1
|
Zhu C, Lin Z, Jiang H, Wei F, Wu Y, Song L. Recent Advances in the Health Benefits of Phenolic Acids in Whole Grains and the Impact of Processing Techniques on Phenolic Acids: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24131-24157. [PMID: 39441722 DOI: 10.1021/acs.jafc.4c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Aloo SO, Ofosu FK, Muchiri MN, Vijayalakshmi S, Pyo CG, Oh DH. In Vitro Bioactivities of Commonly Consumed Cereal, Vegetable, and Legume Seeds as Related to Their Bioactive Components: An Untargeted Metabolomics Approach Using UHPLC-QTOF-MS 2. Antioxidants (Basel) 2023; 12:1501. [PMID: 37627496 PMCID: PMC10451260 DOI: 10.3390/antiox12081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted a comprehensive evaluation of the antioxidant, anti-obesity, anti-diabetic, and anti-glycation activities associated with the consumption of broccoli, red cabbage, alfalfa, and buckwheat seeds. Additionally, we explored the relationship between these biological activities and the profiles of amino acids, polyphenols, and organic acids identified in the seeds. Our findings demonstrated that red cabbage, broccoli, and buckwheat extracts exhibited significantly higher antioxidant potential compared to the alfalfa extract. Moreover, buckwheat displayed the most significant capacity for inhibiting alpha-glucosidase. Remarkably, broccoli and red cabbage demonstrated substantial anti-glycation and lipase inhibitory potentials. We identified the presence of amino acids, polyphenols, and organic acids in the extracts through untargeted metabolomics analysis. Correlation analysis revealed that pyroglutamic acid positively correlated with all the investigated functional properties. Most polyphenols made positive contributions to the functional properties, with the exception of ferulic acid, which displayed a negative correlation with all tested biological activities. Furthermore, gluconic acid and arabinonic acid among the organic acids identified displayed a positive correlation with all the functional properties. These results strongly support the anti-diabetic, anti-obesity, and anti-glycation potential of red cabbage, broccoli, and buckwheat seeds.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Mary Njeri Muchiri
- Department of Food Science and Nutrition, School of Agriculture and Biotechnology, Karatina University, Nyeri 1957-10101, Kenya;
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Choi-Geun Pyo
- Department of Barista and Bakery, Gangwon State University, Gangneung 25425, Gangwon, Republic of Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| |
Collapse
|
3
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
4
|
Cui T, Lan Y, Lu Y, Yu F, Lin S, Fu Y, Qiu J, Niu G. Isoorientin ameliorates H 2O 2-induced apoptosis and oxidative stress in chondrocytes by regulating MAPK and PI3K/Akt pathways. Aging (Albany NY) 2023; 15:204768. [PMID: 37277114 PMCID: PMC10292868 DOI: 10.18632/aging.204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. However, due to a lack of research, it has not been widely used. In this study, we investigated the protective effects and molecular mechanisms of ISO on H2O2-induced chondrocytes, a widely used cell model for OA. Based on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes induced by H2O2, which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO and H2O2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H2O2-induced intracellular reactive oxygen species (ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO's ability to inhibit OA in vitro models.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Yuying Lu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yizhe Fu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guangliang Niu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| |
Collapse
|
5
|
Zhang J, Guo J, Dang B, Zhang W, Zheng W, Yang X. Enhancement of Polyphenols and Antioxidant Activity in Germinated Black Highland Barley by Ultrasonication. Molecules 2023; 28:molecules28093679. [PMID: 37175091 PMCID: PMC10179913 DOI: 10.3390/molecules28093679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effect of ultrasonic stress germination (USG) on total phenolic contents (TPC), total flavonoid contents (TFC), the phenolic compositions, and antioxidant activities of black highland barley (BHB). The USG processing parameters, polyphenol profile, phenolic compositions, and antioxidant activities were explored after USG. Results showed that the optimal USG parameters were as follows: 350 W ultrasonic pretreatment power, 30 °C ultrasonication temperature, 25 min ultrasonication time, and 64 h germination time. Under these conditions, the total phenolic content (688.84 ± 5.30 mg/100 g) and total flavonoid content (59.23 ± 0.45 mg/100 g) of BHB were increased by 28.55% and 10.15%, respectively, compared to the untreated samples. In addition, the USG treatment could more effectively enrich bound phenolic acids and free flavonoids, among which the content of catechin was significantly increased by USG and was the main characteristic substance. Moreover, the USG treatment could improve the antioxidant activity and had a higher antioxidant potency composite index (APC index) (97.91%) of BHB. These results indicate that USG might be an effective method to enrich polyphenols and improve antioxidant activity in BHB.
