1
|
Zhu K, Wei L, Ma W, Zhao J, Chen M, Wei G, Liu H, Tan P, Peng F. The Integrated Analysis of miRNome and Degradome Sequencing Reveals the Regulatory Mechanisms of Seed Development and Oil Biosynthesis in Pecan ( Carya illinoinensis). Foods 2024; 13:2934. [PMID: 39335863 PMCID: PMC11430883 DOI: 10.3390/foods13182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Pecan seed oil is a valuable source of essential fatty acids and various bioactive compounds; however, the functions of microRNAs and their targets in oil biosynthesis during seed development are still unknown. Here, we found that the oil content increased rapidly in the three early stages in three cultivars, and that oleic acid was the predominant fatty acid component in the mature pecan embryos. We identified, analyzed, and validated the expression levels of miRNAs related to seed development and oil biosynthesis, as well as their potential target genes, using small RNA sequencing data from three stages (120, 135, and 150 days after flowering). During the seed development process, 365 known and 321 novel miRNAs were discovered. In total, 91 known and 181 novel miRNAs were found to be differentially expressed, and 633 target genes were further investigated. The expression trend analysis revealed that the 91 known miRNAs were classified into eight groups, approximately two-thirds of which were up-regulated, whereas most novel miRNAs were down-regulated. The qRT-PCR and degradome sequencing data were used to identify five miRNA- target pairs. Overall, our study provides valuable insights into the molecular regulation of oil biosynthesis in pecan seeds.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Blanco-Touriñán N, Torres-Martínez HH, Augstein F, Champeyroux C, von der Mark C, Carlsbecker A, Dubrovsky JG, Rodriguez-Villalón A. The primary root procambium contributes to lateral root formation through its impact on xylem connection. Curr Biol 2023; 33:1716-1727.e3. [PMID: 37071995 DOI: 10.1016/j.cub.2023.03.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
The postembryonic formation of lateral roots (LRs) starts in internal root tissue, the pericycle. An important question of LR development is how the connection of the primary root vasculature with that of the emerging LR is established and whether the pericycle and/or other cell types direct this process. Here, using clonal analysis and time-lapse experiments, we show that both the procambium and pericycle of the primary root (PR) affect the LR vascular connectivity in a coordinated manner. We show that during LR formation, procambial derivates switch their identity and become precursors of xylem cells. These cells, together with the pericycle-origin xylem, participate in the formation of what we call a "xylem bridge" (XB), which establishes the xylem connection between the PR and the nascent LR. If the parental protoxylem cell fails to differentiate, XB is still sometimes formed but via a connection with metaxylem cells, highlighting that this process has some plasticity. Using mutant analyses, we show that the early specification of XB cells is determined by CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors (TFs). Subsequent XB cell differentiation is marked by the deposition of secondary cell walls (SCWs) in spiral and reticulate/scalariform patterns, which is dependent on the VASCULAR-RELATED NAC-DOMAIN (VND) TFs. XB elements were also observed in Solanum lycopersicum, suggesting that this mechanism may be more widely conserved in plants. Together, our results suggest that plants maintain vascular procambium activity, which safeguards the functionality of newly established lateral organs by assuring the continuity of the xylem strands throughout the root system.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| | - Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Frauke Augstein
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, 756 51 Uppsala, Sweden
| | - Chloé Champeyroux
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Claudia von der Mark
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, 756 51 Uppsala, Sweden
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Cuernavaca 62250, Mexico.
