1
|
Othmeni I, Blecker C, Karoui R. pH-dependent emulsifying properties of pea protein isolate: Investigation of the structure - Function relationship. Int J Biol Macromol 2024; 290:139105. [PMID: 39719231 DOI: 10.1016/j.ijbiomac.2024.139105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
This study investigated the relationship between pea protein isolates (PPI) emulsifying properties and their structural, interfacial, and physicochemical characteristics at various pH values (native pH, 7, 5, and 3). Emulsion characteristics including emulsifying activity and stability, droplet size, flocculation index (FI) and coalescence index (CI) were examined. Additionally, physicochemical properties such as solubility, zeta potential, surface hydrophobicity, interfacial protein adsorption and protein conformation were analyzed. Results revealed significant pH-dependent variations in emulsifying performance. The poorest emulsifying performance was observed at pH 5, with the largest droplet size (28.84 μm) and highest CI (38.94 %). Optimal emulsifying properties were noticed at native pH, with the smallest droplet size (7.73 μm) and lowest CI (4.69). At pH 3, good emulsifying ability with the highest physical stability (5.43) were observed, associated with increased surface hydrophobicity and the presence of some aggregates contributing to the formation of cohesive interfacial film. Structural elements, particularly β-sheets and random coils, were positively correlated with emulsifying activity and stability, while β-turns had a negative impact. These findings provide insights into the pH-dependent emulsifying behavior of PPI, highlighting the complex relationship between protein structure and functionality, enabling the optimization of the use of PPI as an emulsifier in food applications.
Collapse
Affiliation(s)
- Ines Othmeni
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium; Cosucra Groupe Warcoing S.A., B-7040 Warcoing, Belgium.
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| |
Collapse
|
2
|
Manouel T, Subasi BG, Abdollahi M. Impacts of Harvest Year and Cultivation Location on Off-Flavor Compounds and Functionality of Pea Protein Isolate. Foods 2024; 13:3423. [PMID: 39517206 PMCID: PMC11545078 DOI: 10.3390/foods13213423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of four different harvest years and two cultivation locations (CLs) of pea seeds on their protein wet fractionation yield, volatile and non-volatile beany flavors, and functionality were investigated. Both harvest years and CLs significantly affected protein recovery, but protein purity was primarily influenced by CLs. Seed age emerged as a dominant factor causing the reduction in linolenic/linoleic acid content and lipoxygenase (LOX) activity which surpassed the effect of harvest years in the seeds but not in their proteins. CL significantly affected fatty acid composition in both seeds and proteins, whereas its effect on LOX activity was discernible only in the proteins. Volatile beany compounds in the proteins were affected by both harvest years and CLs, correlating with their polyunsaturated fatty acid (PUFA) content and LOX activity. Both factors minimally impacted the emulsification capacity of the proteins but imposed a significant effect on their rheological properties. Altogether, the results revealed that seed crop years and especially locations affect pea protein quality, calling for proper adaptation strategies.
Collapse
Affiliation(s)
| | | | - Mehdi Abdollahi
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
3
|
Schweiggert-Weisz U, Etzbach L, Gola S, Kulling SE, Diekmann C, Egert S, Daniel H. Opinion Piece: New Plant-Based Food Products Between Technology and Physiology. Mol Nutr Food Res 2024; 68:e2400376. [PMID: 39348094 DOI: 10.1002/mnfr.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The rapid growth of product sectors for plant-based meat and dairy alternatives has raised significant scientific interest in their nutritional and ecological benefits. Here, it outlines the fractionation of plant-based raw materials and describes the technologies applied in the production of meat and dairy substitutes. Moreover, the study describes the effects of these new products on human nutrient supply and metabolic responses. Examples of meat-like products produced by extrusion technology and dairy alternatives are provided, addressing production challenges and the effects of processing on nutrient digestibility and bioavailability. In contrast to animal-based products, plant-based protein ingredients can contain many compounds produced by plants for defense or symbiotic interactions, such as lectins, phytates, and a wide range of secondary metabolites. The intake of these compounds as part of a plant-based diet can influence the digestion, bioaccessibility, and bioavailability of essential nutrients such as minerals and trace elements but also of amino acids. This is a critical factor, especially in regions with limited plant species for human consumption and inadequate technologies to eliminate these compounds. To fully understand these impacts and ensure that plant-based diets meet human nutritional needs, well-controlled human studies are needed.
