1
|
Muradova M, Proskura A, Canon F, Aleksandrova I, Schwartz M, Heydel JM, Baranenko D, Nadtochii L, Neiers F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023; 12:4484. [PMID: 38137288 PMCID: PMC10742834 DOI: 10.3390/foods12244484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial β-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. β-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.
Collapse
Affiliation(s)
- Mariam Muradova
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Alena Proskura
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Francis Canon
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Irina Aleksandrova
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Mathieu Schwartz
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Jean-Marie Heydel
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Denis Baranenko
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Liudmila Nadtochii
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Fabrice Neiers
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| |
Collapse
|
2
|
Asproudi A, Bonello F, Ragkousi V, Gianotti S, Petrozziello M. Aroma precursors of Grignolino grapes ( Vitis vinifera L.) and their modulation by vintage in a climate change scenario. FRONTIERS IN PLANT SCIENCE 2023; 14:1179111. [PMID: 37600189 PMCID: PMC10436553 DOI: 10.3389/fpls.2023.1179111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Current climatic conditions may cause significant changes in grapevine phenology and maturity dynamics linked often with changes to ecoclimatic indicators. The influence exerted by different meteorological conditions during four consecutive years on the aromatic potential of Grignolino grapes was investigated for the first time. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard exposure and by a different age of the plants. Important differences as far as temperature and rainfall patterns are concerned during ripening were observed among the 4 years. Grape responses to abiotic stress, with particular emphasis on aromatic precursors, were evaluated using gas chromatography coupled to mass spectrometry. The results highlighted significant differences among the vintages for each vineyard in terms of the berry weight and the aromatic precursor concentration. For the grapes of the younger-vine vineyard, the content of aroma compounds showed a different variability among the vintages if compared to the old-vine vineyards. Optimal conditions in terms of temperature and rainfall during the green phase followed by a warm and dry post-veraison period until harvest favored all classes of compounds especially terpenoids mainly in the grapes of the old vines. High-temperature (>30°C) and low-rainfall pattern before veraison led to high benzenoid contents and increased differences among vineyards such as berry weight, whereas cooler conditions favored the terpenoid levels in grapes from southeast-oriented vineyards. In a hilly environment, lack of rainfall and high temperature that lately characterize the second part of berry development seem to favor the grape quality of Grignolino, a cultivar of medium-late ripening, by limiting the differences on bunch ripening, allowing a greater accumulation of secondary metabolites but maintaining at the same time an optimum balance sugar/acidity.
Collapse
Affiliation(s)
- Andriani Asproudi
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Federica Bonello
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Vasiliki Ragkousi
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Silvia Gianotti
- Associazione Monferace, Alessandria, Italy
- Wine Consulting Mario Ronco, Asti, Italy
| | - Maurizio Petrozziello
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| |
Collapse
|
3
|
Li Y, He L, Song Y, Zhang P, Chen D, Guan L, Liu S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC PLANT BIOLOGY 2023; 23:171. [PMID: 37003985 PMCID: PMC10064686 DOI: 10.1186/s12870-023-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fruit aroma is an important quality with respect to consumer preference, but the most important aroma compounds and their genetic regulatory mechanisms remain elusive. RESULTS In this study, we qualitatively analysed volatile compounds in the pulp and skin of five table grape cultivars with three aroma types (muscat, strawberry, and neutral) using solid-phase microextraction gas chromatography/mass spectrometry. We identified 215 aroma compounds, including 88 esters, 64 terpenes, and 29 alcohols, and found significant differences in the number of compounds between the pulp and skin, especially for terpenes. Skin transcriptome data for the five grape cultivars were generated and subjected to aroma compound-gene correlation analysis. The combined transcriptomic analysis and terpene profiling data revealed 20 candidate genes, which were assessed in terms of their involvement in aroma biosynthetic regulation, including 1 VvCYP (VIT_08s0007g07730), 2 VvCCR (VIT_13s0067g00620, VIT_13s0047g00940), 3 VvADH (VIT_00s0615g00010, VIT_00s0615g00030, VIT_ 00s0615g00020), and 1 VvSDR (VIT_08s0040g01200) in the phenylpropanoids synthesis pathway, and 1 VvDXS (VIT_05s0020g02130) and 6 VvTPS (VIT_13s0067g00370, Vitis_vinifera_newGene_3216, VIT_13s0067g00380, VIT_13s0084g00010, VIT_00s0271g00010, and VIT_13s0067g00050) in the methylerythritol phosphate pathway (involved in the production and accumulation of aromatic compounds). Additionally, 2 VvMYB (VIT_17s0000g07950, VIT_03s0063g02620) and 1 VvGATA (VIT_15s0024g00980) transcription factor played important regulatory roles in the accumulation of key biosynthetic precursors of these compounds in grapes. Our results indicated that downstream genes, specifically 1 VvBGLU (VIT_03s0063g02490) and 2 VvUGT (VIT_17s0000g07070, VIT_17s0000g07060) are involved in regulating the formation and volatilization of bound compounds in grapes. CONCLUSIONS The results of this study shed light on the volatile compounds and "anchor points" of synthetic pathways in the pulp and skin of muscat and strawberry grapes, and provide new insight into the regulation of different aromas in grapes.
