1
|
Liu YN, Fan ZX, Lin YX, Kaewmano A, Wei XL, Fu PL, Grießinger J, Bräuning A. Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, southwest China. TREE PHYSIOLOGY 2024; 44:tpae086. [PMID: 39030688 PMCID: PMC11387012 DOI: 10.1093/treephys/tpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides Buch.-Ham. ex D. Don and the evergreen species Schima wallichii (DC.) Korth. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall-thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020 to 2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichii were delayed by three months and one month, respectively, compared with the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichii. The thickness of enlarging zone and wall-thickening zone in S. wallichii were positively correlated with relative humidity, and minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020 to 2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.
Collapse
Affiliation(s)
- Ya-Nan Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - You-Xing Lin
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Arisa Kaewmano
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lian Wei
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Li Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Jussi Grießinger
- Department of Environment and Biodiversity, University of Salzburg, Salzburg 5020, Austria
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander-University Erlangen-Nürnberg, Wetterkreuz, Erlangen 91058, Germany
| |
Collapse
|
2
|
Gong C, Zeng X, Zhu X, Huang W, Compson ZG, Ren Z, Ran H, Song Q, Yang Q, Huang D, Liu J. Bamboo expansion promotes radial growth of surviving trees in a broadleaf forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1242364. [PMID: 37771496 PMCID: PMC10525704 DOI: 10.3389/fpls.2023.1242364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Introduction Considerable evidence indicates that some trees are more vulnerable than others during bamboo (Phyllostachys edulis) expansion, which can affect plant community structure and alter the environment, but there has been insufficient research on the growth status of surviving individuals in colonized forests. Methods In this study, we compared the annual growth increment, growth rate, and onset, cessation, and duration of radial growth of Alniphyllum fortunei, Machilus pauhoi, and Castanopsis eyrei in a bamboo-expended broadleaf forest (BEBF) and a bamboo-absent broadleaf forest (BABF) using high-resolution point dendrometers. Results We found that the annual radial growth of A. fortunei, M. pauhoi, and C. eyrei was 22.5%, 172.2%, and 59.3% greater in BEBF than in BABF, respectively. The growth rates of M. pauhoi and C. eyrei in BEBF were significantly higher than in BABF by13.9 μm/d and 19.6 μm/d, whereas A. fortunei decreased significantly by 7.9 μm/d from BABF to BEBF. The onset and cessation of broad-leaf tree growth was later, and the growth duration was longer in BEBF compared to BABF. For example, A. fortunei and M. pauhoi in BEBF had more than one month longer growth duration than in BABF. Additionally, the nighttime growth rates of some surviving broad-leaf trees in BEBF was significantly higher than that in BABF. Discussion These results suggest that the surviving trees have plasticity and can adapt to atmospheric changes and competitive relationships after expansion of bamboo in one of two ways: by increasing their growth rates or by modifying onset and cessation of growth to extend the growth duration of trees or avoid the period of intense competition with bamboo, thereby growing better. Our research reveals for the first time how the growth of surviving broad-leaf trees adjusts to bamboo expansion. These results provide insights into how biological expansions impact primary production and have implications for forest management in the Anthropocene.
