1
|
Zhao Z, Yang L, Chen X. Globally suitable areas for Lycorma delicatula based on an optimized Maxent model. Ecol Evol 2024; 14:e70252. [PMID: 39310735 PMCID: PMC11413495 DOI: 10.1002/ece3.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Lycorma delicatula, a globally invasive pest, has caused considerable economic losses in many countries. Determining the potential distribution range of L. delicatula is crucial for its effective management and control; however, our understanding of this species remains limited. In this study, Maxent model with occurrence records and environmental variables were fit first and then optimized by selecting the best combination of feature classes and regularization multipliers using the lowest score of corrected Akaike information criterion. Subsequently, we predicted global suitable areas for L. delicatula both currently and in the future (2041-2060, 2061-2080, and 2081-2100). The results indicated that the mean temperature of the driest quarter is the most important environmental variable limiting L. delicatula distribution. Currently, the suitable areas are concentrated in East Asia (mainly in China, South Korea, and Japan), central and eastern United States, and southern Europe. Compared with current environmental conditions, in all future climate scenarios, the number of suitable areas for L. delicatula increased. In addition, we revealed that suitable areas are likely to expand northward in the future. Our study results suggest that policymakers and governments should prioritize the development of pest management measures in suitable areas for L. delicatula, especially in high suitable areas, to control this invasive pest and minimize global economic losses.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
- College of AgricultureAnshun UniversityAnshunChina
| | - Lin Yang
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| | - Xiangsheng Chen
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| |
Collapse
|
2
|
Zhao Z, Yang L, Long J, Chang Z, Chen X. Predicting suitable areas for Metcalfa pruinosa (Hemiptera: Flatidae) under climate change and implications for management. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:7. [PMID: 38717262 PMCID: PMC11078062 DOI: 10.1093/jisesa/ieae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Key Laboratory of High-efficiency Agricultural Plant Protection Informatization in Central Guizhou, College of Agriculture, Anshun University, Anshun 561000, PR China
| | - Lin Yang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiankun Long
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhimin Chang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangsheng Chen
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Xiao Y, Guo Q, Xie N, Yuan G, Liao M, Gui Q, Ding G. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: expansion trend and the main driving factors. BMC Ecol Evol 2024; 24:48. [PMID: 38632522 PMCID: PMC11022495 DOI: 10.1186/s12862-024-02234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Bursaphelenchus xylophilus (Steiner&Buhrer) Nickle is a global quarantine pest that causes devastating mortality in pine species. The rapid and uncontrollable parasitic spread of this organism results in substantial economic losses to pine forests annually. In this study, we used the MaxEnt model and GIS software ArcGIS10.8 to predict the distribution of B. xylophilus based on collected distribution points and 19 environmental variables (with a correlation coefficient of|R| > 0.8) for the contemporary period (1970-2000), 2041-2060 (2050s), 2061-2080 (2070s), and 2081-2100 (2090s) under four shared socioeconomic pathways (SSPs). We conducted a comprehensive analysis of the key environmental factors affecting the geographical distribution of B. xylophilus and suitable distribution areas. Our results indicate that in current prediction maps B. xylophilus had potential suitable habitats in all continents except Antarctica, with East Asia being the region with the most highly suitable areas and the most serious epidemic area currently. Precipitation of the warmest quarter, temperature seasonality, precipitation of the wettest month, and maximum temperature of the warmest month were identified as key environmental variables that determine the distribution of B. xylophilus. Under future climatic conditions, the potential geographic distribution of B. xylophilus will expand relative to current conditions. In particular, under the SSP5-8.5 scenario in 2081-2100, suitable areas will expand to higher latitudes, and there will be significant changes in suitable areas in Europe, East Asia, and North America. These findings are crucial for future prevention and control management and monitoring.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China.
