1
|
Cheng F, Chen M, Duan Z, Zou Y, He Y, Zeng F, Yuan Y, Fu T, Tu H, Li R, Li J, Zhou W. Fabrication, characterization, and bioactivity of self-assembled carrier-free colloidal dispersions from Citrus × Limon 'Rosso' essential oil and tea polyphenols. Food Chem 2024; 457:140058. [PMID: 38905825 DOI: 10.1016/j.foodchem.2024.140058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carrier-free nanodelivery systems are fully self-assembled from active ingredients through interactions, offering the advantages of green, safe, and large-scale manufacturing. To improve the dispersion of Citrus × limon 'Rosso' peel essential oil (CEO) in water and boost the biological activity of CEO and tea polyphenols (TP), self-assembled CEO-TP colloidal dispersions (CEO-TP Colloids) were fabricated through sonication without surfactants or carriers. The optimal CEO and TP concentrations in the CEO-TP Colloids were determined to be 10.0 and 20.0 mg/mL by particle size and stability analyzer, respectively. The CEO self-assembled with TP to form spherical nanoparticles through hydrophobic and hydrogen-bonding interactions, whereas the CEO in CEO-TP Colloids weakened TP intramolecular aggregation. Meanwhile, the CEO-TP Colloids showed synergistic effects with better antibacterial, cellular antioxidant, and anti-inflammatory activities than single components. This study opens up the possibility of carrier-free co-delivery of hydrophobic and hydrophilic active components developed into food-grade formulations with multiple bioactivities.
Collapse
Affiliation(s)
- Fangying Cheng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650000, China
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tiaokun Fu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Hao Tu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
2
|
Li C, Chen L, McClements DJ, Peng X, Xu Z, Meng M, Ji H, Qiu C, Long J, Jin Z. Encapsulation of polyphenols in protein-based nanoparticles: Preparation, properties, and applications. Crit Rev Food Sci Nutr 2024; 64:11341-11355. [PMID: 37486163 DOI: 10.1080/10408398.2023.2237126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphenols have a variety of physiological activities, including antioxidant, antimicrobial, and anti-inflammatory properties. However, their applications are often limited because due to the instability of polyphenols. Encapsulation technologies can be employed to overcome these problems and increase the utilization of polyphenols. In this article, the utilization of protein-based nanoparticles for encapsulating polyphenols is reviewed due to their good biocompatibility, biodegradability, and functional attributes. Initially, the various kinds of animal and plant proteins available for forming protein nanoparticles are discussed, as well as the fabrication methods that can be used to assemble these nanoparticles. The molecular interaction mechanisms between proteins and polyphenols are then summarized. Applications of protein-based nanoparticles for encapsulating polyphenols are then discussed, including as nutrient delivery systems, in food packaging materials, and in the creation of functional foods. Finally, areas where further research is need on the development, characterization, and application of protein-based polyphenol-loaded nanoparticles are highlighted.
Collapse
Affiliation(s)
- Cuicui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Cao F, Lu S. OSA modified porous starch acts as an efficient carrier for loading and sustainedly releasing naringin. Food Chem 2024; 463:141176. [PMID: 39276539 DOI: 10.1016/j.foodchem.2024.141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
To select an efficient carrier for loading and sustainedly releasing naringin (NAR), complexes of porous starch (PS) and NAR (PS-NAR) as well as those of octenyl succinic anhydride (OSA) esterified PS and NAR (OSAPS-NAR) with different degree of substitution (DS) were prepared by an ultrasonic method with an ethanol solution. The micro-morphological features, structural and thermal properties of complexes and their constituents were characterized, and in vitro release rate and kinetic of NAR from complexes were investigated. The findings revealed that NAR was successfully loaded in PS/OSAPS in an amorphous form, and the NAR's loading efficiency improved as DS increased, reaching 86.85 % at DS 0.0427. NAR cumulative release rate from the complexes in simulated digestion fluids was much higher than that of free (unloaded) NAR, but decreased as DS increased. NAR's in vitro release from complexes mainly depended on the carrier rather than NAR itself, and OSAPS with higher DS had stronger protection and slower release effect on NAR. The results would provide a new means for starch-based carrier construction to develop an efficient delivery and sustainedly releasing system for NAR, thus broadening the application ranges both for modified starch and citrus flavonoids such as NAR.
Collapse
Affiliation(s)
- Feng Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Laconi A, Cecconello A, Molinari S, Rilievo G, Cencini A, Tonolo F, Krystofova A, Majethia HN, Tolosi R, Schiavon E, Nicoletto C, Piccirillo A, Vianello F, Magro M. Highly Specific Polyphenolic Colloids as Alternatives to Antimicrobials in Livestock Production. Int J Mol Sci 2024; 25:9363. [PMID: 39273312 PMCID: PMC11395071 DOI: 10.3390/ijms25179363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The dispersion of antibiotics in livestock farming represents a health concern worldwide, contributing to the spread of antimicrobial-resistant bacteria through animals, the environment, and humans. Phenolic compounds could be alternatives to antibiotics, once drawbacks such as their low water solubility, bioavailability, and reduced stability are overcome. Although nano- or micro-sized formulations could counter these shortcomings, they do not represent cost-effective options. In this study, three phenolic compounds, obtained from wood-processing manufacturers, were characterized, revealing suitable features such as their antioxidant activity, size, and chemical and colloidal stability for in-field applications. The minimum inhibitory concentration (MIC) of these colloidal suspensions was measured against six bacterial strains isolated from livestock. These particles showed different inhibition behaviors: Colloidal chestnut was effective against one of the most threatening antibiotic-resistant pathogens, i.e., S. aureus, but ineffective toward E. coli. Instead, colloidal pine showed a weak effect on S. aureus but specificity toward E. coli. The present proof-of-concept points at colloidal polyphenols as valuable alternatives for antimicrobial substitutes in the livestock context.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Simone Molinari
- Department of Geosciences and CIRCe Centre, University of Padua, Via G. Gradenigo 6, 35129 Padua, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Antonie Krystofova
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Hardik Nilesh Majethia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Eliana Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
5
|
Wang X, Chen C, Bao Y, Wang Y, Leonidovna Strakh Y. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Food Res Int 2024; 189:114547. [PMID: 38876606 DOI: 10.1016/j.foodres.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.