| | - Antia Rodriguez-Villalón
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
3
|
Vahdati K, Sarikhani S, Arab MM, Leslie CA, Dandekar AM, Aletà N, Bielsa B, Gradziel TM, Montesinos Á, Rubio-Cabetas MJ, Sideli GM, Serdar Ü, Akyüz B, Beccaro GL, Donno D, Rovira M, Ferguson L, Akbari M, Sheikhi A, Sestras AF, Kafkas S, Paizila A, Roozban MR, Kaur A, Panta S, Zhang L, Sestras RE, Mehlenbacher SA. Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112234. [PMID: 34834597 PMCID: PMC8623031 DOI: 10.3390/plants10112234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 05/31/2023]
Abstract
The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits to human health, breeding of the nuts species has also been stepped up. Most recent fruit breeding programs have focused on scion genetic improvement. However, the use of locally adapted grafted rootstocks also enhanced the productivity and quality of tree fruit crops. Grafting is an ancient horticultural practice used in nut crops to manipulate scion phenotype and productivity and overcome biotic and abiotic stresses. There are complex rootstock breeding objectives and physiological and molecular aspects of rootstock-scion interactions in nut crops. In this review, we provide an overview of these, considering the mechanisms involved in nutrient and water uptake, regulation of phytohormones, and rootstock influences on the scion molecular processes, including long-distance gene silencing and trans-grafting. Understanding the mechanisms resulting from rootstock × scion × environmental interactions will contribute to developing new rootstocks with resilience in the face of climate change, but also of the multitude of diseases and pests.
Collapse
Affiliation(s)
- Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Mohammad Mehdi Arab
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Charles A. Leslie
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Neus Aletà
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA Fruit Production, Torre Marimon, 08140 Caldes de Montbui, Spain;
| | - Beatriz Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
| | - Thomas M. Gradziel
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Álvaro Montesinos
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
| | - María José Rubio-Cabetas
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Gina M. Sideli
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Ümit Serdar
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55139, Turkey; (Ü.S.); (B.A.)
| | - Burak Akyüz
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55139, Turkey; (Ü.S.); (B.A.)
| | - Gabriele Loris Beccaro
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10124 Torino, Italy; (G.L.B.); (D.D.)
| | - Dario Donno
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10124 Torino, Italy; (G.L.B.); (D.D.)
| | - Mercè Rovira
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA Fruit Production, Mas Bové, Ctra. Reus-El Morell, Km. 3.8, 43120 Constantí, Spain;
| | - Louise Ferguson
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | | | - Abdollatif Sheikhi
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Adriana F. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, Cukurova University, Adana 01380, Turkey; (S.K.); (A.P.)
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, Cukurova University, Adana 01380, Turkey; (S.K.); (A.P.)
| | - Mahmoud Reza Roozban
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Amandeep Kaur
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Srijana Panta
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Radu E. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | | |
Collapse
|
4
|
Feng G, Mo ZH, Peng FR. The complete chloroplast genome sequence of Carya illinoinensis cv. wichita and its phylogenetic analysis. Mitochondrial DNA B Resour 2020; 5:2235-2236. [PMID: 33366987 PMCID: PMC7510605 DOI: 10.1080/23802359.2020.1768925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
Carya illinoinensis is an important nut tree with high economic and ecological values. Here, we presented the complete chloroplast (cp) genome sequence of C. illinoinensis cv. wichita. The whole cp genome is 160,532 bp in length, displaying a typical quadripartite structure with a large single-copy (LSC) of 897,99 bp, a small single-copy (SSC) region of 18,751 bp, and a pair of inverted repeats (IRs) of 25,991 bp. A total of 128 genes were predicted to contain in the whole cp genome, including 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The GC contents of the cp genome is 36.19%. Phylogenomic analysis suggested Carya illinoinensis as a sister species of C. cathayensis, C. kweichowensis, and Annamocarya sinensis.
