1
|
Timira V, Chen X, Zhou P, Wu J, Wang T. Potential use of yeast protein in terms of biorefinery, functionality, and sustainability in food industry. Compr Rev Food Sci Food Saf 2024; 23:e13326. [PMID: 38572572 DOI: 10.1111/1541-4337.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
A growing demand for sustainable, alternative protein sources that are nutrient-dense, such as microorganisms, and insects, has gradually evolved. When paired with effective processing techniques, yeast cells contain substantial substances that could supply the population's needs for food, medicine, and fuel. This review article explores the potential of yeast proteins as a sustainable and viable alternative to animal and plant-based protein sources. It highlights the various yeast protein extraction methods including both mechanical and non-mechanical methods. The application of nanoparticles is one example of the fast-evolving technology used to damage microbial cells. SiO2 or Al2O3 nanoparticles break yeast cell walls and disrupt membranes, releasing intracellular bioactive compounds. Succinylation of yeast protein during extraction can increase yeast protein extraction rate, lower RNA concentration, raise yeast protein solubility, increase amino acid content, and improve yeast protein emulsification and foaming capabilities. Combining physical and enzymatic extraction methods generates the most representative pool of mannose proteins from yeast cell walls. Ethanol or isoelectric precipitation purifies mannose proteins. Mannoproteins can be used as foamy replacement for animal-derived components like egg whites due to their emulsification, stability, and foaming capabilities. Yeast bioactive peptide was separated by ultrafiltration after enzymatic hydrolysis of yeast protein and has shown hypoglycemic, hypotensive, and oxidative action in vitro studies. Additionally, the review delves into the physicochemical properties and stability of yeast-derived peptides as well as their applications in the food industry. The article infers that yeast proteins are among the promising sources of sustainable protein, with a wide range of potential applications in the food industry.
Collapse
Affiliation(s)
- Vaileth Timira
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junjun Wu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Ma J, Sun Y, Meng D, Zhou Z, Zhang Y, Yang R. Yeast proteins: The novel and sustainable alternative protein in food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Tao Z, Yuan H, Liu M, Liu Q, Zhang S, Liu H, Jiang Y, Huang D, Wang T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J Microbiol Biotechnol 2023; 33:151-166. [PMID: 36474327 PMCID: PMC9998214 DOI: 10.4014/jmb.2207.07057] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.
Collapse
Affiliation(s)
- Zekun Tao
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Haibo Yuan
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Meng Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Qian Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Siyi Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Hongling Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Yi Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Di Huang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Tengfei Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| |
Collapse
|
4
|
Valorization of Spent Brewer’s Yeast for the Production of High-Value Products, Materials, and Biofuels and Environmental Application. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Spent brewer’s yeast (SBY) is a byproduct of the brewing industry traditionally used as a feed additive, although it could have much broader applications. In this paper, a comprehensive review of valorization of SBY for the production of high-value products, new materials, and biofuels, as well as environmental application, is presented. An economic perspective is given by mirroring marketing of conventional SBY with innovative high-value products. Cascading utilization of fine chemicals, biofuels, and nutrients such as proteins, carbohydrates, and lipids released by various SBY treatments has been proposed as a means to maximize the sustainable and circular economy.
Collapse
|
5
|
Pradhan D, Mahanty A, Mohanty S, Samantaray K, Mohanty BP. Brewer's spent yeast replacement in carp diet leads to muscle biomass production, recycling, waste management and resource conservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1427-1442. [PMID: 36264384 DOI: 10.1007/s10695-022-01133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Brewer's spent yeast (BSY) is among the most voluminous by-products generated in brewery industry that adds to the waste; however, smart utilization of BSY could lead to edible biomass production besides waste management. To utilize it for biomass production, it is being used in fish feeds; however, its effect on the fish physiology has been scantily studied. The present study investigated the proteomic changes in muscle tissues of carp Labeo rohita fed with BSY-based diet, to understand its impact on muscle physiology and biomass. Six feeds were prepared with different grades of BSY (0, 20, 30, 40, 50, 100% replacement of fishmeal with BSY) and fishes were fed for 90 days. Highest weight gain%, feed conversion efficiency, specific growth rate% were observed in 30% BSY-replaced group and this group was considered for the proteomic study. Comparative shotgun proteomic analysis was carried out by LC-MS/MS and data generated have been deposited in ProteomeXchange Consortium with dataset identifier PXD020093. A total of 62 proteins showed differential abundance; 29 increased and 33 decreased in the 30% BSY-replaced group. Pathway analysis using IPA and Panther tools revealed that the proteins tyrosine protein kinase, PDGFα, PKRCB and Collagen promote muscle growth by inducing the PI3K-AKT pathway. Conversely, the proteins Serine/threonine-protein phosphatase, Phosphatidylinositol 3,4,5-trisphosphate5-phosphatase 2A and Ras-specific guanine- nucleotide-releasing factor inhibit muscle growth indicating that 30% BSY-replaced feed promote muscle growth in a highly controlled manner. Findings suggest that BSY could be recycled for carp feed production in large scale thereby leading to resource conservation, reducing environmental effects.
