1
|
Zhang B, Zhu S, Li J, Fu F, Guo L, Li J, Zhang Y, Liu Y, Chen G, Zhang G. Elevational distribution patterns and drivers factors of fungal community diversity at different soil depths in the Abies georgei var. smithii forests on Sygera Mountains, southeastern Tibet, China. Front Microbiol 2024; 15:1444260. [PMID: 39184024 PMCID: PMC11342059 DOI: 10.3389/fmicb.2024.1444260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Soil fungal communities play a crucial role in maintaining the ecological functions of alpine forest soil ecosystems. However, it is currently unclear how the distribution patterns of fungal communities in different soil layers of alpine forests will change along the elevational gradients. Material and methods Therefore, Illumina MiSeq sequencing technology was employed to investigate fungal communities in three soil layers (0-10, 10-20, and 20-30 cm) along an elevational gradient (3500 m to 4300 m) at Sygera Mountains, located in Bayi District, Nyingchi City, Tibet. Results and discussion The results indicated that: 1) Soil depth had a greater impact on fungal diversity than elevation, demonstrating a significant reduction in fungal diversity with increased soil depth but showing no significant difference with elevation changes in all soil layers. Within the 0-10 cm soil layer, both Basidiomycota and Ascomycota co-dominate the microbial community. However, as the soil depth increases to 10-20 and 20-30 cm soil layers, the Basidiomycota predominantly dominates. 2) Deterministic processes were dominant in the assembly mechanism of the 0-10 cm fungal community and remained unchanged with increasing elevation. By contrast, the assembly mechanisms of the 10-20 and 20-30 cm fungal communities shifted from deterministic to stochastic processes as elevation increased. 3) The network complexity of the 0-10 cm fungal community gradually increased with elevation, while that of the 10-20 and 20-30 cm fungal communities exhibited a decreasing trend. Compared to the 0-10 cm soil layer, more changes in the relative abundance of fungal biomarkers occurred in the 10-20 and 20-30 cm soil layers, indicating that the fungal communities at these depths are more sensitive to climate changes. Among the key factors driving these alterations, soil temperature and moisture soil water content stood out as pivotal in shaping the assembly mechanisms and network complexity of fungal communities. This study contributes to the understanding of soil fungal community patterns and drivers along elevational gradients in alpine ecosystems and provides important scientific evidence for predicting the functional responses of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yuzhuo Liu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Ganggang Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Chen L, Yu Z, Zhao M, Kerfahi D, Li N, Shi L, Qi X, Lee CB, Dong K, Lee HI, Lee SS. Elevational Variation in and Environmental Determinants of Fungal Diversity in Forest Ecosystems of Korean Peninsula. J Fungi (Basel) 2024; 10:556. [PMID: 39194882 DOI: 10.3390/jof10080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Exploring species diversity along elevational gradients is important for understanding the underlying mechanisms. Our study focused on analyzing the species diversity of fungal communities and their subcommunities at different trophic and taxonomic levels across three high mountains of the Korean Peninsula, each situated in a different climatic zone. Using high-throughput sequencing, we aimed to assess fungal diversity patterns and investigate the primary environmental factors influencing fungal diversity. Our results indicate that soil fungal diversity exhibits different elevational distribution patterns on different mountains, highlighting the combined effects of climate, soil properties, and geographic topology. Notably, the total and available phosphorus contents in the soil emerged as key determinants in explaining the differences in diversity attributed to soil properties. Despite the varied responses of fungal diversity to elevational gradients among different trophic guilds and taxonomic levels, their primary environmental determinants remained remarkably consistent. In particular, total and available phosphorus contents showed significant correlations with the diversity of the majority of the trophic guilds and taxonomic levels. Our study reveals the absence of a uniform diversity pattern along elevational gradients, underscoring the general sensitivity of fungi to soil conditions. By enriching our understanding of fungal diversity dynamics, this research enhances our comprehension of the formation and maintenance of elevational fungal diversity and the response of microbial communities in mountain ecosystems to climate change. This study provides valuable insights for future ecological studies of similar biotic communities.