Collapse
Affiliation(s)
- Ute Schweiggert-Weisz
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Lara Etzbach
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Susanne Gola
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Sabine E Kulling
- Max Rubner-Institut (MRI), Department of Safety and Quality of Fruit and Vegetables, 76131, Karlsruhe, Germany
| | - Christina Diekmann
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Sarah Egert
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Hannelore Daniel
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
4
|
Lara SW, Tsiami A. A Lexicon of Descriptive Sensory Terms for Peas ( Pisum sativum L.): A Systematic Review. Foods 2024; 13:2290. [PMID: 39063374 PMCID: PMC11276475 DOI: 10.3390/foods13142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The popularity of peas (Pisum sativum L.) and pea-derived products is constantly growing globally and is estimated to continue to do so at an average annual rate of 12%. This is partially stimulated by the increase in the consumption of meat analogues and the popularisation of animal-protein-free diets. Peas are considered a great source of protein and dietary fibre and are not depicted as allergenic, making them a good replacement ingredient for other legumes such as soy. Peas are also considered good for the environment, mainly due to their nitrogen fixation capabilities. Despite the above benefits, sensory quality is still a limiting factor in increasing consumer acceptance of peas and pea-derived products. RESULTS This review has been conducted in accordance with the Joanna Brings Institute's guidance for systematic literature reviews. The search has been conducted on the descriptive sensory terms for Pisum sativum L., where the objectives of the study were to select, present, and analyse the identified descriptive sensory terms for peas found throughout the academic literature. The reviewers have screened 827 articles, of which 12 were eligible for data extraction. Out of the 12 articles, 205 descriptive sensory terms were identified. Those were divided into five categories: smell/odour (27%), flavour (51%), taste (10%), texture (8%), and visual (4%). These included results from sensory analyses by trained/untrained panels and instrumental analyses of texture and of volatile compounds. CONCLUSION The identified descriptive sensory terms for Pisum sativum L. could be used for future descriptive sensory evaluation of peas and other legumes, making the process less time consuming. The full list could be used for the initial sensory panel training and then adapted based on the frequency of the depicted terms that meet the criteria for the developed lexicon.
Collapse
Affiliation(s)
- Szymon Wojciech Lara
- London Geller College of Hospitality and Tourism, University of West London, St. Mary’s Road, Ealing, London W5 5RF, UK
- Royal Botanic Gardens, Kew, Richmond, London TW9 3AE, UK
| | - Amalia Tsiami
- London Geller College of Hospitality and Tourism, University of West London, St. Mary’s Road, Ealing, London W5 5RF, UK
| |
Collapse
|
5
|
McCarron R, Methven L, Grahl S, Elliott R, Lignou S. Fortification of Pea and Potato Protein Isolates in Oat-Based Milk Alternatives; Effects on the Sensory and Volatile Profile. Foods 2024; 13:2075. [PMID: 38998581 PMCID: PMC11241158 DOI: 10.3390/foods13132075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Oat-based milk alternatives (OMAs) are an important alternative to bovine milk, with prevalence of lactose intolerance, as well as soy and nut allergies limiting consumers options. However, OMAs are typically lower in protein content than both bovine milk and soy-based alternatives, with protein quality limited by low lysine levels, which can reduce protein digestibility. Addition of alternative plant proteins may increase the quantity of protein, as well as balancing the amino acid profile. However, plant-based proteins have additional sensory qualities and off-flavours, which may lead to undesirable characteristics when introduced to OMAs. This study aimed to assess the effect of pea and potato protein addition on the sensory profile, volatile profile, colour, and particle size in an OMA control product. Results demonstrated that pea protein contributed to a bitter and metallic taste, astringent aftertaste, and a significantly increased overall aroma correlated with higher levels of key volatiles. Whilst potato protein resulted in less flavour changes, it did lead to increased powdery mouthfeel and mouthcoating supported by a substantially increased particle size. Both protein fortifications led to detectable colour changes and a staler flavour. Fortification of OMA product with the pea protein led to significant sensory, volatile and physical changes, whilst the potato protein led to predominantly physical changes. Further investigation into alternative plant-based proteins is necessary to optimise sensory qualities whilst increasing protein content and the amino acid profile.
