1
|
Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK. Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131082. [PMID: 38972432 DOI: 10.1016/j.biortech.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Tony Hadibarata
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Lot 3288 & 3289, Off Jalan Ayer Hitam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Qiu Z, Wang G, Shao W, Cao L, Tan H, Shao S, Jin C, Xia J, He J, Liu X, He A, Han X, Xu J. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose. BIORESOURCE TECHNOLOGY 2024; 399:130631. [PMID: 38554760 DOI: 10.1016/j.biortech.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Macroalgae biomass has been considered as a promising renewable feedstock for lactic acid production owing to its lignin-free, high carbohydrate content and high productivity. Herein, the D-lactic acid production from red macroalgae Gelidium amansii by Pediococcus acidilactici was investigated. The fermentable sugars in G. amansii acid-prehydrolysate were mainly galactose and glucose with a small amounts of xylose. P. acidilactici could simultaneously ferment the mixed sugars of galactose, glucose and xylose into D-lactic acid at high yield (0.90 g/g), without carbon catabolite repression (CCR). The assimilating pathways of these sugars in P. acidilactici were proposed based on the whole genome sequences. Simultaneous saccharification and co-fermentation (SSCF) of the pretreated and biodetoxified G. amansii was also conducted, a record high of D-lactic acid (41.4 g/L) from macroalgae biomass with the yield of 0.34 g/g dry feedstock was achieved. This study provided an important biorefinery strain for D-lactic acid production from macroalgae biomass.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Guangli Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenjun Shao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Longyu Cao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hufangguo Tan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Shuai Shao
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Babich O, Ivanova S, Michaud P, Budenkova E, Kashirskikh E, Anokhova V, Sukhikh S. Fermentation of micro- and macroalgae as a way to produce value-added products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00827. [PMID: 38234329 PMCID: PMC10793092 DOI: 10.1016/j.btre.2023.e00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Fermentation of both microalgae and macroalgae is one of the most efficient methods of obtaining valuable value-added products due to the minimal environmental pollution and the availability of economic benefits, as algae do not require arable land and drift algae and algal bloom biomass are considered waste and must be recycled and their fermentation waste utilized. The compounds found in algae can be effectively used in the fuel, food, cosmetic, and pharmaceutical industries, depending on the type of fermentation used. Products such as methane and hydrogen can be produced by anaerobic digestion and dark fermentation of algae, and lactic acid and its polymers can be produced by lactic acid fermentation of algae. Article aims to provide an overview of the different types potential of micro- and macroalgae fermentation, the advantages and disadvantages of each type considered, and the economic feasibility of algal fermentation for the production of various value-added products.
Collapse
Affiliation(s)
- Olga Babich
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | | | - Egor Kashirskikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Veronika Anokhova
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| |
Collapse
|
4
|
Balasubramanian VK, Balakrishnan M, Murugan K, John Kennedy JPK, Chou JY, Muthuramalingam JB. Synthesis and characterization of lactide from Bacillus amyloliquefaciens brewed lactic acid utilizing cheap agricultural sources. 3 Biotech 2024; 14:13. [PMID: 38107031 PMCID: PMC10721759 DOI: 10.1007/s13205-023-03855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Lactic acid (LA) is a nifty molecule with an eclectic range of applications in innumerable industries and is produced through biological and chemical processes. Factually, LA is converted into lactide (LAC), which is the precursor for polylactic acid (PLA). PLA is considered one of the first-rate replacements for petroleum-based products and is believed to be environmentally sustainable. Nevertheless, it has always been challenging due to increased PLA productivity costs. Reduction in the LA and LAC production price directly echoes the production price of PLA. Therefore, low-cost LA and LAC production methods have to be found to produce PLA effectively. Hence, this study uses cheap agricultural sources derived microbial LA to make LAC through dimerization. Produced LAC was analyzed through FT-IR, NMR, TGA and XRD. FT-IR results revealed that the successful dimerization of LA to LAC, NMR analysis revealed that the aligning of methine and methyl groups in produced LAC, TGA analysis exposed that the microbial LAC has more thermal stability than the commercial LAC, XRD results showed that the produced LACs are crystalline with 32% and 42% crystallinity. To the best of our acquaintance, this manuscript is pioneering one to describe LA production through microbial fermentation and uses this monomer to produce LAC through dimerization.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