Collapse
Affiliation(s)
- Debashish Pradhan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswer, 751002, India
| | - Arabinda Mahanty
- ICAR-Central Inland of Fisheries Research Institute, Barrackpore, Kolkata, India
- ICAR-National Rice Research Institute, Crop Protection Division, Cuttack, 753006, India
| | - Sasmita Mohanty
- Faculty of Science & Technology, Department of Biotechnology, Rama Devi Women's' University, Bhubaneswar, 751022, India
| | - Kasturi Samantaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswer, 751002, India
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland of Fisheries Research Institute, Barrackpore, Kolkata, India.
- Indian Council of Agricultural Research, Fisheries Science Division, Krishi Anusandhan Bhawan -II, PUSA, New Delhi, 110012, India.
| |
Collapse
|
6
|
β-glucans obtained from beer spent yeasts as functional food grade additive: Focus on biological activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Cailotto S, Massari D, Gigli M, Campalani C, Bonini M, You S, Vomiero A, Selva M, Perosa A, Crestini C. N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS OMEGA 2022; 7:4052-4061. [PMID: 35155899 PMCID: PMC8829871 DOI: 10.1021/acsomega.1c05403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 05/09/2023]
Abstract
The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
Collapse
Affiliation(s)
- Simone Cailotto
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Daniele Massari
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Matteo Gigli
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Carlotta Campalani
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Massimo Bonini
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Shujie You
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Alberto Vomiero
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maurizio Selva
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Alvise Perosa
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Claudia Crestini
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
8
|
Brewing and the Chemical Composition of Amine-Containing Compounds in Beer: A Review. Foods 2022; 11:foods11030257. [PMID: 35159409 PMCID: PMC8833903 DOI: 10.3390/foods11030257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023] Open
Abstract
As microbreweries have flourished and craft beer brewing has expanded into a multibillion-dollar industry, the ingredients and techniques used to brew beer have changed and diversified. New brewing ingredients and techniques have led to increased concern over biogenic amines in the final product. Biogenic amine composition and concentration in beer, as well as the changes to the protein and amino acid content when adjuncts are used, have received little attention. A complex biochemical mixture, the proteins, amino acids, and biogenic amines undergo a variety of enzymatic and non-enzymatic catabolic, proteolytic, and oxidative reactions during brewing. As biogenic amines in fermented food receive increased scrutiny, evaluating knowledge gaps in the evolution of these compounds in the beer brewing process is critical.
Collapse
|
9
|
Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium mangrovei. Mar Drugs 2021; 20:md20010039. [PMID: 35049894 PMCID: PMC8778784 DOI: 10.3390/md20010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Mozzarella stretching water (MSW) is a dairy effluent generated from mozzarella cheese production that does not have a real use and is destined to disposal, causing environmental problems and representing a high disposal cost for dairy producers. Spent brewery yeast (SBY) is another promising food waste produced after brewery manufacturing that could be recycled in new biotechnological processes. Aurantiochytrium mangrovei is an aquatic protist known as producer of bioactive lipids such as omega 3 long chain polyunsaturated fatty acids (ω3 LC-PUFA), in particular docosahexaenoic acid (DHA). In this work MSW and SBY have been used to formulate new sustainable growth media for A. mangrovei cultivation and production of DHA in an attempt to valorize these effluents. MSW required an enzymatic hydrolysis to enhance the biomass production. The new media obtained from hydrolysed MSW was also optimized using response surface methodologies, obtaining 10.14 g L-1 of biomass in optimized medium, with a DHA content of 1.21 g L-1.
Collapse
|
10
|
Dimopoulos G, Limnaios A, Aerakis E, Andreou V, Taoukis P. Effect of high pressure on the proteolytic activity and autolysis of yeast Saccharomyces cerevisiae. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Bioactive peptides from yeast: A comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Abstract
Global demand for renewable and sustainable energy is increasing, and one of the most common biofuels is ethanol. Most ethanol is produced by Saccharomyces cerevisiae (yeast) fermentation of either crops rich in sucrose (e.g., sugar cane and sugar beet) or starch-rich crops (e.g., corn and starchy grains). Ethanol produced from these sources is termed a first-generation biofuel. Yeast fermentation can yield a range of additional valuable co-products that accumulate during primary fermentation (e.g., protein concentrates, water soluble metabolites, fusel alcohols, and industrial enzymes). Distillers’ solubles is a liquid co-product that can be used in animal feed or as a resource for recovery of valuable materials. In some processes it is preferred that this fraction is modified by a second fermentation with another fermentation organism (e.g., lactic acid bacteria). Such two stage fermentations can produce valuable compounds, such as 1,3-propanediol, organic acids, and bacteriocins. The use of lactic acid bacteria can also lead to the aggregation of stillage proteins and enable protein aggregation into concentrates. Once concentrated, the protein has utility as a high-protein feed ingredient. After separation of protein concentrates the remaining solution is a potential source of several known small molecules. The purpose of this review is to provide policy makers, bioethanol producers, and researchers insight into additional added-value products that can be recovered from ethanol beers. Novel products may be isolated during or after distillation. The ability to isolate and purify these compounds can provide substantial additional revenue for biofuel manufacturers through the development of marketable co-products.