Collapse
Affiliation(s)
- Chao Gong
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxia Zeng
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xianglong Zhu
- Department of Scientific Research, Administration of Jiangxi Qiyunshan Nature Reserve, Ganzhou, China
| | - Wenhui Huang
- Department of Scientific Research, Administration of Jiangxi Qiyunshan Nature Reserve, Ganzhou, China
| | - Zacchaeus G. Compson
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, United States
| | - Zewen Ren
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Huan Ran
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Qingni Song
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Qingpei Yang
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Dongmei Huang
- School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Jun Liu
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Miller TW, Stangler DF, Larysch E, Honer H, Puhlmann H, Schindler D, Jung C, Seifert T, Rigling A, Kahle HP. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158703. [PMID: 36099953 DOI: 10.1016/j.scitotenv.2022.158703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Severe drought events negatively affect tree growth and often cause legacy effects, expressed by smaller tree rings in the post-drought recovery years. While the pattern of reduced tree-ring widths is frequently described the processes underlying such legacy effects, i.e., whether it is due to shorter growth periods or lower growth rates, remains unclear and is investigated in this study. To elucidate these post-drought effects, we examined radial stem growth dynamics monitored with precision band-dendrometers on 144 Douglas fir, Norway spruce and silver fir sample trees distributed along four elevational gradients in the Black Forest (Southwest Germany) during the post-drought years 2019 and 2020. Growth onset of all investigated species occurred between 11 and 24 days significantly earlier in 2020 compared to 2019. Modelling growth onset based on chilling and forcing units and taking the study year into account explained 88-98 % of the variance in the growth onset data. The highly significant effect of the study year (p < 0.001) led to the conclusion, that other factors than the prevailing site conditions (chilling and forcing units) must have triggered the earlier growth onset in 2020. On the other hand, for Douglas fir growth rates were significantly higher in 2020 compared to 2019 (2.9 μm d-1) and marginally significantly higher for silver fir (1.3 μm d-1), underlining the explanatory power of growth rate on recovery processes in general and suggesting that Douglas fir copes better with droughts, as it recovered faster. Growth dynamics at the beginning of the year showed limited growth for earlier growth onsets, which, however, could not explain the difference between the investigated years. Our results provide evidence that legacy effects of drought events are expressed by a delayed growth onset and a reduced growth rate in the post-drought year and that Douglas fir has a superior recovery potential.
Collapse
Affiliation(s)
- Tobias Walter Miller
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany.
| | - Dominik Florian Stangler
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Elena Larysch
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Harald Honer
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Heike Puhlmann
- Department of Soil and Environment, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Dirk Schindler
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Christopher Jung
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Thomas Seifert
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany; Department for Forest and Wood Science, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; SwissForestLab, Birmensdorf, Switzerland; Institute of Terrestrial Ecology, ETH Zürich, Zürich, Switzerland
| | - Hans-Peter Kahle
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Larysch E, Stangler DF, Puhlmann H, Rathgeber CBK, Seifert T, Kahle HP. The 2018 hot drought pushed conifer wood formation to the limit of its plasticity: Consequences for woody biomass production and tree ring structure. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1171-1185. [PMID: 35277910 DOI: 10.1111/plb.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Hot droughts are expected to increase in Europe and disturb forest ecosystem functioning. Wood formation of trees has the potential to adapt to those events by compensatory mechanisms between the rates and durations of tracheid differentiation to form the typical pattern of vital wood anatomical structures. We monitored xylogenesis and measured wood anatomy of mature silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) trees along an elevational gradient in the Black Forest during the hot drought year of 2018. We assessed the kinetics of tracheid differentiation and the final tracheid dimensions and quantified the relationship between rates and durations of cell differentiation over the growing season. Cell differentiation kinetics were decoupled, and temperature and water availability signals were imprinted in the tree ring structure. The sudden decline in woody biomass production provided evidence for a disruption in carbon sequestration processes due to heat and drought stress. Growth processes of Scots pine (pioneer species) were mainly affected by the spring drought, whereas silver fir (climax species) growth processes were more disturbed by the summer drought. Our study provides novel insights on the plasticity of wood formation and carbon allocation in temperate conifer tree species in response to extreme climatic events.
Collapse
Affiliation(s)
- E Larysch
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| | - D F Stangler
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| | - H Puhlmann
- Department of Soil and Environment, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - C B K Rathgeber
- INRAE, SILVA, Université de Lorraine, AgroParisTech, Nancy, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - T Seifert
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - H-P Kahle
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
5
|
Martínez‐Sancho E, Treydte K, Lehmann MM, Rigling A, Fonti P. Drought impacts on tree carbon sequestration and water use - evidence from intra-annual tree-ring characteristics. THE NEW PHYTOLOGIST 2022; 236:58-70. [PMID: 35576102 PMCID: PMC9542003 DOI: 10.1111/nph.18224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 05/22/2023]
Abstract
The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.
