while thermophilic conditions restricted other producers at low pH, leading to a high purity of LA. Lactobacillus amylolyticus was the main LA producer under thermophilic conditions, but Thermoanaerobacterium thermosaccharolyticum boomed at pH 5.0-6.0 and it converted LA partly to butyric acid. Simultaneously, Bacillus coagulans also increased and improved the optical purity (OP) of L-LA. From a series of this study, an operational condition of pH 5.5 and temperature of 52 °C would be potentially suitable for lactate fermentation of FW with high purity of 89%, while a stable LA production with an OP of 68% was achieved at 55 °C and pH 6.0.
Collapse
Affiliation(s)
- Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liang Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co, Ltd., Shenzhen, 518055, China
| | - Jianguo Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Papa G, Pepe Sciarria T, Scaglia B, Adani F. Diversifying the products from the organic fraction of municipal solid waste (OFMSW) by producing polyhydroxyalkanoates from the liquid fraction and biomethane from the residual solid fraction. BIORESOURCE TECHNOLOGY 2022; 344:126180. [PMID: 34718126 DOI: 10.1016/j.biortech.2021.126180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
This study describes the diversification of products obtainable from the organic fraction of municipal solid waste (OFMSW) by producing polyhydroxyalkanoates (PHA) from the liquid fraction and biomethane from the residual solid fraction. OFMSW samples were taken during the 2021 season from two full field scale plants treating wastes. After solid/liquid (S/L) separation, 80% of initial organic acids (OAs) were released in the liquid stream. OAs were then used as feed for PHA production and residual solid cakes were tested for biomethane production. Complete mass balance and energy balance were calculated. PHAs production was of 115 ± 23 (n = 6) g kg- 1 OFMSW (TS) and residual biomethane of 219 ± 3 g kg- 1 OFMSW TS, (n = 6). Energy balance indicated that nearly 40% of OFMSW energy was recovered as products. This value was lower than that obtained previously when AD was performed before OAs separation (i.e. 64%).
Collapse
Affiliation(s)
- Gabriella Papa
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepe Sciarria
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
19
|
Wang Q, Yang L, Feng K, Li H, Deng Z, Liu J. Promote lactic acid production from food waste fermentation using biogas slurry recirculation. BIORESOURCE TECHNOLOGY 2021; 337:125393. [PMID: 34120058 DOI: 10.1016/j.biortech.2021.125393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
It is a promising method to recover lactic acid from food waste (FW) fermentation, but the bottleneck problem is the low yield when using mixed inoculation. In this study, laboratorial biogas slurry (LBS) and industrial biogas slurry (IBS) were used as the additive in semi-continuous FW fermentation, aiming to promote the production of lactic acid. According to the research results, the addition of LBS or IBS promoted the production of lactic acid significantly from FW, especially carbohydrate, because it increased the pH values, maintained low OPR levels, and increased microbial number and diversity in the fermentation systems. IBS performed better than LBS because of higher pH, more diverse microbial community and more functional microorganisms. The best ratio of IBS to feedstock was 0.2, and the lactic acid yield reached 0.42 g/gVSadded. An excessively high dose would alter the fermentation pathways, reduce the ratio of lactic acid.
Collapse
Affiliation(s)
- Qiao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kai Feng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co, Ltd., Shenzhen 518055, China
| | - Jianguo Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, interest in the biorefinery concept has emerged in the utilization of volatile fatty acids (VFAs) produced by acidogenic fermentation as precursors for various biotechnological processes. This has attracted substantial attention to VFA production from low-cost substrates such as organic waste and membrane based VFA recovery techniques to achieve cost-effective and environmentally friendly processes. However, there are few reviews which emphasize the acidogenic fermentation of organic waste into VFAs, and VFA recovery. Therefore, this article comprehensively summarizes VFA production, the factors affecting VFA production, and VFA recovery strategies using membrane-based techniques. Additionally, the outlook for future research on VFA production is discussed.
Collapse
|
21
|
Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts 2021. [DOI: 10.3390/catal11080964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The notion of a “biobased economy” in the context of a developing country such as South Africa (SA) necessitates the development of technologies that utilize sustainable feedstocks, have simple and robust operations, are feasible at small scale and produce a variety of valuable bioproducts, thus fitting the biorefinery concept. This case study focuses on the microbial production of higher-value products from selected organic waste streams abundant in the South African agricultural sector using microbes adapted to utilize different parts of biomass waste streams. A ruminant-based carboxylate platform based on mixed or undefined anaerobic co-cultures of rumen microorganisms can convert the carbohydrate polymers in the lignocellulosic part of organic waste streams to carboxylic acids that can be upgraded to biofuels or green chemicals. Furthermore, yeast and fungi can convert the simpler carbohydrates (such as the sugars and malic acid in grape and apple pomace) to ethanol and high-value carboxylic acids, such as lactic, fumaric, succinic and citric acid. This review will discuss the combinational use of the ruminal carboxylate platform and native or recombinant yeasts to valorize biomass waste streams through the production of higher-value organic acids with various applications.
Collapse
|