| | - Na Xie
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Gangyi Yuan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Mengyun Liao
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Qin Gui
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| |
Collapse
|
4
|
Qasim S, Mahmood T, Rakha BA, Nadeem MS, Akrim F, Aslam A, Belant JL. Predicting current and future habitat of Indian pangolin (Manis crassicaudata) under climate change. Sci Rep 2024; 14:7564. [PMID: 38555376 PMCID: PMC10981748 DOI: 10.1038/s41598-024-58173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Climate change is among the greatest drivers of biodiversity loss, threatening up to 15-30% of described species by the end of the twenty-first century. We estimated the current suitable habitat and forecasted future distribution ranges of Indian pangolin (Manis crassicaudata) under climate change scenarios. We collected occurrence records of Indian pangolin using burrow counts, remote camera records and previously published literature in Pakistan during 2021-2023. We downloaded bioclimatic data for current (1970-2000) and future (2041-2060, 2061-2080, 2081-2100) climate scenarios from the WorldClim database using the Hadley Global Environment Model (HadGEM3-GC31-LL). We used MaxEnt software to predict current and future distributions of Indian pangolin, then computed the amount of habitat lost, gained, and unchanged across periods. We obtained 560 Indian pangolin occurrences overall, 175 during the study, and 385 from our literature search. Model accuracy was very good (AUC = 0.885, TSS = 0.695), and jackknife tests of variable importance showed that the contribution of annual mean temperature (bio1) was greatest (33.4%), followed by the mean temperature of the coldest quarter (bio-12, 29.3%), temperature seasonality (bio 4, 25.9%), and precipitation seasonality (bio 15, 11.5%). The maxent model predicted that during the current time period (1970-2000) highly suitable habitat for Indian pangolin was (7270 km2, 2.2%), followed by moderately suitable (12,418 km2, 3.7%), less suitable (49,846 km2, 14.8%), and unsuitable habitat (268,355 km2, 79.4%). Highly suitable habitat decreased in the western part of the study area under most SSPs and in the central parts it declined under all SSPs and in future time periods. The predicted loss in the suitable habitat of the Indian pangolin was greatest (26.97%) under SSP 585 followed by SSP 126 (23.67%) during the time 2061-2080. The gain in suitable habitat of Indian pangolin was less than that of losses on average which ranged between 1.91 and 13.11% under all SSPs during all time periods. While the stable habitat of the Indian pangolin ranged between 64.60 and 83.85% under all SSPs during all time periods. Our study provides the current and future habitat ranges of Indian pangolin in the face of a changing climate. The findings of our study could be helpful for policymakers to set up conservation strategies for Indian pangolin in Pakistan.
Collapse
Affiliation(s)
- Siddiqa Qasim
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | - Tariq Mahmood
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Sajid Nadeem
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Faraz Akrim
- Department of Zoology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Asad Aslam
- Department of Zoology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Lian D, Wei J, Chen C, Niu M, Zhang H, Zhao Q. Invasion risks presented by Gonopsis affinis and the use of Trissolcus mitsukurii as a biological control agent under present and future climate conditions. PEST MANAGEMENT SCIENCE 2023; 79:5053-5072. [PMID: 37559554 DOI: 10.1002/ps.7712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Gonopsis affinis (Uhler) is a stinkbug that represents a significant threat to the production of rice (Oryza sativa L.), sugarcane (Saccharum officinarum L.) and eulalia (Miscanthus sinensis (Andersson)), and has been listed as a sugarcane pest in Japan. Trissolcus mitsukurii Ashmead is an egg parasitoid of G. affinis. To determine the potential of T. mitsukurii to be a biological control agent for G. affinis, we aim to predict the current and future areas of suitable habitat for these two species and their overlap with areas of present crop production. We developed MaxEnt models using two different variable selection methods and compared the two for T. mitsukurii with a CLIMEX model. RESULTS The results showed extensive suitable areas for G. affinis under current climate conditions in East Asia, West Africa, Madagascar, and South America. These ranges overlap with areas currently being used for the production of the three crops in question. More than half overlap with areas of suitable habitat for T. mitsukurii. The most critical environmental variable determining habitat suitability for G. affinis was showed to be precipitation of warmest quarter, whilst for T. mitsukurii it was minimum temperature of the coldest month. CONCLUSION Based on our assessment we recommend the immediate implementation of monitoring and invasion prevention measures for G. affinis in southwest China, the Malay Archipelago and West Africa. We suggest that T. mitsukurii be considered for use as a biological control agent in East Asia, Madagascar, Florida and Brazil in the case of future invasions by G. affinis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Lian