Collapse
|
13
|
Demirgül F, Şimşek Ö, Bozkurt F, Dertli E, Sağdıç O. Production and characterization of yeast extracts produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Prep Biochem Biotechnol 2021; 52:657-667. [PMID: 34632953 DOI: 10.1080/10826068.2021.1983833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, prejudice in society against monosodium glutamate (MSG) has directed food manufacturers to alternative sources. Yeast extracts are considered as "natural" due to the production process and stand out due to their nutritional properties as well as giving a flavor similar to MSG. In this study, chemical, functional and flavor properties of yeast extract powders produced from Saccharomyces cerevisiae TGM10, Saccharomyces boulardii S11 and Kluyveromyces marxianus TGM66 were evaluated. Results revealed that the most protein-rich sample was S. cerevisiae TGM10 extract (69.17%), followed by S. boulardii S11 (66.16%) and K. marxianus TGM66 (62.42%) extracts, respectively and S. cerevisiae TGM10 extract was also the richest yeast extract for essential amino acids. Additionally, flavor-enhancing amino acids such as glutamic acid, aspartic acid, alanine and glycine were dominant in S. cerevisiae TGM10 extract (47.41 g/100 g protein). Sensorial evaluation of yeast extracts demonstrated that salty taste, umami taste and meaty flavor scores of yeast extracts were lower than MSG whereas for fruity flavor, yeast extracts had the highest scores. These findings revealed the potential of three yeast strains to produce yeast extracts in order to increase the nutritional value and flavor of foods.
Collapse
Affiliation(s)
- Furkan Demirgül
- Department of Gastronomy and Culinary Arts, Doğuş University, Faculty of Fine Arts and Design, Istanbul, Turkey.,Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Ömer Şimşek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Osman Sağdıç
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
14
|
|
15
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
16
|
Novak K, Baar J, Freitag P, Pflügl S. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. J Ind Microbiol Biotechnol 2020; 47:1117-1132. [PMID: 33068182 PMCID: PMC7728641 DOI: 10.1007/s10295-020-02319-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l−1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.
Collapse
Affiliation(s)
- Katharina Novak
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Juliane Baar
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Philipp Freitag
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
17
|
Marson GV, de Castro RJS, Belleville MP, Hubinger MD. Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J Microbiol Biotechnol 2020; 36:95. [PMID: 32583032 DOI: 10.1007/s11274-020-02866-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Development of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer's yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of. SBY cells need to be disrupted to release intracellular and cell wall proteins. This procedure has been performed using autolysis, glass bead milling, enzymatic hydrolysis and ultrasound processing. Enzymatic treatment is usually performed without prior purification and is a challenging process, which involves multiple factors, but has been successfully used as a strategy to add value to agro-industrial by-products. Scope and approach: in this review, we particularly focused on enzymatic hydrolysis as a strategy to promote SBY valorisation, illustrating the state-of-the-art processes used to produce protein extracts from this material as well as exploring fundamental concepts related to the particularities of yeast cell disruption and protein hydrolysis. Furthermore, innovative applications of value-added yeast by-products in food, biotechnological and pharmaceutical industries are presented and discussed. Key findings and conclusions: the discovery of valuable compounds found in spent yeasts as well as the development of new processing methodologies have been widening the possibilities of reuse and transformation of SBY as an ingredient and innovative matrix. Once released, yeast proteins and peptides may be applied as an innovative non-animal protein source or a functional and bioactive ingredient.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France. .,Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France
| | - Miriam Dupas Hubinger
- Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
18
|
|
19
|
Abstract
Food is a precious commodity, and its production can be resource-intensive [...]
Collapse
|
20
|
Abasian L, Shafiei Alavijeh R, Satari B, Karimi K. Sustainable and Effective Chitosan Production by Dimorphic Fungus Mucor rouxii via Replacing Yeast Extract with Fungal Extract. Appl Biochem Biotechnol 2019; 191:666-678. [DOI: 10.1007/s12010-019-03220-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023]
|