- Department of Biology, National Changhua University of Education, Changhua, 500 Taiwan
| | - Muthumari Balakrishnan
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
- Department of Biology, National Changhua University of Education, Changhua, 500 Taiwan
| | - Kavitha Murugan
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| | | | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 500 Taiwan
| | - Jothi Basu Muthuramalingam
- Center for Distance and Online Education (CDOE), Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
5
|
Sudhakar MP, Maurya R, Mehariya S, Karthikeyan OP, Dharani G, Arunkumar K, Pereda SV, Hernández-González MC, Buschmann AH, Pugazhendhi A. Feasibility of bioplastic production using micro- and macroalgae- A review. ENVIRONMENTAL RESEARCH 2024; 240:117465. [PMID: 37879387 DOI: 10.1016/j.envres.2023.117465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Plastic disposal and their degraded products in the environment are global concern due to its adverse effects and persistence in nature. To overcome plastic pollution and its impacts on environment, a sustainable bioplastic production using renewable feedstock's, such as algae, are envisioned. In this review, the production of polymer precursors such as polylactic acid, polyhydroxybutyrates, polyhydroxyalkanoates, agar, carrageenan and alginate from microalgae and macroalgae through direct conversion and fermentation routes are summarized and discussed. The direct conversion of algal biopolymers without any bioprocess (whole algal biomass used emphasizing zero waste discharge concept) favours economic feasibility. Whereas indirect method uses conversion of algal polymers to monomers after pretreatment followed by bioplastic precursor production by fermentation are emphasized. This review paper also outlines the current state of technological developments in the field of algae-based bioplastic, both in industry and in research, and highlights the creation of novel solutions for green bioplastic production employing algal polymers. Finally, the cost economics of the bioplastic production using algal biopolymers are clearly mentioned with future directions of next level bioplastic production. In this review study, the cost estimation was given at laboratory level bioplastic production using casting methods. Further development of bioplastics at pilot scale level may give clear economic feasibility of production at industry. Here, in this review, we emphasized the overview of algal biopolymers for different bioplastic product development and its economic value and also current industries involved in bioplastic production.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India; Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India.
| | - Rahulkumar Maurya
- Coastal Algae Cultivation, Microbial Biofuels & Biochemicals, Advanced Biofuels Division, The Energy and Resources Institute, Navi Mumbai, 400 708, India
| | | | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India
| | - Kulanthiyesu Arunkumar
- Microalgae Group-Phycoscience Laboratory, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India
| | - Sandra V Pereda
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - María C Hernández-González
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Alejandro H Buschmann
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
6
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Huang Y, Wang Y, Shang N, Li P. Microbial Fermentation Processes of Lactic Acid: Challenges, Solutions, and Future Prospects. Foods 2023; 12:2311. [PMID: 37372521 DOI: 10.3390/foods12122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The demand for lactic acid and lactic acid-derived products in the food, pharmaceutical, and cosmetic industries is increasing year by year. In recent decades, the synthesis of lactic acid by microbials has gained much attention from scientists due to the superior optical purity of the product, its low production costs, and its higher production efficiency compared to chemical synthesis. Microbial fermentation involves the selection of feedstock, strains, and fermentation modes. Each step can potentially affect the yield and purity of the final product. Therefore, there are still many critical challenges in lactic acid production. The costs of feedstocks and energy; the inhibition of substrates and end-product; the sensitivity to the inhibitory compounds released during pretreatment; and the lower optical purity are the main obstacles hindering the fermentation of lactic acid. This review highlights the limitations and challenges of applying microbial fermentation in lactic acid production. In addition, corresponding solutions to these difficulties are summarized in order to provide some guidance for the industrial production of lactic acid.