Collapse
Affiliation(s)
- Lei Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhi Yu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Mengchen Zhao
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dorsaf Kerfahi
- Department of Biological Sciences, School of Natural Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524091, China
| | - Lingling Shi
- Department of Geosciences, Geo-Biosphere Interactions, Faculty of Sciences, University of Tuebingen, 72074 Tuebingen, Germany
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Chang-Bae Lee
- Biodiversity and Ecosystem Functioning Major, Department of Climate Technology Convergence, Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
- Department of Forestry, Environment and Systems, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hae-In Lee
- Biodiversity and Ecosystem Functioning Major, Department of Climate Technology Convergence, Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| | - Sang-Seob Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G, Chen Z, Bai X, Zhang J. Depth effects on bacterial community altitudinal patterns and assembly processes in the warm-temperate montane forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169905. [PMID: 38190904 DOI: 10.1016/j.scitotenv.2024.169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Chen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueting Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jinshuo Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
He B, Li Q, Zou S, Bai X, Li W, Chen Y. Dynamic Changes of Soil Microbial Communities During the Afforestation of Pinus Armandii in a Karst Region of Southwest China. MICROBIAL ECOLOGY 2024; 87:36. [PMID: 38265481 PMCID: PMC10808146 DOI: 10.1007/s00248-024-02345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Clarifying the response of soil microbial communities to vegetation restoration is essential to comprehend biogeochemical processes and ensure the long-term viability of forest development. To assess the variations in soil microbial communities throughout the growth of Pinus armandii plantations in the karst region, we utilized the "space instead of time" approach and selected four P. armandii stands with ages ranging from 10 to 47 years, along with a grassland control. The microbial community structure was determined by conducting Illumina sequencing of the 16 S rRNA gene and the ITS gene, respectively. The results demonstrated that afforestation with P. armandii significantly influenced soil microbial communities, as indicated by notable differences in bacterial and fungal composition and diversity between the plantations and the control. However, soil microbe diversity did not display significant variation across stand ages. Moreover, the bacterial community exhibited higher responsiveness to age gradients compared to the fungal community. Soil physicochemical factors play a critical role in elucidating microbial diversity and community composition variations during restoration processes. TN, AN, TP, AP, SOC, AK, and pH were the most significant influencing factors for the composition of bacterial community, while TC, SOC, pH, and TCa were the most significant influencing factors for the composition of fungal community. Our findings indicate substantial changes in soil bacterial and fungal communities across successive stages of development. Additionally, the changes in dominant bacteria and fungi characteristics across the age gradient were primarily attributed to variations in the prevailing soil conditions and chemical factors.
Collapse
Affiliation(s)
- Bin He
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China.
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China.
| | - Qing Li
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China
| | - Shun Zou
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China
| | - Xiaolong Bai
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China
| | - Wangjun Li
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China
| | - Yang Chen
- College of Ecological Engineering, Guizhou University of Engineering Science, Bijie City, 551700, Guizhou Province, China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie City, 551700, Guizhou Province, China
| |
Collapse
|
5
|
Conesa HM, Párraga-Aguado I, Jiménez-Cárceles FJ, Risueño Y. Evaluation of the rhizospheric microbiome of the native colonizer Piptatherum miliaceum in semiarid mine tailings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9359-9371. [PMID: 36074214 PMCID: PMC10673988 DOI: 10.1007/s10653-022-01357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The study of the rhizospheric microbiome in native plants should be a prerequisite before carrying out the phytomanagement of mine tailings. The goal of this work was to evaluate the rhizospheric microbiome of Piptatherum miliaceum in semiarid mine tailings. A comprehensive edaphic characterization was performed including the description of soil microbial composition in the rhizosphere of P. miliaceum growing at a mine tailings pile and at a control site. Plant nutritional and isotopic compositions were also determined. Neutral pH of the tailings (7.3) determined low metal extractability in 0.01 M CaCl2 (e.g. < 1 mg/kg for Zn). In spite of the contrasting edaphic fertility conditions of both sites, N (~ 15 g kg-1) and P (~ 400 mg kg-1) leaf concentrations were similar. The lower δ15N at the tailings plants (- 4.50‰) compared to the control (6.42‰) indicated greater efficiency of P. miliaceum for uptaking N under the low fertility conditions of the tailings (0.1% total soil nitrogen). The presence at the tailings of bacterial orders related to the cycling of N, such as Rhizobiales, could have contributed to enhance N acquisition. The lower leaf δ13C values at the tailings (- 30.22‰) compared to the control (- 28.47‰) indicated lower water use efficiency of the tailing plants. Some organotrophic bacterial and fungal groups in the tailings' rhizospheres were also found in the control site (e.g. Cytophagales, Sphingobacteriales for bacteria; Hypocreales, Pleosporales for fungi). This may indicate that P. miliaceum is able to shape its own specific microbiome at the tailings independently from the initial microbial composition of the tailings.