Collapse
Affiliation(s)
- Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yana Leonidovna Strakh
- Belarusian State Technological University, Minsk, Belarus; Central Botanical Garden of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
6
|
Qu Y, Li X, Chen X, Li J, Yu Z, Shen R. Novel pH-sensitive gellan gum-ε-polylysine hydrogel microspheres for sulforaphene delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39045717 DOI: 10.1002/jsfa.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND This study aimed to improve the stability and utilization of sulforaphene (SFE) and to enhance the intestinal stability and pH-sensitive release of SFE in the gastrointestinal tract. To achieve this objective, calcium chloride (CaCl2) was used as a crosslinking agent to fabricate novel SFE-loaded gellan gum (GG)-ε-polylysine (ε-PL) pH-sensitive hydrogel microspheres by using the ionic crosslinking technique. RESULTS The molecular docking results of GG, ε-PL, and SFE were good and occurred in the natural state. The loading efficiency (LE) of all samples was above 70%. According to the structural characterization results, GG and ε-PL successfully embedded SFE in a three-dimensional network structure through electrostatic interaction. The swelling characteristics and in vitro release results revealed that the microspheres were pH-sensitive, and SFE was mainly retained inside the hydrogel microsphere in the stomach, and subsequently released in the intestine. The result of cytotoxicity assay showed that the hydrogel microspheres were non-toxic and had an inhibitory effect on human colon cancer Caco-2 cells. CONCLUSION Thus, the hydrogel microspheres could improve SFE stability and utilization and achieve the intestinal targeted delivery of SFE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Qu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiuxia Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiaoqiao Chen
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhangfu Yu
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| | - Ronghu Shen
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| |
Collapse
|
7
|
Wang L, Lu S, Liu Y, Lu H, Zheng M, Zhou Z, Cao F, Yang Y, Fang Z. Differential impacts of porous starch versus its octenyl succinic anhydride-modified counterpart on naringin encapsulation, solubilization, and in vitro release. Int J Biol Macromol 2024; 273:132746. [PMID: 38821310 DOI: 10.1016/j.ijbiomac.2024.132746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The aim of this work was to evaluate the potentials of porous starch (PS) and its octenyl succinic anhydride modified product (OSAPS) as efficient carriers for loading naringin (NA), focusing on encapsulation efficiency (EE, the percentage of adsorbed naringin relative to its initial amount), drug loading (DL, the percentage of naringin in the complex), structural alterations, solubilization and in vitro release of NA using unmodified starch (UMS) and NA as controls. Both the pore diameter and SBET value of PS decreased after esterification with OSA, and a thinner strip-shaped NA (∼145 nm) was observed in the OSAPS-NA complex and (∼150 nm) in the PS-NA complex. OSAPS exhibited reduced short-range ordered structure, as indicated by a lower R1047/1022 (0.73) compared to PS (0.77). Meanwhile, lowest crystallinity (12.81 %) of NA was found in OSAPS-NA. OSAPS-NA exhibited higher EE and DL for NA than PS-NA and a significant increase in NA saturated solubility in deionized water (by 11.63-fold) and simulated digestive fluids (by 24.95-fold) compared to raw NA. OSAPS contained higher proportions of slowly digestible starch and exhibited a lower digestion rate compared to PS, resulting in a longer time for NA release from its complex during the digestion.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| |
Collapse
|
8
|
Huang S, Yao X, Cao B, Zhang N, Soladoye OP, Zhang Y, Fu Y. Encapsulation of zingerone by self-assembling peptides derived from fish viscera: Characterization, interaction and effects on colon epithelial cells. Food Chem X 2024; 22:101506. [PMID: 38855095 PMCID: PMC11157225 DOI: 10.1016/j.fochx.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of the present work was to encapsulate zingerone (a bioactive compound from ginger) by self-assembling peptides derived from fish viscera. The encapsulation conditions were investigated and the structure of fish peptides-zingerone complex was characterized. The interaction between zingerone and fish peptides was investigated using fluorescence spectroscopy. Further research was performed on the in vitro release of zingerone and fish peptide-zingerone as well as their antiproliferative effects on colon epithelial Caco-2 cells. The results demonstrated that zingerone can be successfully encapsulated by self-assembling peptides derived from fish viscera with high encapsulation efficiency and loading capacity. Furthermore, transmission electron microscope and confocal laser scanning microscope observations revealed the successful encapsulation of zingerone by fish viscera peptides. In addition, in vitro release and antiproliferative activity against Caco-2 cells can be significantly increased by encapsulating zingerone via peptide self-assembly. The current study advances knowledge of encapsulation of bioactive compounds through peptide self-assembly.