Collapse
Affiliation(s)
- Roisin McCarron
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| | - Stephanie Grahl
- Arla Innovation Centre, Agro Food Park 19, 8200 Aarhus N, Denmark
| | - Ruan Elliott
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health and Medical Sciences, University of Surrey Guildford, Surrey GU2 7YH, UK
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| |
Collapse
|
6
|
Shaheen N, Hossen MS, Akhter KT, Halima O, Hasan MK, Wahab A, Gamagedara S, Bhargava K, Holmes T, Najar FZ, Khandaker M, Peng Z, Yang Z, Ahsan N. Comparative Seed Proteome Profile Reveals No Alternation of Major Allergens in High-Yielding Mung Bean Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836763 DOI: 10.1021/acs.jafc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, β-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.
Collapse
Affiliation(s)
- Nazma Shaheen
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Sujan Hossen
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Kazi Turjaun Akhter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Oumma Halima
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamrul Hasan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asfia Wahab
- Department of Biology, University of York, York YO10, U.K
| | - Sanjeewa Gamagedara
- Department of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Kanika Bhargava
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Tawni Holmes
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Fares Z Najar
- High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Morshed Khandaker
- Nanobiology Laboratory, School of Engineering, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Verkempinck SHE, Duijsens D, Mukherjee A, Wilde PJ. Pea protein extraction method impacts the protein (micro)structural organisation and in vitro digestion kinetics. Food Funct 2024; 15:953-966. [PMID: 38175573 DOI: 10.1039/d3fo04225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
There is increasing interest in including pulse proteins into food products due to their nutrient-rich and sustainable character. However, little is known regarding the consequences of different extraction approaches on the pulse protein structure and the subsequent protein (micro)structural organization and protein digestion kinetics. Therefore, three green pea protein extracts were created: (i) cooking followed by cotyledon cell isolation, (ii) alkaline extraction followed by isoelectric precipitation, or (iii) salt extraction, and compared to the original pea flour as well as to sodium caseinate. The results showed that encapsulated, denatured protein inside pea cotyledon cells presented the (s)lowest digestion, while accessible and more native protein (e.g., pea flour, pea protein salt extract) presented much faster and higher digestion. Moreover, the alkali extracted pea protein was denatured to some extent, significantly lowering in vitro digestion kinetics. In the second part, three different in vitro approaches were applied to digest the salt extracted pea protein. Semi-dynamic gastric digestion approaches simulate in vivo conditions more closely which especially impacted the rate of digestion.
Collapse
Affiliation(s)
- Sarah H E Verkempinck
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium.
| | - Dorine Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium.
| | - Ankita Mukherjee
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders Desmetstraat 1, 9000 Ghent, Belgium.
| | - Peter J Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK.
| |
Collapse
|
8
|
Asen ND, Aluko RE, Martynenko A, Utioh A, Bhowmik P. Yellow Field Pea Protein ( Pisum sativum L.): Extraction Technologies, Functionalities, and Applications. Foods 2023; 12:3978. [PMID: 37959097 PMCID: PMC10648759 DOI: 10.3390/foods12213978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Yellow field peas (Pisum sativum L.) hold significant value for producers, researchers, and ingredient manufacturers due to their wealthy composition of protein, starch, and micronutrients. The protein quality in peas is influenced by both intrinsic factors like amino acid composition and spatial conformations and extrinsic factors including growth and processing conditions. The existing literature substantiates that the structural modulation and optimization of functional, organoleptic, and nutritional attributes of pea proteins can be obtained through a combination of chemical, physical, and enzymatic approaches, resulting in superior protein ingredients. This review underscores recent methodologies in pea protein extraction aimed at enhancing yield and functionality for diverse food systems and also delineates existing research gaps related to mitigating off-flavor issues in pea proteins. A comprehensive examination of conventional dry and wet methods is provided, in conjunction with environmentally friendly approaches like ultrafiltration and enzyme-assisted techniques. Additionally, the innovative application of hydrodynamic cavitation technology in protein extraction is explored, focusing on its prospective role in flavor amelioration. This overview offers a nuanced understanding of the advancements in pea protein extraction methods, catering to the interests of varied stakeholders in the field.