Collapse
Affiliation(s)
- Yueying Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Papadopoulou E, Rodriguez de Evgrafov MC, Kalea A, Tsapekos P, Angelidaki I. Adaptive laboratory evolution to hypersaline conditions of lactic acid bacteria isolated from seaweed. N Biotechnol 2023; 75:21-30. [PMID: 36870677 DOI: 10.1016/j.nbt.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Seaweed biomass has been proposed as a promising alternative carbon source for fermentation processes using microbial factories. However, the high salinity content of seaweed biomass is a limiting factor in large scale fermentation processes. To address this shortcoming, three bacterial species (Pediococcus pentosaceus, Lactobacillus plantarum, and Enterococcus faecium) were isolated from seaweed biomass and evolved to increasing concentrations of NaCl. Following the evolution period, P. pentosaceus reached a plateau at the initial NaCl concentration, whereas L. plantarum, and E. faecium showed a 1.29 and 1.75-fold increase in their salt tolerance, respectively. The impact that salt evolution had on lactic acid production using hypersaline seaweed hydrolysate was investigated. Salinity evolved L. plantarum produced 1.18-fold more lactic acid than the wild type, and salinity evolved E. faecium was able to produce lactic acid, while the wild type could not. No differences in lactic acid production were observed between the P. pentosaceus salinity evolved and wild type strains. Evolved lineages were analyzed for the molecular mechanisms underlying the observed phenotypes. Mutations were observed in genes affecting the ion balance in the cell, the composition of the cell membrane and proteins acting as regulators. This study demonstrates that bacterial isolates from saline niches are promising microbial factories for the fermentation of saline substrates, without the requirement of previous desalination steps, while preserving high final product yields.
Collapse
Affiliation(s)
- Eleftheria Papadopoulou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | - Argyro Kalea
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
9
|
Nagarajan D, Chen CY, Ariyadasa TU, Lee DJ, Chang JS. Macroalgal biomass as a potential resource for lactic acid fermentation. CHEMOSPHERE 2022; 309:136694. [PMID: 36206920 DOI: 10.1016/j.chemosphere.2022.136694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
10
|
Sivagurunathan P, Raj T, Chauhan PS, Kumari P, Satlewal A, Gupta RP, Kumar R. High-titer lactic acid production from pilot-scale pretreated non-detoxified rice straw hydrolysate at high-solid loading. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
12
|
Kant Bhatia S, Ahuja V, Chandel N, Gurav R, Kant Bhatia R, Govarthanan M, Kumar Tyagi V, Kumar V, Pugazendhi A, Rajesh Banu J, Yang YH. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. BIORESOURCE TECHNOLOGY 2022; 358:127437. [PMID: 35680087 DOI: 10.1016/j.biortech.2022.127437] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Arivalagan Pugazendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Studies on Optimization of Sustainable Lactic Acid Production by Bacillus amyloliquefaciens from Sugarcane Molasses through Microbial Fermentation. SUSTAINABILITY 2022. [DOI: 10.3390/su14127400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lactic acid is the meekest hydroxyl carboxylic acid (2-hydroxy propionic acid) which is a colorless, odorless, hygroscopic, organic compound with no toxic effect, a very inevitable and versatile chemical used in the Food, cosmetics, textile, and pharmaceutical industries for very long years. Lactic acid was produced as non-racemic when specific microbial strains were used; therefore, microbial fermentation gained more attention. Albeit the substratum used for the microbial fermentation price is much exorbitant. Wherefore, identifying the best and cheap substrates is a bottleneck for the scientific community. Sugarcane molasses is the best source of components for microbial growth and cheap raw material for Lactic acid fermentation. This study produced sustainable lactic acid from sugarcane molasses by the Bacillus amyloliquefaciens J2V2AA strain with a higher production of 178 gm/L/24 h. The produced lactic acid was characterized and analyzed by UV-Visible Spectrum, FTIR Spectrum, TLC, and HPLC.