Collapse
Affiliation(s)
- Sirong Huang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xintong Yao
- Department of Hematology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Boya Cao
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
9
|
Pearce K, Cairncross SI, Benjeddou M. Liposomal-Naringenin Radiosensitizes Triple-Negative Breast Cancer MDA-MB-231 Cells In Vitro. IET Nanobiotechnol 2024; 2024:3786627. [PMID: 39144410 PMCID: PMC11324360 DOI: 10.1049/2024/3786627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 08/16/2024] Open
Abstract
Background Naringenin has shown great promise in the realm of cancer therapeutics, demonstrating excellent cytotoxic action toward cancer cells and the enhanced effects of radiation therapy in vitro. However, the medicinal value of naringenin is severely limited clinically by poor bioavailability. Thus, multiple drug-delivery strategies for overcoming this limitation have been developed, of which liposomes are considered the most suitable due to their amphiphilic, modifiable, and biocompatible characteristics. In this study, we investigated the role of naringenin and liposomal-delivered naringenin as adjuncts to radiotherapy in the MDA-MB-231 triple-negative breast cancer cell line in vitro. Materials and Methods Liposomal-naringenin was synthesized by thin-film hydration and extrusion and was characterized by spectrophotometry, dynamic light scattering, and zeta potential. The effects of free-from naringenin and liposomal-naringenin were evaluated toward MDA-MB-231 cell viability when combined with varying doses of radiation. Additionally, cell growth patterns, morphology, and colony formation were evaluated. Results The analysis demonstrated IC50 values of 387.5 and 546.6 µg/ml for naringenin and liposomal-naringenin, respectively. Naringenin and liposomal-naringenin significantly lowered cell viability, proliferation, and colony formation dose-dependently, as compared to radiation in isolation. Conclusion The findings presented herein concur with previous accounts of the radiosensitizing potential of naringenin and further highlight the considerable biomedical application of liposomal-naringenin within the realm of radiotherapy.
Collapse
Affiliation(s)
- Keenau Pearce
- Precision Medicine UnitDepartment of BiotechnologyUniversity of the Western Cape, Cape Town, South Africa
| | - Samantha I. Cairncross
- Precision Medicine UnitDepartment of BiotechnologyUniversity of the Western Cape, Cape Town, South Africa
| | - Mongi Benjeddou
- Precision Medicine UnitDepartment of BiotechnologyUniversity of the Western Cape, Cape Town, South Africa
| |
Collapse
|
10
|
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers (Basel) 2024; 16:1559. [PMID: 38891503 PMCID: PMC11174876 DOI: 10.3390/polym16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In the food industry context, where fresh cheese stands out as a highly perishable product with a short shelf life, this study aimed to extend its preservation through multi-layer edible coatings. The overall objective was to analyze the biaxial behavior and texture of fresh cheese coated with nanoliposomes encapsulating grape seed tannins (NTs) and polysaccharides (hydroxypropyl methylcellulose; HPMC and kappa carrageenan; KC) using immersion and spray methods, establishing comparisons with uncoated cheeses and commercial samples, including an accelerated shelf-life study. NT, HPMC, and KC were employed as primary components in the multi-layer edible coatings, which were applied through immersion and spray. The results revealed significant improvements, such as a 20% reduction in weight loss and increased stability against oxidation, evidenced by a 30% lower peroxide index than the uncoated samples. These findings underscore the effectiveness of edible coatings in enhancing the quality and extending the shelf life of fresh cheese, highlighting the innovative application of nanoliposomes and polysaccharide blends and the relevance of applying this strategy in the food industry. In conclusion, this study provides a promising perspective for developing dairy products with improved properties, opening opportunities to meet market demands and enhance consumer acceptance.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Valeria Verdugo
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| |
Collapse
|
11
|
Chen X, Qin H, Zhai JM, Wang JH, Zhang YH, Chen Y, Wu YC, Li HJ. Co-encapsulation of curcumin and anthocyanins in bovine serum album-fucoidan nanocomplex with a two-step pH-driven method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3100-3112. [PMID: 38072653 DOI: 10.1002/jsfa.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Curcumin (CUR) and anthocyanins (ACN) are recommended due to their bioactivities. However, their nutritional values and health benefits are limited by their low oral bioavailability. The incorporation of bioactive substances into polysaccharide-protein composite nanoparticles is an effective way to enhance their bioavailability. Accordingly, this study explored the fabrication of bovine serum albumin (BSA)-fucoidan (FUC) hybrid nanoparticles using a two-step pH-driven method for the delivery of CUR and ACN. RESULTS Under a 1:1 weight ratio of BSA to FUC, the point of zero charge moved from pH ⁓ 4.7 for BSA to around 2.5 for FUC-coated BSA, and the formation of BSA-FUC nanocomplex was pH-dependent by showing the maximum CUR emission wavelength shifting from 546 nm (CUR-loaded BSA-FUC at pH 4.7) and 544 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 4.7) to 540 nm (CUR-loaded BSA-FUC at pH 6.0) and 539 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 6.0). Elevated concentrations of NaCl from 0 to 2.5 mol L-1 caused particle size increase from about 250 to about 800 nm, but showing no effect on the encapsulation efficiency of CUR. The CUR and ACN entrapped, respectively, in the inner and outer regions of the BSA-FUC nanocomplex were released at different rates. After incubation for 10 h, more than 80% of ACN was released, while less than 25% of CUR diffused into the receiving medium, which fitted well to Logistic and Weibull models. CONCLUSION In summary, the BSA-FUC nanocomposites produced by a two-step pH-driven method could be used for the co-delivery of hydrophilic and hydrophobic nutraceuticals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Hao Qin
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Jia-Ming Zhai
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Jun-Hu Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Yu-He Zhang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Yang Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
12
|