Collapse
Affiliation(s)
- Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Junling Guo
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| |
Collapse
|
6
|
Živković A, Gođevac D, Cigić B, Polak T, Požrl T. Identification and Quantification of Selected Benzoxazinoids and Phenolics in Germinated Spelt ( Triticum spelta). Foods 2023; 12:foods12091769. [PMID: 37174307 PMCID: PMC10178788 DOI: 10.3390/foods12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the effects of germination on the secondary metabolite composition in spelt grains. Germination significantly increased the content of various metabolites in free and bound forms. Benzoxazinoids were the most important compounds in the free fraction of the 96 h germinated grains (MBOA content as the predominant compound was 277.61 ± 15.29 µg/g DW). The majority of phenolic acids were present in the bound fraction, with trans-ferulic acid as the main component, reaching 753.27 ± 95.87 µg/g DW. The often neglected cis-isomers of phenolic acids accounted for about 20% of the total phenolic acids. High levels of apigenin di-C-glycosides were found in spelt grains, and the schaftoside content was most affected by germination, increasing threefold. The accumulation of secondary metabolites significantly increased the antioxidant activity of germinated spelt. According to the results of this study, the content of most bioactive compounds was highest in spelt grains after 96 h of germination. These data suggest that germinated spelt could potentially be valuable for the production of functional foods.
Collapse
Affiliation(s)
- Andrej Živković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Blaž Cigić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Polak
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Požrl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| |
Collapse
|
7
|
Changes in the Bioaccessibility of Antioxidants after Simulated In Vitro Digestion of Bioprocessed Spelt-Enhanced Wheat Bread. Antioxidants (Basel) 2023; 12:antiox12020487. [PMID: 36830044 PMCID: PMC9952203 DOI: 10.3390/antiox12020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The aim of the study was to determine whether the partial replacement of wheat flour with bioprocessed spelt flour contributes to a higher bioaccessibility of the antioxidants in bread. The results showed that the type and amount of bioprocessed spelt flour in a bread recipe has a major impact on the extractable and bound TPC, the content of individual phenolics, their antioxidant activity, and their bioaccessibility as determined by in vitro digestion. Extractable p-coumaric and trans-ferulic acids in breads decreased after digestion, while extractable cis-ferulic and p-hydroxybenzoic acids increased. The bioaccessibility of TPC in the control bread (100% wheat flour), and in bread enriched with 5% "germinated + fermented" spelt flour (GFB5), did not differ. However, the digested GFB5 bread contained 5.2-times more extractable, and 1.3-times more bound, trans-ferulic acid than the digested control bread. trans-Ferulic acid showed the lowest bioaccessibility, up to 2.8%. In GFB2.5 and GFB5 breads, the bioaccessibility of p-coumaric, trans-ferulic, and cis-ferulic acids was higher than in other digested breads. PCA visualized the difference between the undigested and digested breads. The incorporation of germinated and fermented, or germinated and enzymatic, treated spelt flour in a white bread recipe could be an attractive way of providing consumers with nutritionally interesting foods.
Collapse
|
8
|
Effects of Exogenous Caffeic Acid, L-Phenylalanine and NaCl Treatments on Main Active Components Content and In Vitro Digestion of Germinated Tartary Buckwheat. Foods 2022; 11:foods11223682. [PMID: 36429274 PMCID: PMC9688974 DOI: 10.3390/foods11223682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Germination is an effective method for improving the nutritional value of Tartary buckwheat (TB). The effects of exogenous additive treatments (caffeic acid (CA), L-phenylalanine (L-Phe), NaCl) on germination, main active component contents and antioxidant activities before and after in vitro digestion of germinated TB were investigated. Compared with the natural growth group, the T4 group (CA 17 mg/L, L-Phe 2.7 mmol/L, NaCl 2.7 mmol/L) treatment increased the germination rate (67.50%), sprout length, reducing sugar (53.05%), total flavonoid (18.36%) and total phenolic (20.96%) content, and antioxidant capacity of TB. In addition, exogenous additives treatment induced the consumption of a lot of nutrients during seed germination, resulting in a decrease in the content of soluble protein and soluble sugar. The stress degree of natural germination on seeds was higher than that of low concentrations of exogenous additives, resulting in an increase in malondialdehyde content. In vitro digestion leads to a decrease in phenolics content and antioxidant capacity, which can be alleviated by exogenous treatment. The results showed that treatment with exogenous additives was a good method to increase the nutritional value of germinated TB, which provided a theoretical basis for screening suitable growth conditions for flavonoid enrichment.