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Chao Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Minmin Niu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Hufang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou, China
| | - Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
6
|
Zhao Z, Feng X, Zhang Y, Wang Y, Zhou Z, Liu T. Species richness and endemism patterns of Sternorrhyncha (Insecta, Hemiptera) in China. Zookeys 2023; 1178:279-291. [PMID: 37719337 PMCID: PMC10502486 DOI: 10.3897/zookeys.1178.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
One of the main goals in biogeography and ecology is the study of patterns of species diversity and the driving factors in these patterns. However, such studies have not focused on Sternorrhyncha in China, although this region hosts massive species distribution data. Here, based on the 15,450 distribution records of Sternorrhyncha species in China, we analyzed patterns in species richness and endemism at 1° × 1° grid size and determined the effects of environmental variables on these patterns using correlations analysis and the model averaging approach. We found that species richness and endemism of Sternorrhyncha species are unevenly distributed, with high values in the eastern and southeastern coastal regions of mainland China, as well as Taiwan Island. Furthermore, the key factors driving species richness and endemism patterns are inconsistent. Species richness patterns were strongly affected by the normalized difference vegetation index, which is closely related to the feeding habits of Sternorrhyncha, whereas endemism patterns were strongly affected by the elevation range. Therefore, our results indicate that the range size of species should be considered to understand the determinants of species diversity patterns.
Collapse
Affiliation(s)
- Zhengxue Zhao
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| | - Xueli Feng
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| | - Yingjian Wang
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| | - Zhengxiang Zhou
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| | - Tianlei Liu
- College of Agriculture, Anshun University, Anshun, ChinaAnshun UniversityAnshunChina
| |
Collapse
|
7
|
Mukherjee T, Sharma LK, Thakur M, Banerjee D, Chandra K. Whether curse or blessing: A counterintuitive perspective on global pest thrips infestation under climatic change with implications to agricultural economics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161349. [PMID: 36621499 DOI: 10.1016/j.scitotenv.2022.161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The improvement and application of pest models to predict yield losses is still a challenge for the scientific community. However, pest models were targeted chiefly towards scheduling scouting or pesticide applications to deal with pest infestation. Thysanoptera (thrips) significantly impact the productivity of many economically important crops worldwide. Until now, no comprehensive study is available on the global distribution of pest thrips, as well as on the extent of cropland vulnerability worldwide. Further, nothing is known about the climate change impacts on these insects. Thus the present study was designed to map the global distribution and quantify the extent of cropland vulnerability in the present and future climate scenarios using data of identified pest thrips within the genus, i.e., Thrips, Frankliniella, and Scirtothrips. Our found significant niche contraction under the climate change scenarios and thrips may reside primarily in their thermal tolerance thresholds. About 3,98,160 km2 of cropland globally was found to be affected in the present scenario. However, it may significantly reduce to 5530 Km2 by 2050 and 1990 km2 by 2070. Further, the thrips distribution mostly getting restricted to Eastern North America, the North-western of the Indian sub-continent, and the north of Europe. Among all realms, thrips may lose ground in the Indo-Malayan realm at the most and get restricted to only 27 out of 825 terrestrial ecoregions. The agrarian communities of the infested regions may get benefit if these pests get wiped out, but on the contrary, we may lose species diversity. Moreover, the vacated niche may attract other invasive species, which may seriously impact the species composition and agricultural productivity. The present study findings can be used in making informed decisions about prioritizing future economic and research investments on the thrips in light of anticipated climate change impacts.