Bian D, Pilehvar Y, Kousha S, Bi J. Bioactive Wound Healing 3D Structure Based on Chitosan Hydrogel Loaded with Naringin/Cyclodextrin Inclusion Nanocomplex. ACS OMEGA 2024; 9:10566-10576. [PMID: 38463294 PMCID: PMC10918653 DOI: 10.1021/acsomega.3c08785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024]
Abstract
The current assay aimed to fabricate and analyze a potent wound healing structure based on a naringin (Nar)/β-cyclodextrin (β-CD)-loaded chitosan hydrogel. Using the simulation studies, we assessed the interactions among the Nar, β-CD, and the formation of the inclusion complex. Then, the formation of the hydrogel nanocomplex was simulated and evaluated using the in silico methods. The results showed that after optimization of the structures by DMol3 based on DFT-D, the total energies of Nar, GP, CD, and β-CD were calculated at -2100.159, -912.192, -3778.370, and -4273.078 Ha, respectively. The encapsulation energy of Nar on β-CD in the solvent phase was calculated at -93.626 kcal/mol, and the Nar structure was located inside β-CD in solution. The negative interaction energy value for the encapsulation of Nar on β-CD suggests the exothermic adsorption process and a stable structure between Nar and β-CD. Monte Carlo method was applied to obtain adsorption of CS/GP on Nar/β-CD. Its value of the obtained interaction energy was calculated at -1.423 × 103 kcal/mol. The characterization confirmed the formation of a Nar/β-CD inclusion complex. The Zeta potential of the pristine β-CD changed from -4.60 ± 1.1 to -17.60 ± 2.34 mV after interaction with Nar, and the heightened surface negativity can be attributed to the existence of electron-rich naringin molecules, as well as the orientation of the hydroxyl (OH) group of the β-CD toward the surface in an aqueous solution. The porosity of the fabricated hydrogels was in the range of 70-90% and during 14 days around 47.0 ± 3.1% of the pure hydrogel and around 56.4 ± 5.1 of hydrogel nanocomposite was degraded. The MTT assay showed that the hydrogels were biocompatible, and the wound contraction measurement (in an animal model) showed that the closure of the induced wound in the hydrogel nanocomposite treatment was faster than that of the control group (wound without treatment). The results of this study indicate that the developed bioactive wound healing 3D structure, which is composed of a chitosan hydrogel containing a Nar/β-CD inclusion nanocomplex, has potential as an effective material for wound dressing applications.
Collapse
Affiliation(s)
- Donghui Bian
- Department
of Burns and Plastic Surgery, 960 Hospital
of the People’s Liberation Army, Jinan 250031, China
| | - Younes Pilehvar
- Cellular
and Molecular Research Center, Cellular and Molecular Medicine Research
Institute, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Sanaz Kousha
- Department
of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jianhai Bi
- Department
of Plastic and Aesthetic Surgery, Shandong
Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Medical
Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical
Sciences, Jinan 250021, Shandong, China
| |
Collapse
|
13
|
Cui Q, Song X, Zhou L, Dong J, Wei Y, Liu Z, Wu X. Fabrication of resveratrol-loaded soy protein isolate-glycyrrhizin nanocomplex for improving bioavailability via pH-responsive hydrogel properties. Int J Biol Macromol 2024; 258:128950. [PMID: 38143068 DOI: 10.1016/j.ijbiomac.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Resveratrol (RES) is a functional polyphenol that suffers from low water solubility and poor bioavailability. A novel RES-loaded soy protein isolate-dipotassium glycyrrhizinate (SPI-DG) nanocomplex (RES@SPI-DG) was designed and evaluated in this study. RES@SPI-DG was prepared using a simple but novel self-assembly ultrasonic-assisted pH-driven method. The interactions between RES and SPI-DG were non-covalent bonds, including hydrophobic interactions, hydrogen bonds, and van der Waals interactions. RES@SPI-DG exhibited high encapsulation efficiency (97.60 ± 0.38 %) and loading capacity (8.74 ± 0.03 %) of RES with a uniform small size (68.39 ± 1.10 nm). RES in RES@SPI-DG was in an amorphous state and demonstrated a 24-h apparent solubility 482.53-fold higher than bare RES. RES@SPI-DG also showed strong in vitro antioxidant properties. The pH-responsive hydrogel character of SPI-DG makes it an effective intestine-targeted delivery system that could retard the release of RES in a simulated stomach and accelerate it in a simulated intestine. In animal experiments, the bioavailability of RES@SPI-DG was 5.17 times higher than that of bare RES, and the biodistribution was also significantly improved. RES@SPI-DG demonstrated a strong hepatoprotective effect against overdose acetaminophen-induced liver injury. The SPI-DG complex might be a promising nano-platform for enhancing the bioavailability and efficacy of hydrophobic polyphenols such as RES.
Collapse
Affiliation(s)
- Qingchen Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China
| | - Xiaoying Song
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Liping Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Junjie Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China
| | - Zongtao Liu
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China.
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Monasterio A, Osorio FA. Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles. Foods 2024; 13:414. [PMID: 38338549 PMCID: PMC10855365 DOI: 10.3390/foods13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Grape seeds are an excellent source of flavonoids and tannins with powerful antioxidant properties. However, the astringency of tannins limits their direct incorporation into food. To overcome this challenge, we investigated the encapsulation of grape seed tannins within nanoliposomes formed by ultrasound cycling. We characterized the nanoliposomes' physicochemical properties, including encapsulation efficiency, antioxidant activity, stability, microstructure, and rheological properties. Our findings reveal that the nanoliposomes exhibited excellent stability under refrigerated conditions for up to 90 days with a mean particle size of 228 ± 26 nm, a polydispersity index of 0.598 ± 0.087, and a zeta potential of -41.6 ± 1.30 mV, maintaining a spherical multilamellar microstructure. Moreover, they displayed high antioxidant activity, with encapsulation efficiencies of 79% for epicatechin and 90% for catechin. This innovative approach demonstrates the potential of using ultrasound-assisted nanoliposome encapsulation to directly incorporate grape seed tannins into food matrices, providing a sustainable and efficient method for enhancing their bioavailability and functionality.