Collapse
Affiliation(s)
- Héctor M Conesa
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | | | | | | |
Collapse
|
6
|
Fu F, Li J, Li Y, Chen W, Ding H, Xiao S. Simulating the effect of climate change on soil microbial community in an Abies georgei var. smithii forest. Front Microbiol 2023; 14:1189859. [PMID: 37333631 PMCID: PMC10272780 DOI: 10.3389/fmicb.2023.1189859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Qinghai-Tibet Plateau is considered a region vulnerable to the effects of climate change. Studying the effects of climate change on the structure and function of soil microbial communities will provide insight into the carbon cycle under climate change. However, to date, changes in the successional dynamics and stability of microbial communities under the combined effects of climate change (warming or cooling) remain unknown, which limits our ability to predict the consequences of future climate change. In this study, in situ soil columns of an Abies georgei var. smithii forest at 4,300 and 3,500 m elevation in the Sygera Mountains were incubated in pairs for 1 year using the PVC tube method to simulate climate warming and cooling, corresponding to a temperature change of ±4.7°C. Illumina HiSeq sequencing was applied to study alterations in soil bacterial and fungal communities of different soil layers. Results showed that warming did not significantly affect the fungal and bacterial diversity of the 0-10 cm soil layer, but the fungal and bacterial diversity of the 20-30 cm soil layer increased significantly after warming. Warming changed the structure of fungal and bacterial communities in all soil layers (0-10 cm, 10-20 cm, and 20-30 cm), and the effect increased with the increase of soil layers. Cooling had almost no significant effect on fungal and bacterial diversity in all soil layers. Cooling changed the structure of fungal communities in all soil layers, but it showed no significant effect on the structure of bacterial communities in all soil layers because fungi are more adapted than bacteria to environments with high soil water content (SWC) and low temperatures. Redundancy analysis (RDA) and hierarchical analysis showed that changes in soil bacterial community structure were primarily related to soil physical and chemical properties, whereas changes in soil fungal community structure primarily affected SWC and soil temperature (Soil Temp). The specialization ratio of fungi and bacteria increased with soil depth, and fungi were significantly higher than bacteria, indicating that climate change has a greater impact on microorganisms in deeper soil layers, and fungi are more sensitive to climate change. Furthermore, a warmer climate could create more ecological niches for microbial species to coexist and increase the strength of microbial interactions, whereas a cooler climate could have the opposite effect. However, we found differences in the intensity of microbial interactions in response to climate change in different soil layers. This study provides new insights to understand and predict future effects of climate change on soil microbes in alpine forest ecosystems.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Wensheng Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Huihui Ding
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Siying Xiao
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| |
Collapse
|
7
|
Hammerschmiedt T, Kintl A, Holatko J, Mustafa A, Vitez T, Malicek O, Baltazar T, Elbl J, Brtnicky M. Assessment of digestates prepared from maize, legumes, and their mixed culture as soil amendments: Effects on plant biomass and soil properties. FRONTIERS IN PLANT SCIENCE 2022; 13:1017191. [PMID: 36582636 PMCID: PMC9793090 DOI: 10.3389/fpls.2022.1017191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Digestate prepared from anaerobic digestion can be used as a fertilizer, as it contains ample amounts of plant nutrients, mainly nitrogen, phosphorous, and potassium. In this regard, digestates produced from mixed intercropped cereal and legume biomass have the potential to enrich soil and plants with nutrients more efficiently than monoculture-based digestates. The objective of this study was to determine the impact of different types of digestates applied at a rate of 40 t·ha-1 of fresh matter on soil properties and crop yield in a pot experiment with lettuce (Lactuca sativa) as a test crop. Anaerobic digestion of silages was prepared from the following monocultures and mixed cultures: broad bean, maize, maize and broad bean, maize and white sweet clover, and white sweet clover. Anaerobic digestion was performed in an automatic custom-made system and applied to the soil. Results revealed that fresh and dry aboveground biomass as well as the amount of nitrogen in plants significantly increased in all digestate-amended variants in comparison to control. The highest content of soil total nitrogen (+11% compared to the control) and urease (+3% compared to control) were observed for maize digestate amendment. Broad bean digestate mediated the highest oxidizable carbon (+48%), basal respiration (+46%), and N-acetyl-β-D-glucosamine-, L-alanine-, and L-lysine-induced respiration (+22%, +35%, +22%) compared to control. Moreover, maize and broad bean digestate resulted in the highest values of N-acetyl-β-D-glucosaminidase and β -glucosidase (+35% and +39%), and maize and white sweet clover digestate revealed the highest value of arylsulfatase (+32%). The observed differences in results suggest different effects of applied digestates. We thus concluded that legume-containing digestates possibly stimulate microbial activity (as found in increased respiration rates), and might lead to increased nitrogen losses if the more quickly mineralized nitrogen is not taken up by the plants.
Collapse
Affiliation(s)
- Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Antonín Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Tomas Vitez
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jakub Elbl
- Agricultural Research, Ltd., Troubsko, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
8
|
Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Sci Rep 2022; 12:12601. [PMID: 35871260 PMCID: PMC9308775 DOI: 10.1038/s41598-022-16949-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the role of soil microbes and their associated extracellular enzymes in long-term grassland experiments presents an opportunity for testing relevant ecological questions on grassland nutrient dynamics and functioning. Veld fertilizer trials initiated in 1951 in South Africa were used to assess soil functional microbial diversity and their metabolic activities in the nutrient-poor grassland soils. Phosphorus and liming trials used for this specific study comprised of superphosphate (336 kg ha−1) and dolomitic lime (2250 kg ha−1) (P + L), superphosphate (336 kg ha−1) (+ P) and control trials. These soils were analyzed for their nutrient concentrations, pH, total cations and exchange acidity, microflora and extracellular enzyme activities. The analysed soil characteristics showed significant differences except nitrogen (N) and organic carbon (C) concentrations showing no significant differences. P-solubilizing, N-cycling and N-fixing microbial diversity varied among the different soil treatments. β-glucosaminidase enzyme activity was high in control soils compared to P-fertilized and limed soils. Alkaline phosphatase showed increased activity in P-fertilized soils, whereas acid phosphatase showed increased activity in control soils. Therefore, the application of superphosphate and liming influences the relative abundance of bacterial communities with nutrient cycling and fixing functions which account for nutrient bioavailability in acidic and nutrient stressed grassland ecosystem soils.
Collapse
|