Collapse
Affiliation(s)
- Gang Feng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zheng-Hai Mo
- Institute of Botany, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Fang-Ren Peng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
The Chloroplast Genome of Carya illinoinensis: Genome Structure, Adaptive Evolution, and Phylogenetic Analysis. FORESTS 2020. [DOI: 10.3390/f11020207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Research Highlights: For the first time, the complete chloroplast (cp) genome of Carya illinoinensis cv. ‘Pawnee’ was de novo assembled. Comprehensive analysis the cp genome of C. illinoinensis revealed potential cpDNA markers for intraspecies identification, genes involved in adaptation, and its phylogenetic position. Background and Objectives: C. illinoinensis is an economically important nut tree in the family Juglandaceae. Cp-derived markers are helpful for genetic research, but they still need to be developed in C. illinoinensis. Additionally, the adaptation and phylogenetic relationships of C. illinoinensis have not been revealed based on the complete cp genome. Materials and Methods: Chloroplast genomic DNA of C. illinoinensis cv. ‘Pawnee’ was extracted and subjected to Illumina sequencing. Results: The cp genome is 160,819 bp in size, exhibiting a typical quadripartite structure with a large single copy (LSC) of 90,022 bp, a small single copy (SSC) of 18,791 bp, and a pair of inverted repeats (IRA and IRB) regions of 26,003 bp each. The genome was predicted to encode 112 unique genes, including 79 protein-coding genes, 29 tRNAs, and four rRNAs, with 19 duplicates in the IR regions. In total, 213 SSRs and 44 long repeats were identified in the cp genome. A comparison of two different C. illinoinensis genotypes, ‘Pawnee’ and 87MX3-2.11, obtained 143 SNPs and 74 indels. The highly variable regions such as atpF, clpP, and ndhA genes, and matK-rps16, trnS-trnG, and trnT-psbD intergenic spacers might be helpful for future intraspecific identification. Positive selection was acting on the ccsA and rps12 cp genes based on the Ka/Ks ratios. Phylogenetic analysis indicated that C. illinoinensis forms a sister clade to Asian Carya species, represented by C. kweichowensis and Annamocarya sinensis. Conclusions: The genome information in our study will have significance for further research on the intraspecies identification and genetic improvement of C. illinoinensis.
Collapse
|
6
|
Identification of Grafting-Responsive MicroRNAs Associated with Growth Regulation in Pecan [Carya illinoinensis (Wangenh.) K. Koch]. FORESTS 2020. [DOI: 10.3390/f11020196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an economically important nut tree and grafting is often used for clonal propagation of cultivars. However, there is a lack of research on the effects of rootstocks on scions, which are meaningful targets for directed breeding of pecan grafts. MicroRNAs (miRNAs) play an important role in many biological processes, but the mechanism underlying the involvement of miRNAs in grafting-conferred physiological changes is unclear. To identify the grafting-responsive miRNAs that may be involved in the regulation of growth in grafted pecan, six small RNA libraries were constructed from the phloem of two groups of grafts with significantly different growth performance on short and tall rootstocks. A total of 441 conserved miRNAs belonging to 42 miRNA families and 603 novel miRNAs were identified. Among the identified miRNAs, 24 (seven conserved and 17 novel) were significantly differentially expressed by the different grafts, implying that they might be responsive to grafting and potentially involved in the regulation of graft growth. Ninety-five target genes were predicted for the differentially expressed miRNAs; gene annotation was available for 33 of these. Analysis of their targets suggested that the miRNAs may regulate auxin transport, cell activity, and inorganic phosphate (Pi) acquisition, and thereby, mediate pecan graft growth. Use of the recently-published pecan genome enabled identification of a substantial population of miRNAs, which are now available for further research. We also identified the grafting-responsive miRNAs and their potential roles in pecan graft growth, providing a basis for research on long-distance regulation in grafted pecan.