Collapse
|
14
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
15
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
16
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
18
|
Nagarajan D, Oktarina N, Chen PT, Chen CY, Lee DJ, Chang JS. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. And Weissella sp. BIORESOURCE TECHNOLOGY 2022; 344:126166. [PMID: 34678452 DOI: 10.1016/j.biortech.2021.126166] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Lactic acid (LA) is an essential commodity chemical, with bio-based LA ruling the market share. Macroalgae are a desirable feedstock for LA fermentation due to their high carbohydrate and low lignin content. Ulva sp., Gracilaria sp., and Sargassum cristaefolium were evaluated as a feedstock for LA fermentation. Mild acid-thermal hydrolysis (sulfuric acid concentrations < 5%) resulted in superior reducing sugar recovery. Gracilaria sp. attained maximum reducing sugar recovery (0.39 g/g biomass) and lactate yield (0.94 g/g). LA fermentation of fucose-rich hydrolysate of Sargassum cristaefolium is demonstrated for the first time, with 0.81 g/g LA yield and 0.36 g/g reducing sugars. Ulva sp. attained 0.21 g/g reducing sugars and 0.85 g/g LA yield. The efficiency of macroalgae for lactate bioconversion was in the order: red macroalgae > green macroalgae > brown macroalgae. L. rhamnosus and L. plantarum could efficaciously utilize seaweed sugars for LA production. Macroalgae can potentially replace lignocellulosic biomass as a feedstock in LA fermentation.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Naomi Oktarina
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology. National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
19
|
Tedesco S, Hurst G, Randviir E, Francavilla M. A comparative investigation of non-catalysed versus catalysed microwave-assisted hydrolysis of common North and South European seaweeds to produce biochemicals. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
21
|
Reboleira J, Silva S, Chatzifragkou A, Niranjan K, Lemos MF. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Use of glycerol waste in lactic acid bacteria metabolism for the production of lactic acid: State of the art in Poland. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Lactic acid is a naturally existing organic acid, which may be used in many different branches of industrial application. It can be made in the sugar fermentation process from renewable raw lactic acid, which is an indispensable raw material, including in the agricultural, food, and pharmaceutical industries. It is an ecological product that has enjoyed great popularity in recent years. In 2010, the US Department of Energy published a report about lactic acid to be a potential building element for future technology, whose demand grows year by year. The lactic acid molecule naturally exists in plants, microorganisms, and animals and can also be produced by carbohydrate fermentation or chemical synthesis from coal, petroleum products, and natural gas. In industry, lactic acid can be produced by chemical synthesis or fermentation. Although racemic lactic acid is always produced chemically from petrochemical sources, the optically pure L(+) – or D(−) – lactic acid forms can be obtained by microbial fermentation of renewable resources when an appropriate microorganism is selected. Depending on the application, one form of optically pure LA is preferred over the other. Additionally, microbial fermentation offers benefits including cheap renewable substrates, low production temperatures, and low energy consumption. Due to these advantages, the most commonly used biotechnological production process with the use of biocatalysts, i.e., lactic acid bacteria. The cost of raw materials is one of the major factors in the economic production of lactic acid. As substrate costs cannot be reduced by scaling up the process, extensive research is currently underway to find new substrates for the production of LA. These searches include starch raw materials, lignocellulosic biomass, as well as waste from the food and refining industries. Here, the greatest attention is still drawn to molasses and whey as the largest sources of lactose, vitamins, and carbohydrates, as well as glycerol – a by-product of the biodiesel component production process. Focusing on the importance of lactic acid and its subsequent use as a product, but also a valuable raw material for polymerization (exactly to PLA), this review summarizes information about the properties and applications of lactic acid, as well as about its production and purification processes. An industrial installation for the production of lactic acid is only planned to be launched in Poland. As of today, there is no commercial-scale production of this bio-raw material. Thus, there is great potential for the application of the lactic acid production technology and research should be carried out on its development.