Collapse
Affiliation(s)
- Tanoy Mukherjee
- Zoological Survey of India, Kolkata 700053, India-; Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | | | | | | |
Collapse
|
8
|
Zhang YF, Chen ST, Gao Y, Yang L, Yu H. Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model. Sci Rep 2023; 13:4851. [PMID: 36964182 PMCID: PMC10038996 DOI: 10.1038/s41598-023-29678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 03/26/2023] Open
Abstract
Nicotiana alata Link et Otto, widely used in landscaping, is not only of great ornamental value but also of high commercial and medical value. The global potential habitat of N. alata and the environmental factors affecting its distribution are not that clear at present. To provide a reference for the reasonable and extensive planting of N. alata now and in the future, the MaxEnt model was used to predict its global suitable habitats under current and future climate conditions, respectively, based on global geographic distribution data of N. alata and the current and future world bioclimatic variables. The results showed that mean temperature of the driest quarter (bio9), precipitation of driest month (bio14), precipitation seasonality (bio15) and max temperature of warmest month (bio5), were the key bioclimatic variables governing the distribution of N. alata. The global suitable habitats of N. alata were mainly distributed in Europe, the United States, southeastern South America, and China under current climate conditions. Compared with current climate conditions, the future climate decreased suitable habitats of N. alata under SSP1-2.6, and SSP2-4.5 scenario and increased suitable habitats of N. alata under SSP3-7.0, and SSP5-8.5 climatic scenarios. The results provided valuable information and theoretical reference for the reasonable planting of N. alata.
Collapse
Affiliation(s)
- Yan-Fang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Shu-Tong Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hua Yu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
9
|
Chen K, Wang B, Chen C, Zhou G. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:670. [PMID: 35270140 PMCID: PMC8912362 DOI: 10.3390/plants11050670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
As an important Tibetan medicine and a secondary protected plant in China, Pomatosace filicula is endemic to the country and is mainly distributed in the Qinghai-Tibet Plateau (QTP). However, global climate change caused by greenhouse gas emissions might lead to the extinction of P. filicula. To understand the potential spatial distribution of P. filicula in future global warming scenarios, we used the MaxEnt model to simulate changes in its suitable habitat that would occur by 2050 and 2070 using four representative concentration pathway (RCP) scenarios and five global climate models. The results showed that the QTP currently contains a suitable habitat for P. filicula and will continue to do so in the future. Under the RCP2.6 scenario, the suitable habitat area would increase by 2050 but shrink slightly by 2070, with an average reduction of 2.7%. However, under the RCP8.5 scenario, the area of unsuitable habitat would expand by an average of 54.65% and 68.20% by 2050 and 2070, respectively. The changes in the area of suitable habitat under the RCP4.5 and RCP6.0 scenarios were similar, with the unsuitable area increasing by approximately 20% by 2050 and 2070. Under these two moderate RCPs, the total suitable area in 2070 would be greater than that in 2050. The top three environmental factors impacting the habitat distribution were altitude, annual precipitation (BIO12) and annual temperature range (BIO7). The cumulative contribution rate of these three factors was as high as 82.8%, indicating that they were the key factors affecting the distribution and adaptability of P. filicula, P. filicula grows well in damp and cold environments. Due to global warming, the QTP will become warmer and drier; thus, the growing area of P. filicula will move toward higher elevations and areas that are humid and cold. These areas are mainly found near the Three-River Region. Future climate change will aggravate the deterioration of the P. filicula habitat and increase the species' survival risk. This study describes the distribution of P. filicula and provides a basis for the protection of endangered plants in the QTP.