Collapse
Affiliation(s)
- Nancy D. Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alex Martynenko
- Department of Engineering, Dalhousie University, Agricultural Campus, P.O. Box 550, Truro, NS B2N 5E3, Canada;
| | - Alphonsus Utioh
- ACU Food Technology Services Inc., 64 Laverendrye Crescent, Portage la Prairie, MB R1N 1B2, Canada;
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
9
|
See XY, Chiang JH, Law LM, Osen R. High moisture extrusion of plant proteins: advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2023; 65:143-164. [PMID: 37850862 DOI: 10.1080/10408398.2023.2268736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
High moisture extrusion is a widely used technology for producing fibrous meat analogues in an efficient and scalable manner. Extrusion of soy, wheat gluten, and pea is well-documented and related products are already available in the market. There has been growing interest to diversify the protein sources used for meat analogues due to concerns over food waste, monocropping and allergenicity. Optimizing the extrusion process for plant proteins (e.g., hemp, mung bean, fava bean) tends to be time consuming and relies on the operators' intuition and experience to control the process well. Simulating the extrusion process has been challenging so far due to the diverse inputs and configurations involved during extrusion. This review details the mechanism for fibrous structure formation and provides an overview of the extrusion parameters used for texturizing a broad range of plant protein sources. Referring to these data reduces the resources needed for optimizing the extrusion process for novel proteins and may be useful for future extrusion modeling efforts. The review also highlights potential challenges and opportunities for extruding plant proteins, which may help to accelerate the development and commercialization of related products.
Collapse
Affiliation(s)
- Xin Yi See
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jie Hong Chiang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Li Min Law
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Raffael Osen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
10
|
Jakobson K, Kaleda A, Adra K, Tammik ML, Vaikma H, Kriščiunaite T, Vilu R. Techno-Functional and Sensory Characterization of Commercial Plant Protein Powders. Foods 2023; 12:2805. [PMID: 37509897 PMCID: PMC10379337 DOI: 10.3390/foods12142805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Many new plant proteins are appearing on the market, but their properties are insufficiently characterized. Hence, we collected 24 commercial proteins from pea, oat, fava bean, chickpea, mung bean, potato, canola, soy, and wheat, including different batches, and assessed their techno-functional and sensory properties. Many powders had yellow, red, and brown color tones, but that of fava bean was the lightest. The native pH ranged from 6.0 to 7.7. The water solubility index was 28% on average, but after heat treatment the solubility typically increased. Soy isolate had by far the best water-holding capacity of 6.3 g (H2O) g-1, and canola had the highest oil-holding capacity of 2.8 g (oil) g-1. The foaming capacity and stability results were highly varied but typical to the raw material. The emulsification properties of all powders were similar. Upon heating, the highest viscosity and storage modulus were found in potato, canola, and mung bean. All powders had raw material flavor, were bitter and astringent, and undissolved particles were perceived in the mouth. Large differences in functionality were found between the batches of one pea powder. In conclusion, we emphasize the need for methodological standardization, but while respecting the conditions found in end applications like meat and dairy analogs.
Collapse
Affiliation(s)
- Kadi Jakobson
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Aleksei Kaleda
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Karl Adra
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Mari-Liis Tammik
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Helen Vaikma
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- School of Business and Governance, Tallinn University of Technology, Akadeemia tee 3, 12612 Tallinn, Estonia
| | - Tiina Kriščiunaite
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
11
|
Chen ZL, Li Y, Wang JH, Wang R, Teng YX, Lin JW, Zeng XA, Woo MW, Wang L, Han Z. Pulsed electric field improves the EGCG binding ability of pea protein isolate unraveled by multi-spectroscopy and computer simulation. Int J Biol Macromol 2023:125082. [PMID: 37257538 DOI: 10.1016/j.ijbiomac.2023.125082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Understanding molecular mechanisms during protein modification is critical for expanding the application of plant proteins. This study investigated the conformational change and molecular mechanism of pea protein isolate (PPI) under pulsed electric field (PEF)-assisted (-)-Epigallocatechin-Gallate (EGCG) modification. The flexibility of PPI was significantly enhanced after PEF treatment (10 kV/cm) with decrease (23.25 %) in α-helix and increase (117.25 %) in random coil. The binding constant and sites of PEF-treated PPI with EGCG were increased by 2.35 times and 10.00 % (308 K), respectively. Molecular docking verified that PEF-treated PPI had more binding sites with EGCG (from 4 to 10). The number of amino acid residues involved in hydrophobic interactions in PEF-treated PPI-EGCG increased from 5 to 13. PEF-treated PPI-EGCG showed a significantly increased antioxidant activity compared to non-PEF-treated group. This work revealed the molecular level of PEF-assisted EGCG modification of PPI, which will be significant for the application of PPI in food industry.