Collapse
Affiliation(s)
- Yongzhou Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liangliang He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yinhua Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Peng Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Doudou Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Sanjun Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
4
|
Effects of ultraviolet and infrared radiation absence or presence on the aroma volatile compounds in winegrape during veraison. Food Res Int 2023; 167:112662. [PMID: 37087251 DOI: 10.1016/j.foodres.2023.112662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Light environmental factors have been identified to influence grape aromas greatly. Among them, the effect of non-visible light on grape aroma compounds has scarcely been investigated during grape growth and development. In the present study, ultraviolet (UV) or infrared (IR) radiation was eliminated in the grape bunch zone, and the grape bunches were irradiated with UV or IR light in vitro. The effect of UV and IR radiation on the grape aroma profile of the Cabernet Sauvignon variety was assessed by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME GC-MS). A total of 16 aroma compounds were identified in the grape berries under UV radiation absence (UV-) or IR radiation absence (IR-). They were classified into aliphatic alcohols, aliphatic acids, benzenolds, aldehydes, and monoterpenes. A total of 23 aroma compounds were identified in the grape berries under UV radiation presence (UV+) or IR radiation presence (IR+), which were classified into aliphatic alcohols, aliphatic ketones, aliphatic esters, aliphatic acids, monoterpenes, aldehydes, volatile phenols, and other volatiles. Linalool and hexanal aroma compounds were the most responsive to UV- and UV+, according to OPLS-DA analysis. Hexanal was increased by UV- and decreased by UV+, thus was negatively correlated with UV radiation. Benzaldehyde and 2-decanone were also found as the main differing aroma compounds according to VIP scores in the IR- and IR+, respectively. The significant differences of aroma compounds in three UV and IR intensities were also observed by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The content of acetic acid, 2-methylbutanal, and pentanal were reduced with the radiation intensity increase, and the content of 2-3-butanedione, butyl acetate, and 1-hexanol was enhanced, especially with UV radiation. This study improves our understanding of the non-visible light role in volatile aroma compound accumulation and further expands on the useful wavelength for plant growth and development. Our study provides a theoretical basis for non-visible light field management and indoor plant growth applications.
Collapse
|
5
|
Wang X, Sun S, Xu H, Liu J, Wang Y, Song J, Ting P, Nie C, Zhang H. Study on the Composition of Hop Terpenes and Terpenoids by Steam Distillation and Effects on Beer Flavor by an Ale Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xiaochen Wang
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shaokang Sun
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hengyuan Xu
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jinshang Liu
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu Wang
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jialin Song
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Patrick Ting
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cong Nie
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haojun Zhang
- School of Bioengineering, Key Microbiology Laboratory of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
6
|
Glycosidically bound volatile profiles of green and roasted coffee beans and aromatic potential of the spent coffee ground. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Caffrey AJ, Lafontaine S, Dailey J, Varnum S, Lerno LA, Zweigenbaum J, Heymann H, Ebeler SE. Characterization of Humulus lupulus glycosides with porous graphitic carbon and sequential high performance liquid chromatography quadrupole time-of-flight mass spectrometry and high performance liquid chromatography fractionation. J Chromatogr A 2022; 1674:463130. [DOI: 10.1016/j.chroma.2022.463130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
|
8
|
Pater A, Satora P, Zdaniewicz M, Sroka P. The Impact of Dry Yeast Rehydrated in Different Plasma Treated Waters (PTWs) on Fermentation Process and Quality of Beer. Foods 2022; 11:1316. [PMID: 35564041 PMCID: PMC9102840 DOI: 10.3390/foods11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast plays a key role in the production of alcoholic beverages. Effective fermentation requires appropriate conditions to ensure the production of high-quality beer. The paper discusses the effect of dry brewing yeast (Saccharomyces cerevisiae and Saccharomyces pastorianus) after rehydration with water exposed to low-temperature, low-pressure glow plasma (PTW) in the atmosphere of air (PTWAir) and nitrogen (PTWN) in the course of the fermentation process, the formation of volatile compounds and other quality parameters of the finished beer. The obtained results show that the lager yeast strain initiated the process of fermentation faster after rehydration in the presence of PTWAir compared to all of the other treatments. It was observed that PTWAir significantly changed the composition of volatile compounds in the finished beer, especially by increasing the number of terpenes, which are compounds that positively shape the aroma of beer. In the case of PTWN samples, lower alcohol content, real extract, apparent extract and amount of biomass were observed in all analyzed strains.
Collapse
Affiliation(s)
- Aneta Pater
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland; (P.S.); (M.Z.); (P.S.)
| | | | | | | |
Collapse
|