Collapse
Affiliation(s)
- Elisabet Martínez‐Sancho
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Kerstin Treydte
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Andreas Rigling
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology ETHUniversitaetsstrasse 168092ZurichSwitzerland
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
6
|
Stangler DF, Miller TW, Honer H, Larysch E, Puhlmann H, Seifert T, Kahle HP. Multivariate drought stress response of Norway spruce, silver fir and Douglas fir along elevational gradients in Southwestern Germany. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conifer tree species Norway spruce (Picea abies), silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) are important elements in tree species composition and forest management of Central European forests, but their potential to thrive under anticipated climatic changes is still debated controversially. This study contributes a multivariate analysis of resilience components based on increment cores sampled at breast height of Norway spruce, silver fir and Douglas fir trees growing along elevational gradients in Southwestern Germany. We aimed to gain novel insights into the species-specific and elevational response of tree growth and wood density variables during the extreme drought events of the years 2003 and 2018. Our results for Norway spruce corroborate projections of its ongoing decline during climate change as the reductions of wood density and biomass production indicated high drought sensitivity at all elevations. Moreover, resilience indices of mean tree-ring density, maximum latewood density, tree-ring width and biomass production were even lower after the drought of 2018 compared to the previous drought of 2003. Silver fir, a potential substitute tree species for Norway spruce, showed unexpected results with resistance and resilience indices being significantly lower in 2018 compared to 2003 indicating that silver fir might be more vulnerable to drought than previously expected, especially at low elevations. In contrast, the superior growth rates and higher levels of drought tolerance of Douglas fir were especially pronounced during the drought of 2018 and visible across the entire elevational gradient, even though high coning intensity was present for all investigated tree species as a possible confounding factor to exacerbate the drought stress effects in the study region.
Collapse
|
7
|
Arnič D, Krajnc L, Gričar J, Prislan P. Relationships Between Wood-Anatomical Features and Resistance Drilling Density in Norway Spruce and European Beech. FRONTIERS IN PLANT SCIENCE 2022; 13:872950. [PMID: 35463439 PMCID: PMC9024210 DOI: 10.3389/fpls.2022.872950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Environmental conditions affect tree-ring width (TRW), wood structure, and, consequently, wood density, which is one of the main wood quality indicators. Although studies on inter- and intra-annual variability in tree-ring features or density exist, studies demonstrating a clear link between wood structure on a cellular level and its effect on wood density on a macroscopic level are rare. Norway spruce with its simple coniferous structure and European beech, a diffuse-porous angiosperm species were selected to analyze these relationships. Increment cores were collected from both species at four sites in Slovenia. In total, 24 European beech and 17 Norway spruce trees were sampled. In addition, resistance drilling measurements were performed just a few centimeters above the increment core sampling. TRW and quantitative wood anatomy measurements were performed on the collected cores. Resistance drilling density values, tree-ring (TRW, earlywood width-EWW, transition-TWW, and latewood width-LWW) and wood-anatomical features (vessel/tracheid area and diameter, cell density, relative conductive area, and cell wall thickness) were then averaged for the first 7 cm of measurements. We observed significant relationships between tree-ring and wood-anatomical features in both spruce and beech. In spruce, the highest correlation values were found between TRW and LWW. In beech, the highest correlations were observed between TRW and cell density. There were no significant relationships between wood-anatomical features and resistance drilling density in beech. However, in spruce, a significant negative correlation was found between resistance drilling density and tangential tracheid diameter, and a positive correlation between resistance drilling density and both TWW + LWW and LWW. Our findings suggest that resistance drilling measurements can be used to evaluate differences in density within and between species, but they should be improved in resolution to be able to detect changes in wood anatomy.