Collapse
Affiliation(s)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago—Chile, USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
15
|
Liu ST, Zha KJ, Li PJ, Gao JB, Zhang YG. Protective effect of naringin against radiation-induced heart disease in rats via Sirt1/NF-κB signaling pathway and endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14453. [PMID: 38230793 DOI: 10.1111/cbdd.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
This study was designed to explore the protective effect and mechanism of naringin (NG) on radiation-induced heart disease (RIHD) in rats. Rats were divided into four x-ray (XR) irradiation groups with different absorbed doses (0/10/15/20 Gy), or into three groups (control, XR, and XR + NG groups). Subsequently, the ultrasonic diagnostic apparatus was adopted to assess and compare the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter at end diastole (LVIDd), and left ventricular internal diameter at end systole (LVIDs) in rats. Hematoxylin-eosin (H&E) staining and Masson staining were applied to detect the pathological damage and fibrosis of heart tissue. Western blot was used to measure the expression levels of myocardial fibrosis-related proteins, endoplasmic reticulum stress-related proteins, and Sirt1 (silent information regulator 1)/NF-κB (nuclear factor kappa-B) signaling pathway-related proteins in cardiac tissues. Additionally, enzyme-linked immunosorbent assay was utilized to detect the activities of pro-inflammatory cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in cardiac tissue. The results showed that NG treatment significantly attenuated the 20 Gy XR-induced decline of LVEF and LVFS and the elevation of LVIDs. Cardiac tissue damage and fibrosis caused by 20 Gy XR were significant improved after NG treatment. Meanwhile, in rats irradiated by XR, marked downregulation was identified in the expressions of fibrosis-related proteins (Col I, collagen type I; α-SMA, α-smooth muscle actin; and TGF-β1, transforming growth factor-beta 1) and endoplasmic reticulum stress-related proteins (GRP78, glucose regulatory protein 78; CHOP, C/EBP homologous protein; ATF6, activating transcription factor 6; and caspase 12) after NG treatment. Moreover, NG treatment also inhibited the production of pro-inflammatory cytokines [interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1)], reduced the expression of MDA, and promoted the activities of SOD and CAT. Also, NG treatment promoted Sirt1 expression and inhibited p65 phosphorylation. Collectively, XR irradiation induced cardiac injury in rats in a dose-dependent manner. NG could improve the cardiac injury induced by XR irradiation by inhibiting endoplasmic reticulum stress and activating Sirt1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Ji Zha
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Jie Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Gao Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13:19110. [PMID: 37925581 PMCID: PMC10625596 DOI: 10.1038/s41598-023-46215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.
Collapse
Affiliation(s)
- Randa Hanie Awadeen
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
17
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
18
|
Karaaslan A. Nano- and Micro-Encapsulation of Long-Chain-Fatty-Acid-Rich Melon Seed Oil and Its Release Attributes under In Vitro Digestion Model. Foods 2023; 12:2371. [PMID: 37372581 DOI: 10.3390/foods12122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Melon seed oil (MSO) possesses plenty of long-chain fatty acids (LFCAs, oleic-linoleic acid 90%), remarkable antioxidant activity (DPPH (0.37 ± 0.40 µmol TE/g), ABTS (4.98 ± 0.18 µmol TE/g), FRAP (0.99 ± 0.02 µmol TE/g), and CUPRAC (4.94 ± 0.11 µmol TE/g)), and phenolic content (70.14 ± 0.53 mg GAE/100 g). Encapsulation is a sound technology to provide thermal stability and controlled release attributes to functional compounds such as plant seed oil. Nano-sized and micro-sized capsules harboring MSO were generated by utilizing thin film dispersion, spray drying, and lyophilization strategies. Fourier infrared transform analysis (FTIR), scanning electron microscopy (SEM), and particle size analyses were used for the authentication and morphological characterization of the samples. Spray drying and lyophilization effectuated the formation of microscale capsules (2660 ± 14 nm, 3140 ± 12 nm, respectively), while liposomal encapsulation brought about the development of nano-capsules (282.30 ± 2.35 nm). Nano-liposomal systems displayed significant thermal stability compared to microcapsules. According to in vitro release studies, microcapsules started to release MSO in simulated salivary fluid (SSF) and this continued in gastric (SGF) and intestinal (SIF) environments. There was no oil release for nano-liposomes in SSF, while limited release was observed in SGF and the highest release was observed in SIF. The results showed that nano-liposomal systems featured MSO thermal stability and controlled the release attributes in the gastrointestinal system (GIS) tract.