Collapse
Affiliation(s)
- Ze-Ling Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yong-Xin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jia-Wei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Research Institute of Yangjiang, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Ling Wang
- Macau University of Science and Technology, Macao, 999078, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
12
|
Webb D, Dogan H, Li Y, Alavi S. Physico-Chemical Properties and Texturization of Pea, Wheat and Soy Proteins Using Extrusion and Their Application in Plant-Based Meat. Foods 2023; 12:foods12081586. [PMID: 37107382 PMCID: PMC10137858 DOI: 10.3390/foods12081586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Four commercial pea protein isolates were analyzed for their physico-chemical properties including water absorption capacity (WAC), least gelation concentration (LGC), rapid visco analyzer (RVA) pasting, differential scanning calorimetry (DSC)-based heat-induced denaturation and phase transition (PTA) flow temperature. The proteins were also extruded using pilot-scale twin-screw extrusion with relatively low process moisture to create texturized plant-based meat analog products. Wheat-gluten- and soy-protein-based formulations were similarly analyzed, with the intent to study difference between protein types (pea, wheat and soy). Proteins with a high WAC also had cold-swelling properties, high LGC, low PTA flow temperature and were most soluble in non-reducing SDS-PAGE. These proteins had the highest cross-linking potential, required the least specific mechanical energy during extrusion and led to a porous and less layered texturized internal structure. The formulation containing soy protein isolate and most pea proteins were in this category, although there were notable differences within the latter depending on the commercial source. On the other hand, soy-protein-concentrate- and wheat-gluten-based formulations had almost contrary functional properties and extrusion characteristics, with a dense, layered extrudate structure due to their heat-swelling and/or low cold-swelling characteristics. The textural properties (hardness, chewiness and springiness) of the hydrated ground product and patties also varied depending on protein functionality. With a plethora of plant protein options for texturization, understanding and relating the differences in raw material properties to the corresponding extruded product quality can help tailor formulations and accelerate the development and design of plant-based meat with the desired textural qualities.
Collapse
Affiliation(s)
- Delaney Webb
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Hulya Dogan
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Sajid Alavi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
13
|
Vreeke GJC, Meijers MGJ, Vincken JP, Wierenga PA. Towards absolute quantification of protein genetic variants in Pisum sativum extracts. Anal Biochem 2023; 665:115048. [PMID: 36657509 DOI: 10.1016/j.ab.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
In recent years, several studies have used proteomics approaches to characterize genetic variant profiles of agricultural raw materials. In such studies, the challenge is the quantification of the individual protein variants. In this study a novel UPLC-PDA-MS method with absolute and label-free UV-based peptide quantification was applied to quantify the genetic variants of legumin, vicilin and albumins in pea extracts. The aim was to investigate the applicability of this method and to identify challenges in determining protein concentration from the measured peptide concentrations. Analysis of the protein mass balance showed significant losses of proteins in extraction (37%) and of peptides in further sample preparation (69%). The challenge in calculating the extractable individual protein concentrations was how to deal with these insoluble peptides. The quantification approach using average amino acid concentrations in each position of the sequence showed most reproducible results and allowed comparison of the genetic protein composition of 8 different cultivars. The extractable protein composition (μM/μM) was remarkably similar for all cultivar extracts and consisted of legumins A1 (12.8 ± 1.2%), A2 (1.1 ± 0.4%), B (9.9 ± 1.6%), J (7.5 ± 1.0%) and K (10.3 ± 2.1%), vicilin (15.2 ± 1.7%), provicilin (15.7 ± 2.5%), convicilin (9.8 ± 0.8%), albumin A1 (7.4 ± 2.0%), albumin 2 (10.0 ± 1.5%) and protease inhibitor (0.4 ± 0.4%).
