1
|
Ma C, Zhang R, He Z, Su P, Wang L, Yao Y, Zhang X, Liu X, Yang F. Biochar alters the soil fauna functional traits and community diversity: A quantitative and cascading perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135302. [PMID: 39053065 DOI: 10.1016/j.jhazmat.2024.135302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the widespread use of biochar, the cascading effects of biochar exposure on soil fauna urgently require deeper understanding. A meta-analysis quantified hierarchical changes in functional traits and community diversity of soil fauna under biochar exposure. Antioxidant enzymes (24.1 %) did not fully mitigate the impact of MDA (13.5 %), leading to excessive DNA damage in soil fauna (21.2 %). Concurrently, reproduction, growth, and survival rates decreased by 20.2 %, 8.5 %, and 21.2 %, respectively. Due to a 39.7 % increase in avoidance behavior of soil fauna towards biochar, species richness ultimately increased by 80.2 %. Compared to other feeding habits, biochar posed a greater threat to the survival of herbivores. Additionally, macrofauna were the most sensitive to biochar. The response of soil fauna also depended on the type, size, concentration, and duration of biochar exposure. It should be emphasized that as exposure concentration increased, the damage to soil fauna became more severe. Furthermore, the smaller the biochar sizes, the greater the damage to soil fauna. To mitigate the adverse effects on soil fauna, this study recommens applying biochar at appropriate times and selecting large sizes in low to medium concentrations. These findings confirm the threat of biochar to soil health from the perspective of soil fauna.
Collapse
Affiliation(s)
- Chen Ma
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Zhe He
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Lukai Wang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yanzhong Yao
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Xingyu Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|
3
|
Bast EM, Marshall NT, Myers KO, Marsh LW, Hurtado MW, Van Zandt PA, Lehnert MS. Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages. Interface Focus 2024; 14:20230051. [PMID: 38618232 PMCID: PMC11008959 DOI: 10.1098/rsfs.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
Collapse
Affiliation(s)
- Elaine M. Bast
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Natalie T. Marshall
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Kendall O. Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Lucas W. Marsh
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | | | | | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| |
Collapse
|
4
|
Krings W, Below P, Gorb SN. Mandible mechanical properties and composition of the larval Glossosoma boltoni (Trichoptera, Insecta). Sci Rep 2024; 14:4695. [PMID: 38409429 PMCID: PMC10897335 DOI: 10.1038/s41598-024-55211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Insect feeding structures, such as mandibles, interact with the ingesta (food or/and substrate) and can be adapted in morphology, composition of material and mechanical properties. The foraging on abrasive ingesta, as on algae covering rocks, is particularly challenging because the mandibles will be prone to wear and structural failure, thus suggesting the presence of mandibular adaptations to accompany this feeding behavior. Adaptations to this are well studied in the mouthparts of molluscs and sea urchins, but for insects there are large gaps in our knowledge. In this study, we investigated the mandibles of a grazing insect, the larvae of the trichopteran Glossosoma boltoni. Using scanning electron microscopy, wear was documented on the mandibles. The highest degree was identified on the medial surface of the sharp mandible tip. Using nanoindentation, the mechanical properties, such as hardness and Young's modulus, of the medial and lateral mandible cuticles were tested. We found, that the medial cuticle of the tip was significantly softer and more flexible than the lateral one. These findings indicate that a self-sharpening mechanism is present in the mandibles of this species, since the softer medial cuticle is probably abraded faster than the harder lateral one, leading to sharp mandible tips. To investigate the origins of these properties, we visualized the degree of tanning by confocal laser scanning microscopy. The autofluorescence signal related to the mechanical property gradients. The presence of transition and alkaline earth metals by energy dispersive X-ray spectroscopy was also tested. We found Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn in the cuticle, but the content was very low and did not correlate with the mechanical property values.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103, Leipzig, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Patrick Below
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
5
|
Li JY, Yu Y, Craig NJ, He W, Su L. Interactions between microplastics and insects in terrestrial ecosystems-A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132783. [PMID: 37852134 DOI: 10.1016/j.jhazmat.2023.132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The presence of microplastics (MPs) in terrestrial ecosystems has been confirmed worldwide. Due to their widespread distribution and diversity in habitats, insects will readily interact with MPs via various pathways. Although the topic of MP-insect interactions is still in the early stages of research, it is becoming increasingly important. We used a META approach with phylogenetic control and subgroup examination to summarize the evidence from both field and laboratory experiments in quantitative form. The field evidence suggests that insects can take and transfer MPs along food chains via ingestion and adherence. Also, they are active in the bio-fragmentation of MPs and the generation of secondary pollutants. The exposure to MPs impaired key biological traits of insects, mainly their behavior and health, such as reducing climbing ability and increasing oxidative stress. In terms of exposure conditions, the small-sized MPs can induce more severe effects on the insects, while the insect response to MPs was not significantly reliant on exposure times or MP concentrations based on the current evidence available. We propose that insects not only play roles in the redistribution of MPs spatially and in food chains via bio-fragmentation but are also threatened by MPs. Our research deepens our understanding of the environmental risks posed by MPs in insect ecosystems.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Yang Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville 3010, Victoria, Australia
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Lei Su
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
6
|
Torres CA, Barrios H, Pinzon-Navarro S, Berkov A. Wood trait preferences of Neotropical xylophagous beetles (Coleoptera: Cerambycidae). Biotropica 2024; 56:98-108. [PMID: 38855501 PMCID: PMC11156264 DOI: 10.1111/btp.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/10/2023] [Indexed: 06/11/2024]
Abstract
Tree life history strategies are correlated with functional plant traits, such as wood density, moisture content, bark thickness, and nitrogen content; these traits affect the nutrients available to xylophagous insects. Cerambycid beetles feed on substrates that vary in these traits, but little is known about how they affect community composition. The goal of this project is to explore the community composition of two cerambycid subfamilies (Cerambycinae and Lamiinae) according to the wood traits in the wood they eat. In a salvage project conducted adjacent to the Panama Canal, trees were felled and exposed to Cerambycidae for oviposition. Disks from branches of differing thickness from the same plant individuals were used to calculate wood density, moisture content, and bark thickness in the field; nitrogen data were acquired offsite. Thick and thin branches tended to differ in wood trait values; therefore, data were analyzed separately in subsequent analyses. In thin branches, cerambycid abundance and species richness were higher in samples with less dense, moister wood, and thicker bark. Thick branches showed similar trends, but the wood traits accounted for little variability in beetle abundance or species richness. There were no significant regressions between beetle data and nitrogen. Cerambycines emerged more slowly, and from denser, drier wood, than lamiines. Cerambycines might be more drought-tolerant than lamiines, and therefore more resistant to the longer, more severe dry seasons that are predicted to occur due to climate change.