Collapse
|
7
|
Loupit G, Cookson SJ. Identifying Molecular Markers of Successful Graft Union Formation and Compatibility. FRONTIERS IN PLANT SCIENCE 2020; 11:610352. [PMID: 33343610 PMCID: PMC7738326 DOI: 10.3389/fpls.2020.610352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Grafting is a technique used for millennia for vegetative propagation, especially in perennial fruit crops. This method, used on woody and herbaceous plants, can improve several agronomic characteristics, such as yield or vigor, as well as tolerance to biotic and abiotic stresses. However, some scion/rootstock combinations suffer from poor graft compatibility, i.e., they are unable to form and/or sustain a successful graft union. Identifying symptoms of graft incompatibility is difficult because they are not always present in the first years after grafting and in most cases the causes of incompatibility are still poorly understood. Studies of changes in transcript abundance during graft union formation indicate that grafting responses are similar to responses to wounding and include the differential expression of genes related to hormone signaling, oxidative stress, formation of new vascular vessels, cell development, and secondary metabolites, in particular polyphenols. This review summarizes current knowledge of the changes in transcript abundance, redox status and metabolites accumulation during graft union formation and in cases of graft incompatibility. The goal of this review is to discuss the possibility of identifying marker transcripts, enzyme activities and/or metabolites of grafting success and graft compatibility which could be used to score grafting success for genetic research and in breeding programs. We highlight gaps in current knowledge and potential research directions in this field.
Collapse
|
8
|
Rasool A, Mansoor S, Bhat KM, Hassan GI, Baba TR, Alyemeni MN, Alsahli AA, El-Serehy HA, Paray BA, Ahmad P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:590847. [PMID: 33362818 PMCID: PMC7758432 DOI: 10.3389/fpls.2020.590847] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 05/18/2023]
Abstract
Grafting is a common practice for vegetative propagation and trait improvement in horticultural plants. A general prerequisite for successful grafting and long term survival of grafted plants is taxonomic proximity between the root stock and scion. For the success of a grafting operation, rootstock and scion should essentially be closely related. Interaction between the rootstock and scion involves complex physiological-biochemical and molecular mechanisms. Successful graft union formation involves a series of steps viz., lining up of vascular cambium, generation of a wound healing response, callus bridge formation, followed by vascular cambium formation and subsequent formation of the secondary xylem and phloem. For grafted trees compatibility between the rootstock/scion is the most essential factor for their better performance and longevity. Graft incompatibility occurs on account of a number of factors including of unfavorable physiological responses across the graft union, transmission of virus or phytoplasma and anatomical deformities of vascular tissue at the graft junction. In order to avoid the incompatibility problems, it is important to predict the same at an early stage. Phytohormones, especially auxins regulate key events in graft union formation between the rootstock and scion, while others function to facilitate the signaling pathways. Transport of macro as well as micro molecules across long distances results in phenotypic variation shown by grafted plants, therefore grafting can be used to determine the pattern and rate of recurrence of this transport. A better understanding of rootstock scion interactions, endogenous growth substances, soil or climatic factors needs to be studied, which would facilitate efficient selection and use of rootstocks in the future. Protein, hormones, mRNA and small RNA transport across the junction is currently emerging as an important mechanism which controls the stock/scion communication and simultaneously may play a crucial role in understanding the physiology of grafting more precisely. This review provides an understanding of the physiological, biochemical and molecular basis underlying grafting with special reference to horticultural plants.
Collapse
Affiliation(s)
- Aatifa Rasool
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - K. M. Bhat
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - G. I. Hassan
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Tawseef Rehman Baba
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyad, Saudi Arabia
| | | | - Hamed A. El-Serehy
- Department of Zoology, College of Sciences, King Saud University, Riyad, Saudi Arabia
| | - Bilal Ahmad Paray
- Department of Zoology, College of Sciences, King Saud University, Riyad, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyad, Saudi Arabia
- *Correspondence: Parvaiz Ahmad,
| |
Collapse
|
9
|
Research in Forest Biology in the Era of Climate Change and Rapid Urbanization. FORESTS 2019. [DOI: 10.3390/f11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Green plants provide the foundation for the structure, function, and interactions among organisms in both tropical and temperate zones. To date, many investigations have revealed patterns and mechanisms that generate plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Here, we recognize four themes that link studies from Asia and Europe presented in this Special Issue: (1) genetic analyses of diverse plant species; (2) above- and below-ground forest biodiversity; (3) trait expression and biological mechanisms; and (4) interactions of woody plants within a changing environment. These investigations enlarge our understanding of the origins of diversity, trait variation and heritability, and plant–environment interactions from diverse perspectives.
Collapse
|