Collapse
Affiliation(s)
- Gijs J C Vreeke
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Maud G J Meijers
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Peter A Wierenga
- Laboratory of Food Chemistry, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Xiang L, Zhu W, Jiang B, Chen J, Zhou L, Zhong F. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein. Food Chem 2023; 402:134275. [DOI: 10.1016/j.foodchem.2022.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
15
|
Liu Y, Li X, Liu J, Wei L, Liu Y, Lu F, Wang W, Li Q, Li Y. Focusing on Hofmeister series: Composition, structure and functional properties of pea protein extracted with food-related anions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rivera J, Siliveru K, Li Y. A comprehensive review on pulse protein fractionation and extraction: processes, functionality, and food applications. Crit Rev Food Sci Nutr 2022; 64:4179-4201. [PMID: 38708867 DOI: 10.1080/10408398.2022.2139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increasing world population requires the production of nutrient-rich foods. Protein is an essential macronutrient for healthy individuals. Interest in using plant proteins in foods has increased in recent years due to their sustainability and nutritional benefits. Dry and wet protein fractionation methods have been developed to increase protein yield, purity, and functional and nutritional qualities. This review explores the recent developments in pretreatments and fractionation processes used for producing pulse protein concentrates and isolates. Functionality differences between pulse proteins obtained from different fractionation methods and the use of fractionated pulse proteins in different food applications are also critically reviewed. Pretreatment methods improve the de-hulling efficiency of seeds prior to fractionation. Research on wet fractionation methods focuses on improving sustainability and functionality of proteins while studies on dry methods focus on increasing protein yield and purity. Hybrid methods produced fractionated proteins with higher yield and purity while also improving protein functionality and process sustainability. Dry and hybrid fractionated proteins have comparable or superior functionalities relative to wet fractionated proteins. Pulse protein ingredients are successfully incorporated into various food formulations with notable changes in their sensory properties. Future studies could focus on optimizing the fractionation process, improving protein concentrate palatability, and optimizing formulations using pulse proteins.
Collapse
Affiliation(s)
- Jared Rivera
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
17
|
Oliete B, Lubbers S, Fournier C, Jeandroz S, Saurel R. Effect of biotic stress on the presence of secondary metabolites in field pea grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4942-4948. [PMID: 35275406 DOI: 10.1002/jsfa.11861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The presence of secondary metabolites responsible for off-flavours in peas may influence consumers' acceptance. These undesirable compounds may increase due to biotic stress or cultivar. Therefore, grains from two pea (Pisum sativum L.) cultivars (Crécerelle and Firenza) exposed to biotic stress were studied in terms of protein content, electrophoretic polypeptide profile, lipoxygenase activity, saponin content and volatile compounds. RESULTS No differences were observed in the electrophoretic polypeptide profile of pea samples across cultivar or biotic stress. The cultivar noticeably affected the volatile compounds and lipoxygenase activity. The biotic stress significantly increased the saponin content. CONCLUSION The cultivar showed more noticeable impact on the presence of off-flavour compounds than the biotic stress. The development of pea protein ingredients needs the thorough choice of raw materials in terms of cultivar and control of biotic stress in order to ensure acceptance by consumers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bonastre Oliete
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Samuel Lubbers
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Carine Fournier
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rémi Saurel
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
18
|
Wang Y, Tuccillo F, Lampi AM, Knaapila A, Pulkkinen M, Kariluoto S, Coda R, Edelmann M, Jouppila K, Sandell M, Piironen V, Katina K. Flavor challenges in extruded plant-based meat alternatives: A review. Compr Rev Food Sci Food Saf 2022; 21:2898-2929. [PMID: 35470959 DOI: 10.1111/1541-4337.12964] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Marjo Pulkkinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mari Sandell
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Functional Foods Forum, University of Turku, Turku, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Abstract