Collapse
|
9
|
Analysis of Phenolic Compounds in Buckwheat ( Fagopyrum esculentum Moench) Sprouts Modified with Probiotic Yeast. Molecules 2022; 27:molecules27227773. [PMID: 36431874 PMCID: PMC9695562 DOI: 10.3390/molecules27227773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat sprouts are a source of various nutrients, e.g., antioxidant flavonoids, which have a positive effect on human health. This study analyzed the content of phenolic compounds and assessed their impact on the antioxidant and anti-inflammatory properties and dietary fiber in modified buckwheat sprouts. For this purpose, the buckwheat seeds were modified by adding Saccharomyces cerevisiae var. boulardii. The modified buckwheat sprouts showed a higher content of total phenol compounds (1526 µg/g d.w.) than the control sprouts (951 µg/g d.w.) and seeds (672 µg/g d.w.). As a consequence, a higher antioxidant activity and anti-inflammatory effect were noted. Probiotic-rich sprouts also had the highest content of total dietary fiber and its soluble fraction. A correlation between phenolic compounds and the antioxidant and anti-inflammatory effects, as well as dietary fiber, was shown. The interaction between dietary fiber and phenolic compounds affects the bioaccessibility, bioavailability, and bioactivity of phenolic compounds in food. The introduction of probiotic yeast into the sprouts had a positive effect on increasing their nutritional value, as well as their antioxidant and anti-inflammatory activity. As a consequence, the nutraceutical potential of the raw material changed, opening a new direction for the use of buckwheat sprouts, e.g., in industry.
Collapse
|
10
|
Gasiński A, Kawa-Rygielska J, Błażewicz J, Leszczyńska D. Malting procedure and its impact on the composition of volatiles and antioxidative potential of naked and covered oat varieties. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Sci Biotechnol 2022; 31:935-956. [PMID: 35873372 PMCID: PMC9300812 DOI: 10.1007/s10068-022-01056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds in common buckwheat sprouts (CBSs) have gained research interest because of their multiple health benefits. Phenolic acids, flavanones, flavonols, flavan-3-ols, and anthocyanins are important bioactive components of CBS that exhibit biological activities, including anti-inflammatory, antioxidant, anti-proliferative, and immunomodulatory effects. The isolation and quantitative and qualitative analyses of these phenolic compounds require effective and appropriate extraction and analytical methods. The most recent analytical method developed for determining the phenolic profile is HPLC coupled with a UV-visible detector and/or MS. This review highlights the extraction, purification, analysis, and bioactive properties of phenolic compounds from CBS described in the literature.
Collapse
|
12
|
Multiple Approaches to Improve the Quality of Cereal-Based Foods. Foods 2022; 11:foods11131849. [PMID: 35804665 PMCID: PMC9265708 DOI: 10.3390/foods11131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
The interest in improving the health benefits of cereal foods is continuously increasing [...]
Collapse
|
13
|
Kreft I, Germ M, Golob A, Vombergar B, Bonafaccia F, Luthar Z. Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. Int J Mol Sci 2022; 23:3923. [PMID: 35409281 PMCID: PMC8999605 DOI: 10.3390/ijms23073923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is grown in eastern and central Asia (the Himalayan regions of China, Nepal, Bhutan and India) and in central and eastern Europe (Luxemburg, Germany, Slovenia and Bosnia and Herzegovina). It is known for its high concentration of rutin and other phenolic metabolites. Besides the grain, the other aboveground parts of Tartary buckwheat contain rutin as well. After the mixing of the milled buckwheat products with water, the flavonoid quercetin is obtained in the flour-water mixture, a result of rutin degradation by rutinosidase. Heating by hot water or steam inactivates the rutin-degrading enzymes in buckwheat flour and dough. The low buckwheat protein digestibility is due to the high content of phenolic substances. Phenolic compounds have low absorption after food intake, so, after ingestion, they remain for some time in the gastrointestinal tract. They can act in an inhibitory manner on enzymes, degrading proteins and other food constituents. In common and Tartary buckwheat, the rutin and quercetin complexation with protein and starch molecules has an impact on the in vitro digestibility and the appearance of resistant starch and slowly digestible proteins. Slowly digestible starch and proteins are important for the functional and health-promoting properties of buckwheat products.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Francesco Bonafaccia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| |
Collapse
|
14
|
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:756. [PMID: 35336638 PMCID: PMC8954860 DOI: 10.3390/plants11060756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/08/2023]
Abstract
Globally, beer is considered the most-consumed low-alcohol beverage, it ranks third, after water and tea, in the top sales of these drinks. New types of beer are the result of the influence of several factors, including innovations in science and technology, changing requirements for food consumption of the population, competition between producers, promotion of food for health, flavor, and quality, the limited nature of traditional food resource raw materials, and the interest of producers in reducing production costs. Manufacturers are looking for new solutions for obtaining products that meet the requirements of consumers, authentic products of superior quality, with distinctive taste and aroma. This review proposes the use of two pseudocereals as raw materials in the manufacture of beer: buckwheat and amaranth, focusing on the characteristics that recommend them in this regard. Due to their functional and nutraceutical properties, these pseudocereals can improve the quality of beer-a finished product. Additionally, all types of beer obtained from these pseudocereals are recommended for diets with particular nutritional requirements, especially gluten-free diets. Researchers and producers will continue to improve and optimize the sensory and technological properties of the new types of beer obtained from these pseudocereals.