Collapse
Affiliation(s)
- Domen Arnič
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Krajnc
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Gao J, Rossi S, Yang B. Origin of Intra-annual Density Fluctuations in a Semi-arid Area of Northwestern China. FRONTIERS IN PLANT SCIENCE 2021; 12:777753. [PMID: 34880895 PMCID: PMC8645770 DOI: 10.3389/fpls.2021.777753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Intra-annual density fluctuation (IADF) is a structural modification of the tree ring in response to fluctuations in the weather. The expected changes in monsoon flow would lead to heterogeneous moisture conditions during the growing season and increase the occurrence of IADF in trees of the arid ecosystems of continental Asia. To reveal the timings and physiological mechanisms behind IADF formation, we monitored cambial activity and wood formation in Chinese pine (Pinus tabuliformis) during 2017-2019 at three sites in semi-arid China. We compared the dynamics of xylem formation under a drought event, testing the hypothesis that drought affects the process of cell enlargement and thus induces the production of IADF. Wood microcores collected weekly from April to October were used for anatomical analyses to estimate the timings of cambial activity, and the phases of enlargement, wall thickening, and lignification of the xylem. The first cells started enlargement from late April to early May. The last latewood cells completed differentiation in mid-September. Trees produced IADF in 2018. During that year, a drought in June limited cell production in the cambium, only 36% of the xylem cells being formed in IADF trees, compared to 68% in normal tree rings. IADF cells enlarged under drought in early July and started wall thickening during the rainfall events of late July. The drought restricted cell enlargement and affected wall thickening, resulting in narrow cells with wide walls. Cambium and cell enlargement recovered from the abundant rainfall, producing a new layer with large earlywood tracheids. IADF is a specific adaptation of trees to cope with water deficit events occurring during xylem formation. Our findings confirmed the hypothesis that the June-July drought induces latewood-like IADFs by limiting the process of cell enlargement in the xylem. Our finding suggests a higher occurrence of IADF in trees of arid and semi-arid climates of continental Asia if the changes to monsoon flows result in more frequent drought events during the earlywood formation in June.
Collapse
Affiliation(s)
- Jiani Gao
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
- Qinghai Research Center of Qilian Mountain National Park, Academy of Plateau Science and Sustainability and Qinghai Normal University, Xining, China
| |
Collapse
|
9
|
Babushkina EA, Dergunov DR, Belokopytova LV, Zhirnova DF, Upadhyay KK, Tripathi SK, Zharkov MS, Vaganov EA. Non-linear Response to Cell Number Revealed and Eliminated From Long-Term Tracheid Measurements of Scots Pine in Southern Siberia. FRONTIERS IN PLANT SCIENCE 2021; 12:719796. [PMID: 34671371 PMCID: PMC8521138 DOI: 10.3389/fpls.2021.719796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Dendroclimatic research offers insight into tree growth-climate response as a solution to the forward problem and provides reconstructions of climatic variables as products of the reverse problem. Methodological developments in dendroclimatology have led to the inclusion of a variety of tree growth parameters in this field. Tree-ring traits developed during short time intervals of a growing season can potentially provide a finer temporal scale of both dendroclimatic applications and offer a better understanding of the mechanisms of tree growth reaction to climatic variations. Furthermore, the transition from classical dendroclimatic studies based on a single integral variable (tree-ring width) to the modern multitude of quantitative variables (e.g., wood anatomical structure) adds a lot of complexity, which mainly arises from intrinsic feedbacks between wood traits and muddles seasonality of registered climatic signal. This study utilized life-long wood anatomical measurements of 150- to 280-year-old trees of Pinus sylvestris L. growing in a moisture-sensitive habitat of the forest-steppe of Southern Siberia (Russia) to investigate and eliminate legacy effect from cell production in tracheid traits. Anatomical parameters were calculated to describe the results of the three main subsequent stages of conifer xylem tracheid development, namely, cell number per radial file in the ring, mean and maximum cell radial diameter, and mean and maximum cell-wall thickness. Although tree-ring width was almost directly proportional to cell number, non-linear relationships with cell number were revealed in tracheid measurements. They exhibited a stronger relationship in the areas of narrow rings and stable anatomical structure in wider rings. The exponential models proposed in this study demonstrated these relationships in numerical terms with morphometric meaning. The ratio of anatomical measurements to their modeled values was used to develop long-term anatomical chronologies, which proved to retain information about climatic fluctuations independent of tree-ring width (cell number), despite decreased common signal.
Collapse
Affiliation(s)
| | | | | | - Dina F. Zhirnova
- Khakass Technical Institute, Siberian Federal University, Abakan, Russia
| | | | | | | | - Eugene A. Vaganov
- Siberian Federal University, Krasnoyarsk, Russia
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Krasnoyarsk, Russia
| |
Collapse
|