Collapse
Affiliation(s)
- Asliye Karaaslan
- Vocational School of Organized Industrial Zone, Food Processing Programme, Harran University, 63300 Sanliurfa, Turkey
| |
Collapse
|
19
|
Basyigit B. Designing Nanoliposome-in-Natural Hydrogel Hybrid System for Controllable Release of Essential Oil in Gastrointestinal Tract: A Novel Vehicle. Foods 2023; 12:foods12112242. [PMID: 37297484 DOI: 10.3390/foods12112242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, thyme essential oil (essential oil to total lipid: 14.23, 20, 25, and 33.33%)-burdened nanoliposomes with/without maltodextrin solution were infused with natural hydrogels fabricated using equal volumes (1:1, v/v) of pea protein (30%) and gum Arabic (1.5%) solutions. The production process of the solutions infused with gels was verified using FTIR spectroscopy. In comparison to the nanoliposome solution (NL1) containing soybean lecithin and essential oil, the addition of maltodextrin (molar ratio of lecithin to maltodextrin: 0.80, 0.40, and 0.20 for NL2, NL3, and NL4, respectively) to these solutions led to a remarkable shift in particle size (487.10-664.40 nm), negative zeta potential (23.50-38.30 mV), and encapsulation efficiency (56.25-67.62%) values. Distortions in the three-dimensional structure of the hydrogel (H2) constructed in the presence of free (uncoated) essential oil were obvious in the photographs when compared to the control (H1) consisting of a pea protein-gum Arabic matrix. Additionally, the incorporation of NL1 caused visible deformations in the gel (HNL1). Porous surfaces were dominant in H1 and the hydrogels (HNL2, HNL3, and HNL4) containing NL2, NL3, and NL4 in the SEM images. The most convenient values for functional behaviors were found in H1 and HNL4, followed by HNL3, HNL2, HNL1, and H2. This hierarchical order was also valid for mechanical properties. The prominent hydrogels in terms of essential oil delivery throughout the simulated gastrointestinal tract were HNL2, HNL3, and HNL4. To sum up, findings showed the necessity of mediators such as maltodextrin in the establishment of such systems.
Collapse
Affiliation(s)
- Bulent Basyigit
- Food Engineering Department, Engineering Faculty, Harran University, 63000 Sanliurfa, Turkey
| |
Collapse
|
20
|
Choi YS, Lee JS, Lee HG. Nanoencapsulation of Grapefruit Seed Extract and Cinnamon Oil for Oral Health: Preparation, In Vitro, and Clinical Antimicrobial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5646-5654. [PMID: 36988548 DOI: 10.1021/acs.jafc.2c05518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study aimed to formulate mucoadhesive antimicrobial nanoparticles using natural antimicrobials and biopolymers for oral health and verify their antimicrobial activity in clinical studies. A combination of grapefruit seed extract and cinnamon oil (GCN) and chitosan/carrageenan (CS/CR) were selected as synergistic antimicrobial combinations and mucoadhesive wall materials for nanoparticles, respectively. GCN nanoparticles (NPs; size = 357 nm and polydispersity index = 0.188) prepared by ionic gelation between CS and CR exhibited synergistic antimicrobial activity between grapefruit seed extract and cinnamon oil and significantly higher antimicrobial activity against Streptococcus mutans and sobrinus than free GCN in a time-kill assay. The clinical antibacterial activity of GCN was significantly increased and sustained by nanoencapsulation in the mouth-rinse test and GCN NP-treated drinking yogurt. These results suggest that GCN-loaded CS/CR nanoencapsulation is a promising technique that can inhibit oral bacteria with or without the presence of other food ingredients.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
21
|
Safaeian Laein S, Katouzian I, Mozafari MR, Farnudiyan-Habibi A, Akbarbaglu Z, Shadan MR, Sarabandi K. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit Rev Food Sci Nutr 2023; 64:7728-7747. [PMID: 36950963 DOI: 10.1080/10408398.2023.2191281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists' findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nano-Encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khashayar Sarabandi
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
22
|
Stabrauskiene J, Marksa M, Ivanauskas L, Viskelis P, Viskelis J, Bernatoniene J. Citrus × paradisi L. Fruit Waste: The Impact of Eco-Friendly Extraction Techniques on the Phytochemical and Antioxidant Potential. Nutrients 2023; 15:nu15051276. [PMID: 36904275 PMCID: PMC10005199 DOI: 10.3390/nu15051276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus fruits have been the subject of extensive research over the years due to their impressive antioxidant properties, the health benefits of flavanones, and their potential use in the prevention and treatment of chronic diseases. Grapefruit have been shown in studies to improve overall health, with numerous potential benefits, including improved heart health, reduced risk of certain cancers, improved digestive health, and improved immune system function. The development of cyclodextrin complexes is an exciting approach to increasing the content of flavanones such as naringin and naringenin in the extraction medium while improving the profile of beneficial phenolic compounds and the antioxidant profile. This research aims to optimize the extraction conditions of the flavanones naringin and naringenin with additional compounds to increase their yield from different parts of grapefruit (Citrus × paradisi L.) fruits, such as albedo and segmental membranes. In addition, the total content of phenolic compounds, flavonoids, and the antioxidant activity of ethanolic extracts produced conventionally and with -cyclodextrin was examined and compared. In addition, antioxidant activity was measured using the radical scavenging activity assay (ABTS), radical scavenging activity assay (DPPH), and ferric reducing antioxidant power (FRAP) methods. The yield of naringin increased from 10.53 ± 0.52 mg/g to 45.56 ± 5.06 mg/g to 51.11 ± 7.63 mg/g of the segmental membrane when cyclodextrins (α, β-CD) were used; naringenin increased from 65.85 ± 10.96 μg/g to 91.19 ± 15.19 μg/g of the segmental membrane when cyclodextrins (α, β-CD) were used. Furthermore, the results showed that cyclodextrin-assisted extraction had a significant impact in significantly increasing the yield of flavanones from grapefruit. In addition, the process was more efficient and less expensive, resulting in higher yields of flavanones with a lower concentration of ethanol and effort. This shows that cyclodextrin-assisted extraction is an excellent method for extracting valuable compounds from grapefruit.