Our global population is growing at a pace to exceed 10 billion people by the year 2050. This growth will place pressure on the agricultural production of food to feed the hungry masses. One category that will be strained is protein. Per capita protein consumption is rising in virtually every country for both nutritional reasons and consumption enjoyment. The United Nations estimates protein demand will double by 2050, and this will result in a critical overall protein shortage if drastic changes are not made in the years preceding these changes. Therefore, the world is in the midst of identifying technological breakthroughs to make protein more readily available and sustainable for future generations. One protein sourcing category that has grown in the past decade is plant-based proteins, which seem to fit criteria established by discerning consumers, including healthy, sustainable, ethical, and relatively inexpensive. Although demand for plant-based protein continues to increase, these proteins are challenging to utilize in novel food formulations. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- William R. Aimutis
- Nutrition Science and North Carolina Food Innovation Lab, Department of Food Bioprocessing, North Carolina State University, Kannapolis, North Carolina
| |
Collapse
|
20
|
Schweiggert-Weisz U, Zannini E. Recovery, Isolation, and Characterization of Food Proteins. Foods 2021; 11:foods11010070. [PMID: 35010196 PMCID: PMC8750581 DOI: 10.3390/foods11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ute Schweiggert-Weisz
- Institute for Nutritional and Food Sciences, University of Bonn, 53113 Bonn, Germany
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany
| | - Emanuele Zannini
- Cereal and Beverage Science Research Group, School of Food and Nutritional Sciences, University College Cork, College Road, T12K8AF Cork, Ireland
| |
Collapse
|
21
|
Trindler C, Annika Kopf-Bolanz K, Denkel C. Aroma of peas, its constituents and reduction strategies - Effects from breeding to processing. Food Chem 2021; 376:131892. [PMID: 34971885 DOI: 10.1016/j.foodchem.2021.131892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Peas as an alternative protein source have attracted a great deal of interest from the food industry and consumers in recent years. However, pea proteins usually do not taste neutral and exhibit a distinct flavor, often characterized as "beany". This is usually contrasted by the food industry's desire for sensory neutral protein sources. In this review, we highlight the current state of knowledge about the aroma of peas and its changes along the pea value chain. Possible causes and origins, and approaches to reduce or eliminate the aroma constituents are presented. Fermentative methods were identified as interesting to mitigate undesirable off-flavors. Major potential has also been discussed for breeding, as there appears to be a considerable leverage at this point in the value chain: a reduction of plant-derived flavors, precursors, or substrates involved in off-flavor evolution could prevent the need for expensive removal later.
Collapse
|
22
|
González-Montemayor AM, Solanilla-Duque JF, Flores-Gallegos AC, López-Badillo CM, Ascacio-Valdés JA, Rodríguez-Herrera R. Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods 2021; 10:2227. [PMID: 34574337 PMCID: PMC8468002 DOI: 10.3390/foods10092227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
In this study, proximal composition, mineral analysis, polyphenolic compounds identification, and antioxidant and functional activities were determined in green bean (GBF), mesquite (MF), and pea (PF) flours. Different mixtures of legume flour and wheat flour for bread elaboration were determined by a simplex-centroid design. After that, the proximal composition, color, specific volume, polyphenol content, antioxidant activities, and functional properties of the different breads were evaluated. While GBF and PF have a higher protein content (41-47%), MF has a significant fiber content (19.9%) as well as a higher polyphenol content (474.77 mg GAE/g) and antioxidant capacities. It was possible to identify Ca, K, and Mg and caffeic and enolic acids in the flours. The legume-wheat mixtures affected the fiber, protein content, and the physical properties of bread. Bread with MF contained more fiber; meanwhile, PF and GBF benefit the protein content. With MF, the specific bread volume only decreased by 7%. These legume flours have the potential to increase the nutritional value of bakery goods.
Collapse
Affiliation(s)
- Angela Mariela González-Montemayor
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, Republica Oriente, Saltillo CP 25280, Mexico; (A.M.G.-M.); (A.C.F.-G.); (C.M.L.-B.); (J.A.A.-V.)
| | - José Fernando Solanilla-Duque
- Agroindustrial Engineering Department, School of Agrarian Sciences, Universidad del Cauca, Popayán 190002, Colombia;
| | - Adriana C. Flores-Gallegos
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, Republica Oriente, Saltillo CP 25280, Mexico; (A.M.G.-M.); (A.C.F.-G.); (C.M.L.-B.); (J.A.A.-V.)
| | - Claudia Magdalena López-Badillo
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, Republica Oriente, Saltillo CP 25280, Mexico; (A.M.G.-M.); (A.C.F.-G.); (C.M.L.-B.); (J.A.A.-V.)
| | - Juan Alberto Ascacio-Valdés
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, Republica Oriente, Saltillo CP 25280, Mexico; (A.M.G.-M.); (A.C.F.-G.); (C.M.L.-B.); (J.A.A.-V.)