Collapse
Affiliation(s)
- Kaiyang Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Prediction of Potentially Suitable Distribution Areas for Prunus tomentosa in China Based on an Optimized MaxEnt Model. FORESTS 2022. [DOI: 10.3390/f13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prunus tomentosa (Thunb.) Wall has high nutritional value and medicinal effects. It is widespread in China; however, most plants growing in the wild are near extinction in many places. Predicting the potential distribution of P. tomentosa under climate change is helpful for cultivating and protecting wild germplasm resources. We used two general circulation models (CCSM4 and MIROC-ESM) and two future climate scenarios (RCP4.5 and RCP8.5) to predict P. tomentosa’s present and future geographical distribution. A total of 137 distribution data points and 19 bioclimatic variables were imported into the maximum entropy model (MaxEnt). The optimal parameter combination (feature class LQHPT, regularized multiplier 3.0) was selected with corrected Akaike Information Criterion as the index. The results showed that at present and in the future, P. tomentosa was distributed across the northern provinces, with Gansu, Shanxi, Shaanxi, and Henan being the most suitable regions. Compared with the current climatic conditions, the potential growing area of P. tomentosa will move north, and the growing area will increase, especially in Xinjiang, where the low-impact zone area decreases. Temperature and humidity were the main variables affecting the potential distribution of the plant, including the average temperature in the coldest season (Bio11) and precipitation in the warmest season (Bio18).
Collapse
|
11
|
Zahoor B, Liu X, Ahmad B, Kumar L, Songer M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. GLOBAL CHANGE BIOLOGY 2021; 27:4294-4306. [PMID: 34101949 DOI: 10.1111/gcb.15743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Approximately 20%-30% of plant and animal species are at risk of extinction by the end of the 21st century owing to climate change. Range shifts and range contractions in plant species will dramatically affect the distribution of animals relying on them for food and shelter. The negative impacts of climate change on forested landscapes of the northern highlands of Pakistan (NHP) could change the species composition and distribution. The Asiatic black bear (Ursus thibetanus), a forest-dwelling species, primarily depends on plants for foraging, and is assumed to be affected by climate change in NHP. Scat analyses and indigenous knowledge from Machiara National Park revealed the maximum consumption of Quercus species (natural food) and Zea mays (human grown food) by the Asiatic black bear in autumn season. We collected the occurrence data of the Asiatic black bear and its commonly used food (three Quercus spp.) in the NHP. We used the MaxEnt model to simulate current and future (in 2050 and 2070) distribution of the species under RCP4.5 (medium carbon emission scenario) and RCP8.5 (extreme carbon emission scenario). The results predict range reduction and extreme fragmentation in the habitats of all the Quercus spp. Besides, a dramatic decrease in the suitable (SH) and very highly suitable (HSH) habitats was predicted in the future. Range shift and range reduction of Quercus spp. may interrupt the denning chronology of Asiatic black bears, escalate the human-black bear conflicts and local extirpation of the species. Given the extent and magnitude of climate change, it will likely not be enough to focus solely on the conservation of the Asiatic black bear. We need more dynamic planning aiming at mitigating the effect of climate change in forested landscapes including the Quercus forests.
Collapse
Affiliation(s)
- Babar Zahoor
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Xuehua Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, and School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Basharat Ahmad
- Department of Zoology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Lalit Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Melissa Songer
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| |
Collapse
|
12
|
Does the African Citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), Represent a Phytosanitary Threat to the Citrus Industry in Mexico? INSECTS 2021; 12:insects12050450. [PMID: 34069076 PMCID: PMC8156214 DOI: 10.3390/insects12050450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary The African citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) is an invasive species for citrus crops. In its native range is the main vector of Candidatus Liberibacter africanus (CLaf), a pathogen that causes huanglongbing (HLB). For Mexico, T. erytreae could threat the citrus industry in a potential invasion but until now, the best chances to prevent its damage is analyzing if the country has the ecological conditions suitable for this psyllid. In this study we used the ecological niche modeling approach to explore which areas in Mexico has the environmental suitability for the T. erytreae establishment. Additionally, the potential role of an alternate host, Casimiroa edulis La Llave (Rutaceae), and five points of entry into the country, in the potential T. erytreae dispersion were analyzed. Mexico citrus areas has a wide environmental suitability for T. erytreae, including the main federal entity (Veracruz). The natural distribution of C. edulis matches with the T. erytreae environmental suitability and citrus areas, and could expand its distribution across the country. For preventive monitoring strategies, the port of Veracruz is a vital point for phytosanitary agencies, because of its proximity to citrus areas. Abstract The African citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), is a vector of Candidatus Liberibacter africanus (CLaf), a pathogen that causes huanglongbing (HLB) in Africa. Trioza erytreae has invaded areas of Asia and Europe and has threatened citrus production due to its biological habits and the transmission of CLaf. Mexico is a country where citrus production has a vital role from the economic and social point of view. Therefore, ecological niche modeling (ENM) was used to determine if Mexico has the environmental availability that will allow T. erytreae invasion. We analyzed whether or not the distribution of Casimiroa edulis La Llave (Rutaceae) in the country could be a factor that enables the dispersal of T. eytreae. The environmental connectivity between five points of entry into the country (two ports and three airports) was explored to determine possible routes of dispersal of T. erytrae. The results showed that Mexico has wide availability for the invasion of the African citrus psyllid, which coincides with essential citrus areas of the country and with the distribution of C. edulis. Of the entry points studied, the Port of Veracruz showed nearby areas with environmental connectivity. Preventive monitoring measures for T. erytreae in Mexico should focus on Veracruz state because it has an entry point, ideal environmental availability, citrus areas, and specimens of C. edulis.