Collapse
Affiliation(s)
- Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, LT-54333 Babtai, Lithuania
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, LT-54333 Babtai, Lithuania
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6006-3349
| |
Collapse
|
23
|
Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM. Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 2023; 64:6498-6511. [PMID: 36728840 DOI: 10.1080/10408398.2023.2170318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Andishmand
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade De Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College Of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Antioxidant, Anti-Inflammatory and Attenuating Intracellular Reactive Oxygen Species Activities of Nicotiana tabacum var. Virginia Leaf Extract Phytosomes and Shape Memory Gel Formulation. Gels 2023; 9:gels9020078. [PMID: 36826248 PMCID: PMC9956251 DOI: 10.3390/gels9020078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Oxidative stress is one of the major causes of skin aging. In this study, the shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts. The extracts were loaded in the phytosomes by a solvent displacement method. The physical and chemical characteristics and stability of phytosomes were evaluated by dynamic light scattering and phytochemistry, respectively. The in vitro antioxidant activity and intracellular reactive oxygen species reduction of phytosomes and/or extracts were investigated by the DPPH and ABTS radical scavenging assays, FRAP assay, and DCFH-DA fluorescent probe. The cytotoxicity and anti-inflammatory activity of VDL and VFL phytosomes were studied by an MTT and a nitric oxide assay, respectively. Here, we first reported the total phenolic content in the dry leaf extract of N. tabacum var. Virginia was significantly greater than that of the fresh leaf extract. The HPLC analysis results revealed that VDL and VFL extracts contained 4.94 ± 0.04 and 3.13 ± 0.01 µg/mL of chlorogenic acid and 0.89 ± 0.00 and 0.24 ± 0.00 µg/mL of rutin, respectively. The phytosomes of the VDL and VFL extracts displayed stable size, polydispersity index, zeta potential values, and good chemical stability. VDL and VDL phytosomes showed higher phenolic and flavonoid contents which showed stronger DPPH and ABTS radical scavenging effects and reduced the intracellular ROS. The results suggested that the phenolic compounds are the main factor in their antioxidant activity. Both VDL and VFL phytosomes inhibited nitric oxide production induced by LPS, suggesting the anti-inflammatory activity of the phytosomes. The shape memory gel containing VDL and VFL phytosomes had good physical stability in terms of pH and viscosity. The VDL and VFL phytosomes dispersed in the shape memory gels can be considered as a promising therapeutic delivery system for protecting the skin from oxidation and reactive oxygen species.
Collapse
|
25
|
Chen M, Li R, Lu X, Dai Y, Chen T, Xing Y, Xue L, Duan Z, Zhou W, Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem 2023; 398:133953. [DOI: 10.1016/j.foodchem.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
26
|
Lu R, Yu RJ, Yang C, Wang Q, Xuan Y, Wang Z, He Z, Xu Y, Kou L, Zhao YZ, Yao Q, Xu SH. Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity. Drug Deliv 2022; 29:3256-3269. [PMID: 36321805 PMCID: PMC9635473 DOI: 10.1080/10717544.2022.2139431] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute liver injury is a common clinical disease, which easily leads to liver failure and endangers life, seriously threatening human health. Naringenin is a natural flavonoid that holds therapeutic potential against various liver injuries; however it has poor water solubility and bioavailability. In this study, we aimed to develop naringenin-loaded bovine serum albumin nanoparticles (NGNPs) and to evaluate their hepatoprotective effect and underlying mechanisms against acetaminophen overdose toxicity. In vitro data indicated that NGNPs significantly increased the drug solubility and also more effectively protected the hepatocyte cells from oxidative damage during hydrogen peroxide exposure or lipopolysaccharide (LPS) stimulation. In vivo results confirmed that NGNPs showed an enhanced accumulation in the liver tissue. In the murine model of acetaminophen-induced hepatotoxicity, NGNPs could effectively alleviate the progression of acute liver injury by reducing drug overdose-induced levels of oxidative stress, inflammation and apoptosis in hepatocytes. In conclusion, NGNPs has strong hepatoprotective effects against acetaminophen induced acute liver injury.