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, Republica Oriente, Saltillo CP 25280, Mexico; (A.M.G.-M.); (A.C.F.-G.); (C.M.L.-B.); (J.A.A.-V.)
| |
Collapse
|
23
|
Contribution of S. xylosus and L. sakei ssp. carnosus Fermentation to the Aroma of Lupin Protein Isolates. Foods 2021; 10:foods10061257. [PMID: 34205941 PMCID: PMC8227212 DOI: 10.3390/foods10061257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aroma-active compounds of lupin protein isolate and lupin protein isolate fermented with Staphylococcus xylosus and Lactobacillus sakei ssp. carnosus were investigated. The changes in aroma-active compounds were determined by application of aroma extract dilution analysis in combination with gas chromatography-mass spectrometry/olfactometry for identification, and by stable isotope dilution assays for quantification. A total of 30 aroma-active compounds for non-fermented and fermented samples were identified. The aroma profile of LPI fermented with Lactobacillus sakei ssp. carnosus was characterized as roasty and popcorn-like. Staphylococcus xylosus generated cheesy impressions, being in line with the fact that the main aroma compounds acetic acid, butanoic acid, and 2/3-methylbutanoic acid could be identified. Quantification of butanoic acid further confirmed these findings with the highest concentration of 140 mg/kg for LPI fermented with Staphylococcus xylosus. Our study provides insights into how fermentation utilizing different fermentative microbial strains, namely Staphylococcus xylosus and Lactobacillus sakei ssp. carnosus alters the aroma profile of lupin protein isolates. This demonstrates the potential of shaping fermented protein-based foods via targeted microbiological refinement.
Collapse
|
24
|
García Arteaga V, Kraus S, Schott M, Muranyi I, Schweiggert-Weisz U, Eisner P. Screening of Twelve Pea ( Pisum sativum L.) Cultivars and Their Isolates Focusing on the Protein Characterization, Functionality, and Sensory Profiles. Foods 2021; 10:foods10040758. [PMID: 33918162 PMCID: PMC8065828 DOI: 10.3390/foods10040758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Pea protein concentrates and isolates are important raw materials for the production of plant-based food products. To select suitable peas (Pisum sativum L.) for protein extraction for further use as food ingredients, twelve different cultivars were subjected to isoelectric precipitation and spray drying. Both the dehulled pea flours and protein isolates were characterized regarding their chemical composition and the isolates were analyzed for their functional properties, sensory profiles, and molecular weight distributions. Orchestra, Florida, Dolores, and RLPY cultivars showed the highest protein yields. The electrophoretic profiles were similar, indicating the presence of all main pea allergens in all isolates. The colors of the isolates were significantly different regarding lightness (L*) and red-green (a*) components. The largest particle size was shown by the isolate from Florida cultivar, whereas the lowest was from the RLPY isolate. At pH 7, protein solubility ranged from 40% to 62% and the emulsifying capacity ranged from 600 to 835 mL g−1. The principal component analysis revealed similarities among certain pea cultivars regarding their physicochemical and functional properties. The sensory profile of the individual isolates was rather similar, with an exception of the pea-like and bitter attributes, which were significantly different among the isolates.
Collapse
Affiliation(s)
- Verónica García Arteaga
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
- Center of Life and Food Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Correspondence: ; Tel.: +49-8161-491-465
| | - Sonja Kraus
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
| | - Michael Schott
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
| | - Isabel Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
- Institute for Nutritional and Food Sciences, University of Bonn, 53012 Bonn, Germany
| | - Peter Eisner
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (S.K.); (M.S.); (I.M.); (U.S.-W.); (P.E.)
- ZIEL—Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- School of Technology and Engineering, Steinbeis-Hochschule, 12489 Berlin, Germany
| |
Collapse
|