Collapse
|
13
|
Multi-Scale Spatial Prediction of Wild Boar Damage Risk in Hunchun: A Key Tiger Range in China. Animals (Basel) 2021; 11:ani11041012. [PMID: 33916796 PMCID: PMC8065966 DOI: 10.3390/ani11041012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Spatial distribution of wild boar damage risk is important and can be informative to wildlife habitat management. Hunchun is an important active area of Siberian tiger in China. The wild boar damage has brought barriers to the conservation and management of the Siberian tiger in this region. We predicted the spatial distribution of wild boar damage risk in Hunchun in terms of home range and feeding sites scales, and explored the spatial interaction between tiger habitats and the damage risk of wild boar. The results show the distance to the forest edge is an important factor affecting the wild boar damage, and 38.68% of the high-risk areas are overlapped with tiger habitats in Hunchun. Therefore, precise and differentiated management strategies should be adopted in the management of wild boar population. Abstract Hunchun, a typical area suffering wild boar (Sus scrofa) damage, is an important region for the Siberian Tiger (Panthera tigris) in China. By incorporating the maximum entropy model with 22 variables in the home range scale (12 variables) and in the feeding site scale (10 variables), we predicted wild boar damage risks in this area of China and analyzed how spatial factors influence damage risk. Damage risk was found to be high in areas close to the forest edge, areas with a higher forest cover and lower to medium deciduous forest proportion, low road density, and a medium river density and farmland proportion. The proportion of farmland which was identified as being in the high damage risk zone was 23.55%, of which 38.68% was within the habitat area of the Siberian Tiger. Finally, we propose wild boar damage prevention based on different management goals.
Collapse
|
14
|
Wang F, Wang D, Guo G, Zhang M, Lang J, Wei J. Potential Distributions of the Invasive Barnacle Scale Ceroplastes cirripediformis (Hemiptera: Coccidae) Under Climate Change and Implications for Its Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:82-89. [PMID: 33184624 DOI: 10.1093/jee/toaa245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Ceroplastes cirripediformis Comstock is one of the most destructive invasive pests that have caused various negative impacts to agricultural, ornamental, and greenhouse plants. Since it is time- and labor-consuming to control C. cirripediformis, habitat evaluation of this pest may be the most cost-effective method for predicting its dispersal and avoiding its outbreaks. Here, we evaluated the effects of climatic variables on distribution patterns of C. cirripediformis and produced a global risk map for its outbreak under current and future climate scenarios using the Maximum Entropy (MaxEnt) model. Our results showed that mean temperature of driest quarter (Bio 9), precipitation of coldest quarter (Bio 19), precipitation of warmest quarter (Bio 18), and mean temperature of wettest quarter (Bio 8) were the main factors influencing the current modeled distribution of C. cirripediformis, respectively, contributing 41.9, 29.4, 18.8, and 7.9%. The models predicted that, globally, potential distribution of C. cirripediformis would be across most zoogeographical regions under both current and future climate scenarios. Moreover, in the future, both the total potential distribution region and its area of highly suitable habitat are expected to expand slightly in all representative concentration pathway scenarios. The information generated from this study will contribute to better identify the impacts of climate change upon C. cirripediformis's potential distribution while also providing a scientific basis for forecasting insect pest spread and outbreaks. Furthermore, this study serves an early warning for the regions of potential distribution, predicted as highly suitable habitats for this pest, which could promote its prevention and control.