Collapse
Affiliation(s)
| | | | | | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.); (A.C.)
| |
Collapse
|
15
|
Wang Y, Nie Z, Ma T. The Effects of Plasma-Activated Water Treatment on the Growth of Tartary Buckwheat Sprouts. Front Nutr 2022; 9:849615. [PMID: 35284468 PMCID: PMC8908094 DOI: 10.3389/fnut.2022.849615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aim was to investigate the effects of buckwheat sprout treated with plasma-activated water (PAW) and their quality, nutrients (protein, amino acids, fat, and carbohydrates), functional active ingredients (total flavonoids, total phenolic acids, γ-gamma aminobutyric acid (GABA), and polysaccharides), and antioxidant activity during germination. PAW had no negative effects on the germination rate, but promoted the stem growth instead, which indicated 1.12-fold higher germination rate compared with the control group. The results of sensory evaluation demonstrated that the obtained sprouts were bright green, shinning, crisp and smooth, with sufficient moisture, and easy to chew. During germination (1–9 days), the water content, amino acids, and reducing sugars of sprouts showed an increasing trend and were basically higher in the PAW group than in the control group, while protein, carbohydrate, and crude fat presented a decreasing trend. The results were that the flavonoid, phenolic acid, γ-GABA, polysaccharides content, and antioxidant activity during germination showed a gradual upward trend but with slight differences, and the antioxidant properties of buckwheat sprouts might be related to the phenolic acid and polysaccharides content. These data show that the PAW treatment on buckwheat sprout have great potential as a dietary source of antioxidant function with health benefits.
Collapse
|
16
|
Mencin M, Mikulic-Petkovsek M, Veberič R, Terpinc P. Development and Optimisation of Solid-Phase Extraction of Extractable and Bound Phenolic Acids in Spelt ( Triticum spelta L.) Seeds. Antioxidants (Basel) 2021; 10:antiox10071085. [PMID: 34356318 PMCID: PMC8301066 DOI: 10.3390/antiox10071085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
A solid-phase extraction (SPE) technique was developed and optimised for isolation and concentration of extractable and bound phenolic acids from germinated spelt seeds, for analysis by liquid chromatography–mass spectrometry. Samples initially underwent solvent extraction under different conditions to maximise the yield of phenolic antioxidants. Optimal extraction conditions for extractable phenolics were absolute methanol as solvent, sample-to-methanol ratio 1:9, and reconstitution in non-acidified water. The bound phenolics were extracted from sample pellets using hydrolysis with 2 M NaOH, acidification of the hydrolysate with formic acid, and simultaneous isolation and purification using Strata X polymeric RP tubes. Compared to liquid-liquid extraction, this direct SPE protocol has significant advantages in terms of higher extraction efficiencies of total and individual phenolics and their antioxidant activities. These data suggest that direct SPE represents a rapid and reliable method for quantitative analysis of both the extractable and the commonly overlooked bound phenolics in Triticum spelta seeds.
Collapse
Affiliation(s)
- Marjeta Mencin
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia;
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia; (M.M.-P.); (R.V.)
| | - Robert Veberič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia; (M.M.-P.); (R.V.)
| | - Petra Terpinc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|