Collapse
|
23
|
Production of Phenyllactic Acid from Porphyra Residues by Lactic Acid Bacterial Fermentation. Processes (Basel) 2021. [DOI: 10.3390/pr9040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The concept of algae biorefinery is attracting attention because of the abundant valuable compounds within algal biomass. Phenyllactic acid (PhLA), a broad-spectrum antimicrobial organic acid that can be produced by lactic acid bacteria (LAB), is considered a potential biopreservative. In this study, a cascading biorefinery approach was developed to harvest PhLA from Porphyra residues by LAB fermentation. LAB strains were cultivated in de Man, Rogosa and Sharpe (MRS) broth to screen their ability to produce PhLA. As the strains of Lactobacillus plantarum KP3 and L. plantarum KP4 produced higher concentrations of PhLA at 0.09 mg/mL, these two strains were employed for fermentation. After phycobiliprotein extraction, the Porphyra residues, ultrafiltration eluate, phenylalanine (Phe) and yeast extract with a volume of 20 mL were inoculated with LAB strain KP3 and fermented at 37 °C for 120 h. The PhLA content of the fermented broth was 1.86 mg. To optimize the biorefinery process, the ultrafiltration eluate was replaced by commercial cellulase. Up to 4.58 mg of PhLA, which was 2.5 times greater than that produced from KP3 cultured in MRS broth, could be harvested. Taken together, the findings provide an optimized process for LAB fermentation, which is shown to be a feasible algae biorefinery approach to obtaining PhLA from Porphyra residues.
Collapse
|
24
|
Lee KH, Lee SK, Lee J, Kim S, Park C, Kim SW, Yoo HY. Improvement of Enzymatic Glucose Conversion from Chestnut Shells through Optimization of KOH Pretreatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3772. [PMID: 33916606 PMCID: PMC8038493 DOI: 10.3390/ijerph18073772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Worldwide, about one-third of food produced for human consumption is wasted, which includes byproducts from food processing, with a significant portion of the waste still being landfilled. The aim of this study is to convert chestnut shells (CNSs) from food processing into a valuable resource through bioprocesses. Currently, one of the highest barriers to bioprocess commercialization is low conversion of sugar from biomass, and KOH pretreatment was suggested to improve enzymatic digestibility (ED) of CNS. KOH concentration of 3% (w/w) was determined as a suitable pretreatment solution by a fundamental experiment. The reaction factors including temperature, time and solid/liquid (S/L) ratio were optimized (77.1 g/L CNS loading at 75 °C for 2.8 h) by response surface methodology (RSM). In the statistical model, temperature and time showed a relatively significant effect on the glucan content (GC) and ED, but S/L ratio was not. GC and ED of the untreated CNS were 45.1% and 12.7%, respectively. On the other hand, GC and ED of pretreated CNS were 83.2% and 48.4%, respectively, and which were significantly improved by about 1.8-fold and 3.8-fold compared to the control group. The improved ED through the optimization is expected to contribute to increasing the value of byproducts generated in food processing.
Collapse
Affiliation(s)
- Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Soo Kweon Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| |
Collapse
|
25
|
Abstract
Lactic acid bacteria (LAB) belong to an assorted cluster of bacteria that are protagonists of fermentative processes and bio-based solutions of interest in the different fields of biotechnological sciences, from the agri-food sector (green) up to the industrial (white), throughout the pharmaceutical (red) [...]
Collapse
|
26
|
Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h.
Collapse
|
27
|
Mäki‐Arvela P, Aho A, Murzin DY. Heterogeneous Catalytic Synthesis of Methyl Lactate and Lactic Acid from Sugars and Their Derivatives. CHEMSUSCHEM 2020; 13:4833-4855. [PMID: 32667135 PMCID: PMC7586466 DOI: 10.1002/cssc.202001223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Recent developments in sugar transformations to methyl lactate and lactic acid are critically summarized. The highest yield of methyl lactate from glucose obtained over Sn(salen)/octylmethyl imidazolium bromide catalyst was 68 % at 160 °C whereas the highest yield of lactic acid of 58 % was achieved over hierarchical Lewis acidic Sn-Beta catalysts at 200 °C under inert atmosphere. In addition to the desired products also humins are formed in water whereas in methanol alkyl glucosides- and -fructosides as well as acetals were generated, especially in the presence of Brønsted-acidic sites. The main challenges limiting the industrial feasibility of these reactions are incomplete liquid phase mass balance closure, complicated product analysis and a lack of kinetic data. In addition to reporting optimized reaction conditions and catalyst properties also catalyst reuse and regeneration as well as kinetic modelling and continuous operation are summarized.
Collapse
Affiliation(s)
- Päivi Mäki‐Arvela
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| | - Atte Aho
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| | - Dmitry Yu. Murzin
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| |
Collapse
|