Collapse
Affiliation(s)
- Fang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Ge Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Meixia Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Jiayi Lang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| |
Collapse
|
15
|
Predicting the Potential Global Geographical Distribution of Two Icerya Species under Climate Change. FORESTS 2020. [DOI: 10.3390/f11060684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including insects. Icerya aegyptiaca (Douglas) and I. purchasi Maskell are two polyphagous and invasive pests in the genus Icerya Signoret (Hemiptera: Monophlebidae) and cause serious damage to many landscape and economic trees. However, the global habitats suitable for these two Icerya species are unclear. The purpose of this study is to determine the potentially suitable habitats of these two species, then to provide scientific management strategies. Using MaxEnt software, the potential risk maps of I. aegyptiaca and I. purchasi were created based on their occurrence data under different climatic conditions and topology factors. The results suggested that under current climate conditions, the potentially habitable area of I. aegyptiaca would be much larger than the current distribution and there would be small changes for I. purchasi. In the future climate change scenarios, the suitable habitats of these two insect species will display an increasing trend. Africa, South America and Asia would be more suitable for I. aegyptiaca. South America, Asia and Europe would be more suitable for I. purchasi. Moreover, most of the highly habitat suitability areas of I. aegyptiaca will become concentrated in Southern Asia. The results also suggested that “min temperature of coldest month” was the most important environmental factor affecting the prediction models of these two insects. This research provides a theoretical reference framework for developing policies to manage and control these two invasive pests of the genus Icerya.
Collapse
|
16
|
Distribution Pattern of Endangered Plant Semiliquidambar cathayensis (Hamamelidaceae) in Response to Climate Change after the Last Interglacial Period. FORESTS 2020. [DOI: 10.3390/f11040434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Semiliquidambar cathayensis is a special and endangered plant in China, used for traditional Chinese medicine and in landscape applications. Predicting the impact of climate change on the distribution of S. cathayensis is crucial for its protection and the sustainable use of resources. We used the maximum entropy (MaxEnt) model optimized by the ENMeval data packet to analyze the potential geographic distribution changes of S. cathayensis in 12 provinces of Southern China for the different periods since the last interglacial period (LIG, 120–140 ka). Considering the potential geographic distribution changes in the province, and based on the two climate scenarios of Representative Concentration Pathways (RCP) 2.6 and RCP 8.5, the distribution range of S. cathayensis was analyzed and we predicted the range for the 2050s (average for 2041–2060) and 2070s (average for 2061–2080). The area under AUC (Area under the receiver operating characteristic (ROC) curve) is 0.9388 under these parameters, which indicates that the model is very accurate. We speculate that the glacial period refugia were the Nanling and Wuyi Mountains for S. cathayensis, and central and Western Fujian and Taiwan are likely to be the future climate refugia. In the mid-Holocene (MH, 6 ka), the growth habitat was 32.41% larger than the modern habitat; in the 2050s and 2070s (except RCP2.6–2070s), the growth habitat will shrink to varying degrees, so efforts to support its in situ and ex situ conservation are urgently needed. The jackknife test showed that the main factors affecting the geographical distribution of S. cathayensis were annual precipitation, precipitation of the wettest month, and precipitation of the driest month. The annual precipitation may be the key factor restricting the northward distribution of S. cathayensis. In general, the centroid of the distribution of S. cathayensis will move northward. The centroid of the adaptive habitats will move northward with the highest degree of climate abnormality. We think that Hainan Island is the most likely origin of S. cathayensis. These findings provide a theoretical basis for the establishment of genetic resources protection measures, the construction of core germplasm resources, and the study of the formation and evolution of Hamamelidaceae.
Collapse
|