Collapse
Affiliation(s)
- Ruijie Lu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Run-Jie Yu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunhui Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunxia Xuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhimin He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,CONTACT Qing Yao Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, University Town, Chashan, Wenzhou 325000, Zhejiang, China
| | - Shi-Hao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Shi-Hao Xu Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Sharma S, Hafeez A, Usmani SA. Nanoformulation approaches of naringenin- an updated review on leveraging pharmaceutical and preclinical attributes from the bioactive. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022; 14:1771. [PMID: 36145519 PMCID: PMC9500671 DOI: 10.3390/pharmaceutics14091771] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Flyde Road, Preston PR1 2HE, UK
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No 11, Knowledge Park-II, Greater Noida 201308, India
| |
Collapse
|
29
|
Homayoonfal M, Mousavi M, Kiani H, Askari G, Desobry S, Arab-Tehrany E. Modifying the Stability and Surface Characteristic of Anthocyanin Compounds Incorporated in the Nanoliposome by Chitosan Biopolymer. Pharmaceutics 2022; 14:1622. [PMID: 36015248 PMCID: PMC9414094 DOI: 10.3390/pharmaceutics14081622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
In this study, a novel approach was investigated to improve the stability of anthocyanin compounds (AC) by encapsulating them in nanoliposomes resulting from rapeseed lecithin alongside chitosan coating. The results indicate that the particle size, electrophoretic mobility, encapsulation efficiency, and membrane fluidity of nanoliposomes containing anthocyanin compounds were 132.41 nm, -3.26 µm·cm/V·S, 42.57%, and 3.41, respectively, which changed into 188.95 nm, +4.80 µm·cm/V·S, 61.15%, and 2.39 after coating with chitosan, respectively. The results also suggest improved physical and chemical stability of nanoliposomes after coating with chitosan. TEM images demonstrate the produced particles were spherical and had a nanoscale, where the existence of a chitosan layer around the nanoparticles was visible. Shear rheological tests illustrate that the flow behavior of nanoliposomes was altered from Newtonian to shear thinning following chitosan incorporation. Further, chitosan diminished the surface area of the hysteresis loop (thixotropic behavior). The oscillatory rheological tests also show the presence of chitosan led to the improved mechanical stability of nanoliposomes. The results of the present study demonstrate that chitosan coating remarkably improved encapsulation efficiency, as well as the physical and mechanical stability of nanoliposomes. Thus, coating AC-nanoliposomes with chitosan is a promising approach for effective loading of AC and enhancing their stability to apply in the pharmaceutic and food industries.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Gholamreza Askari
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, TSA 40602, CEDEX, 54518 Vandoeuvre-lès-Nancy, France
| | - Elmira Arab-Tehrany
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, TSA 40602, CEDEX, 54518 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Csuti A, Sik B, Ajtony Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - a Review. Crit Rev Anal Chem 2022; 54:473-486. [PMID: 35658668 DOI: 10.1080/10408347.2022.2082241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Naringin is a flavonoid found primarily in citrus species with especially high concentrations being present in grapefruit (Citrus paradisi), bitter orange (Citrus aurantium), and pomelo (Citrus grandis). Because of its many positive effects on human health, naringin has been the focus of increasing attention in recent years. Recently, conventional extraction methods have been commonly replaced with unconventional methods, such as ultrasound-assisted extraction (UAE) and other, more eco-friendly extraction methods requiring little-to-no environmentally harmful solvents or significantly less energy. Naringin analysis is most commonly done via high-performance liquid chromatography (HPLC), and ultrahigh-performance liquid chromatography (UHPLC) coupled with a mass spectrometer (MS) or a photodiode array (DAD) detector. The aim of this review is to provide an overview of recent trends developments in the extraction, sample preparation, and liquid chromatographic analysis of the compound originating from citrus fruits or their products.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Beatrix Sik
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Zsolt Ajtony
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| |
Collapse
|
31
|
Guo X, Cao X, Fang X, Guo A, Li E. Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats. Int J Food Sci Nutr 2022; 73:480-490. [PMID: 34974785 DOI: 10.1080/09637486.2021.2012562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
This study examined the effects of phase II metabolism and efflux transportation on the bioavailability of naringin, hesperidin, and their aglycones (naringenin and hesperetin) in rats. Results indicated naringin and hesperidin have a lower oral bioavailability than their aglycones. Of all the phase II enzymes tested, UDP-glucuronosyltransferase (UGT) 1A1, UGT1A2, UGT1A3, UGT1A7 and SULT sulfotransferase (SULT) 1B1 were of minor importance regarding the phase II metabolism of naringenin and hesperetin in the small intestine. Naringin, hesperidin, and their aglycones were all extensively metabolised in the liver. Naringin and hesperidin were more extensively transported by efflux transporters compared to their aglycones. Significant correlations between phase II enzymes and efflux transporters were detected. In conclusion, more extensive metabolism of naringin and hesperidin than their aglycones in the small intestine, and the interplay of phase II enzymes and efflux transporters in the small intestine explain the lower relative oral bioavailability of naringin and hesperidin than their aglycones.
Collapse
Affiliation(s)
- Xiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuedan Cao
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xiugui Fang
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Xing Y, Li R, Xue L, Chen M, Lu X, Duan Z, Zhou W, Li J. Double emulsion (W/O/W) gel stabilised by polyglycerol polyricinoleate and calcium caseinate as mangiferin carrier: insights on formulation and stability properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuhang Xing
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Lu Xue
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Tropical Crops Yunnan Agricultural University Pu'er, Yunan 665099 China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| |
Collapse
|
33
|
Wu H, Zhang H. Preparation of Novel Nanomaterial and Its Application in Food Industry. Foods 2022; 11:foods11101382. [PMID: 35626952 PMCID: PMC9141088 DOI: 10.3390/foods11101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
- Correspondence: (H.W.); (H.Z.)
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.W.); (H.Z.)
| |
Collapse
|
34
|
Zhang J, Hassane Hamadou A, Chen C, Xu B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34730038 DOI: 10.1080/10408398.2021.1998761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In comparison to conventional encapsulation methods of phenolic compounds (PCs), pH-driven method is green, simple and requires low energy consumption. It has a huge potential for industrial applications, and can overcome more effectively the aqueous solubility, stability and bioavailability issues related to PCs by changing pH to induce the encapsulation of PCs. This review aims to shed light on the use of pH-driven method for encapsulating PCs. The preparation steps and principles governing pH-driven method using various carriers and delivery systems are provided. A comparison of pH-driven with other methods is also presented. To circumvent the drawbacks of pH-driven method, improvement strategies are proposed. The essence of pH-driven method relies simultaneously on alkalization and acidification to bind PCs and carriers. It is used for the development of nanoemulsions, liposomes, edible films, nanoparticles, nanogels and functional foods. As a result of pH-driven method, PCs-loaded carriers may have smaller size, high encapsulation efficiency, more sustained-release and good bioavailability, due mainly to effects of pH change on the structure and properties of PCs as well as carriers. Finally, modification of wall materials and type of acidifier are considered as efficient approaches to improve the pH-driven method.
Collapse
Affiliation(s)
- Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|