Collapse
Affiliation(s)
- Christina Ann Torres
- Department of Biology, City College and the Graduate Center, The City University of New York, Convent Avenue @ 138 St., New York, NY 10031, U.S.A
- Department of Mathematics, Science, and Technology, Teachers College, Columbia University, 525 W 120 street, New York, NY 10027, U.S.A
| | - Héctor Barrios
- Maestría de Entomología, Universidad de Panama, Panama City, Republic of Panama
| | - Sara Pinzon-Navarro
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Balboa Ancon, Panamá, República de Panamá
| | - Amy Berkov
- Department of Biology, City College and the Graduate Center, The City University of New York, Convent Avenue @ 138 St., New York, NY 10031, U.S.A
- Division of Invertebrate Zoology, American Museum of Natural History. Central Park West @ 81 St., New York, NY 10024, U.S.A
| |
Collapse
|
7
|
Yotkham S, Suttiprapan P, Likhitrakarn N, Sulin C, Srisuka W. Biodiversity and Spatiotemporal Variation of Longhorn Beetles (Coleoptera: Cerambycidae) in Tropical Forest of Thailand. INSECTS 2021; 12:insects12010045. [PMID: 33435545 PMCID: PMC7827077 DOI: 10.3390/insects12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Longhorn beetles are a large family of beetles and have a wide-geographic distribution. Some of them are pests of many economic plants and invasive species. They also play roles in decomposition and nutrient cycling in forest ecosystems. They feed on living, dying, or dead woody plants in the larval stage. So far, 308 species of longhorn beetles have been reported from northern Thailand. However, the biodiversity and distribution of longhorn beetles in different elevation gradients and seasons, associated with environmental factors across six regions in the country, has not yet been investigated. In this study, longhorn beetle specimens were collected by malaise trap from 41 localities in 24 national parks across six regions in Thailand. A total of 199 morphospecies were identified from 1376 specimens. Seasonal species richness and abundance of longhorn beetles peaked during the hot and early rainy season in five regions, except for the southern region, which peaked in the rainy season. Our finding revealed that most species’ distribution was correlated with the region and forest type (at middle and low elevations). Quantitative data from this study can be useful to manage agricultural and forest plantations. Abstract Longhorn beetles are highly diversified and important for agriculture and health of the environment. However, the fauna and ecology of these beetles are not well known in Thailand. This study is the first to report the biodiversity, elevation, and seasonal distribution of longhorn beetles. Specimens were collected by malaise traps from 41 localities in 24 national parks throughout the country during 2006–2009. The traps were operated at each site for 12 consecutive months with a monthly service. A total of 199 morphotaxa in 36 tribes of 6 subfamilies were identified from 1376 specimens. Of these, 40.7% and 14.5% of total taxa were singletons and doubletons, respectively. The Shannon diversity index and observed species richness at Panernthung, Loei Forest Unit and Mae Fang Hotspring were high at 0.96 (30), 0.88 (50), and 0.86 (34), respectively. Local richness ranged between 3 and 50 species, while the species richness estimator showed between 6 and 1275 species. The most relatively abundant species, Nupserha lenita, Pterolophia sp.1, Oberea sp.3, Acalolepta pseudospeciosa, and Ac. rustricatrix represented 4.80%, 4.80%, 4.80%, 4.5%, and 4.43% of the species, respectively. The species with the widest distribution range of percentage of species occurrence (% SO) was Pt. sp.1 (63.4%), followed by Ac. rustricatrix (39%) and Moechotypa suffusa (39%). In a significantly negative relationship between species richness and elevation (p > 0.05, R2 = 0.04), the species richness pattern showed a hump-shaped curve that peaked at the middle elevation (501–1000 m asl). Regarding seasonal variation, most of the species occurred during the hot season (March–April) and peaked in early rainy season (May), while a low number of species were found during the mid-rainy (June–October) and cold season (November–February). Ordination analysis indicated that the distribution of most species was associated with regions and forest type, and most of the species correlated with forest located at middle and low elevation. The results of this study indicated the very high biodiversity of longhorn beetles in Thailand, which suggests that an understanding of their seasonal and elevational distribution will be of value to agriculture management and conservation. They also indicated that malaise traps are appropriate for the evaluation of biodiversity.
Collapse
Affiliation(s)
- Sirapat Yotkham
- Department of Entomology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyawan Suttiprapan
- Department of Entomology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.S.); (W.S.)
| | - Natdanai Likhitrakarn
- Division of Plant Protection, Faculty of Agricultural Production, Maejo University, Chiang Mai 50290, Thailand;
| | - Chayanit Sulin
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand;
| | - Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand;
- Correspondence: (P.S.); (W.S.)
| |
Collapse
|